改进了巴克毫森噪声抑制性能的磁阻装置及其制造方法

文档序号:6743051阅读:192来源:国知局
专利名称:改进了巴克毫森噪声抑制性能的磁阻装置及其制造方法
一般地说,本发明涉及磁阻(MR)装置及其制造方法的领域。更具体地说,本发明涉及磁阻装置以及把它们制造成MR传感器的方法,而这种传感器显示出对巴克豪森噪声的抑制特性已有改进。
磁阻传感器或磁头已知可用于从磁面读取数据,而所具的灵敏度则超过感应式或薄膜式磁头。工作中,MR传感器用来探测磁面由此MR传感器的磁阻变化而发生的、作为被传感的磁通方向与数量之函数的磁场信号变化。同时周知,为使一MR传感器有效地起作用,就必须使其在一横向偏压场作用下令其响应线性化。在已知用来实现这种横向偏压的技术中,包括有电流并联偏压与软邻膜偏压技术。这种横向偏压场是垂直地作用于磁体媒质平面并与MR传感器表面平行。
业已知道,MR传感器可用来与一纵向偏压场配合,此纵向偏压场与磁体媒质的表面平行,同时与MR传感器的主轴平行。为了抑制巴克豪森噪声以便把MR传感器用于高磁道密度的磁盘文件,必须采用纵向偏压场使MR传感器稳定化,巴克豪森噪声起因于MR元件内多畴活动性之类的不稳定磁性。
至于应用纵向偏压场未抑止MR传感器内巴克豪森噪声的问题,在此领域内已公开了一系列的专利,这主要是涉及到通过使用以某种方式与MR传感器相耦合的反铁磁体来“交换偏压”。其中典型的有美国专利4663685号(1987,5,5公布)“具有结构式纵向偏压的磁阻阅读变换器”;美国专利4713708号(1987,12,15公布)“磁阻阅读变换器”;美国专利4809109号(1989,2,28公布)“磁阻阅读变换器及制造此种改进的变换器的方法”;以及美国专利4825325号(1989,4,25)“磁阻阅读变换器系统”。对于这类交换偏压式MR传感器,诸如锰及其合金当前用来形成铁磁体之类的材料,已知具有很高的易反应的特性和弱的热性质。
为了解决应用反铁磁体来提供纵向偏压时的上述存在问题,在许多专利与出版物中描述了采用永磁膜来稳定MR传感器。这方面有代表性的一些已知技术则描述在美国专利4639806号(1987,1,27公布)“在MR元件上具有磁化铁磁膜的薄膜磁头”;Hunt,R.P.与Jaecklin,A.A.的“用作畴壁势垒的复合膜”〔《应用物理杂志》(JournalofAppliedPhysics),37(3),1966,3,1〕;欧洲专利申请037646号(1990,6,27公布)以及欧洲专利申请0422806号(1991,4,17公布)。在某些这类先有的设计中,它们通过加纵向偏压于MR传感器来抑制巴克豪森噪声,业已证明一般是不适合采用紧密耦合的磁屏蔽层的。至于前述这些技术中的其余内容则并非直接起作用的和具备重现性质的。
本发明的磁阻装置包括一磁阻结构,这种结构具有一横切以磁阻装置主轴的两相对配置的端部。有一对永磁层设置在此磁阻结构端部邻近并与之相分开,且一般呈共平面关系。本发明的广义形式表现为权利要求1中所述的磁阻装置。本发明还表现为权利要求13所述的一种方法。
正如这里描述到的,依据本发明一最佳实施例所述的磁阻装置,它包括一磁阻导电区和一与此导电区两相对端部毗连的分隔层。在此导电区端部与上述分隔层相邻接的是第一与第二永磁区,以便由它们给磁阻导电区提供纵向偏压。所公开的这种纵向偏压技术可以用来结合各种已知的横向偏压技术,后者包括电流并联、理发店三色回转标杆(barberpole)式以及自偏压式等方法。
依据这里所公开的方法,可以按下述方式来制造一种磁阻装置,即在一磁阻结构上确定出一磁阻导电区,并使此导电区的相对端部与毗连的分隔层叠置。在导电区端部形成与分隔层邻接的第一与第二永磁区,给此磁阻导电区提供纵向偏压。根据本发明的另一种方法,可以通过提供一种磁阻结构和在其上确定一导电区来形成一磁阻装置。从导电区周围除去此磁阻结构,而在磁阻导电区的暴露表面上形成一间隔层。制造一与此间隔层邻接的永磁层,同时除去覆叠于导电区上的永磁层,以使此永磁层的其余部分能给导电区提供一纵向偏压。
在本发明的一个较为特殊的方法中,可以通过在一装置衬底上产生磁阻结构并在此结构内确定一导电区来形成一磁阻装置。环绕导电区的磁阻结构则予以除去,留剩下暴露的相对端部。然后将分隔层置放到衬底与磁阻导电区上。在与此分隔层相邻处则形成一永磁区,然后从此导电区除了它所暴露的端部外,除去此分离层与永磁区。
通过参看下面结合附图对本发明一实施例所作的描述,当能更清楚地理解本发明上述的和其它的特点与目的以及实现这些特点与目的的方式,在附图中

图1是先有技术的MR磁头的横剖面图,其中利用一反铁磁体,通过交换偏压来提供纵向偏压以抑制巴克豪森噪声;
图2是利用了交换偏压技术的另一先有技术中MR传感器的横剖面图;
图3示明了包括一反铁磁层与叠置的盖层的另一先有技术中MR磁头的横剖面图;
图4示明了另一先有技术的MR阅读转换器横剖面图,其中利用了一种硬磁材料给MR阅读转换器提供纵向偏压;
图5是又一种先有技术的MR阅读变换器的横剖面图,同时示明了通过应用一硬磁层给MR阅读转换器施加纵向偏压;
图6是本发明的一种磁阻装置的部分等角图,示明了磁阻导电区与相邻的永磁区之间经放大了的隔间,此永磁区乃是用来给导电区提供纵向偏压以实现巴克豪森噪声抑制(BNS);
图7是借助一分隔层在永磁区与磁阻结构中保持所需间隔的部分横剖面图;
图8是足以提供适当所需BNS的、永磁(PM)区对磁阻结构(MRSA)的间隔以A表示的曲线图;
图9是本发明一磁阻装置另一实施例的部分等角图,示明了当把一非磁性金属间隔层用在磁阻导电区与永磁区之间时,与此永磁区相接触的导线;
图10是本发明一磁阻装置的另一部分的局部横剖面图,进一步阐明了可用于图9与11的实施例中磁阻结构与相邻永磁区间的间隔层;
图11所示的本发明的最佳实施例阐明了一种磁阻装置,它所具有的椭圆形导电区,能有利地在磁阻导电区与永磁区的会合处附近降低去磁能量密度;
图12a-12h则是些简化了的剖面图,示明了用来制造本发明一磁阻装置的自调整过程。
现在描述本发明一最佳实施例。
参看图1,其中示明了先有技术的例如美国专利4713708号中所描述的一种MR磁头20。MR磁头20包括一与钝态端部区24相结合的激活区22。有一非磁性的分隔层28叠置在MR层26上,但是局限于激活区22中而不在钝态端部区24内。在钝态端部区中有一反铁磁层32叠合在软磁性膜30之上,同时有导线34叠置在反铁磁层32上。利用这种技术,就可不在钝态端部区24内,而是由设置于MR层26与软磁性膜30之间的一非磁性分隔层28来实现纵向偏压。这样,交换偏压效应就可从此纵向偏压层通过MR层26传至软磁性膜30。通过沿着MR层26的静磁与交换耦合,就能通过钝态端部区24的单畴态在激活区22内感生出一单畴态。
再来参看图2,其中示明了另一种先有技术中的例如美国专利4809109号所述的MR传感器40。此MR传感器40包括一种铁磁材料例如NiFe的材料层42。用一非磁性的分隔层46将此铁磁材料层42与一软磁性膜层44相分开。如图所示,有反铁磁材料层49叠置于铁磁材料42上。这里的反铁磁材料层48被描述为FeMn。有一对导线50通过与反铁磁材料48接触而接附到MR传感器40之上。此种反铁磁材料48,如前所述,给MR传感器40提供了交换偏压。
同时参看图3,其中示明了一种先有技术,例如美国专利4825325号所述的MR磁头60。此MR磁头60包括一NiFeMR层62。在衬底64上形成有一软磁性材料层66以及一在MR层62之下的非磁性分隔层68。在此反铁磁层上叠置有一盖层72,用以防止由于铁-锰反铁磁层70的极易起反应性而造成氧化伤害。盖层72被描述为一种稳定的介质材料层。
在上述每一先有技术的实施例中,都是通过采用一种反铁磁材料来利用“交换偏压”的,其中所遇到的显著问题是这类反铁磁材料的热性能不良而又容易起反应。
参看图4,其中示明了一种先有技术,例如欧洲专利申请0375646号中所述的MR阅读变换器80。MR阅读变换器80包括一MR层26,该层具有为一激活区82所分开的钝态端部区84。仅仅通过在钝态端部区84中的硬磁材料92给MR阅读变换器80提供纵向偏压。硬磁材料92如图所示是由非磁性分隔层94沿垂向与MR层86分开。MR层86在激活区82中的纵向偏压是由位于无源端部区84上的硬磁性材料92来提供的。导线96则在此无源端部区84中与硬磁性材料92接触。这样形成的装置所具备的叠层性质与那种一般属共平面的结构相比,是较难令人满意的。
现来参看图5,其中示明了已公开的一种先技术,欧洲专利申请0422806号中所述的MR阅读换器100。此MR阅读器100包括一激活区102与钝态端部区104。激活区102中的MR层106由钝态端部区104中的硬磁层108提供纵向偏压。MR层106通过对端接头110与硬磁层108作磁性的与电性的直接接触。如在该专利申请号中所描述到的,此种对端接头的外形包括有两个搭叠的斜坡,用来协调电与磁二者间的可靠性。
参看图6,其中简明地示出了本发明一最佳实施例的磁阻装置120。此磁阻装置120包括一中央导电区122和两个相对的永磁区124。导电区122可包括一磁阻结构(MRS)126,它在一最佳实施例中可包括一另示于图7中的三层结构。于是此磁阻结构126可包括一MR层138(例如200~500A厚的NiFe层)和一可由200~500A厚NiFeMo构成的底部软磁层140。此软磁层140可以视作为软的邻接层(SAU)。应知在某些应用中,最好是使此软磁层140叠置于MR层138之上。磁性隔间层(MSU)142则可由厚100~250A的钽构成。
永磁区124是由永磁层128构成,它在一最佳实施例中可包括CoPt或CoCr之类的其它钴合金。有一对可以包括Au在内的导线13。在导电区122与磁阻装置120接触,但当采用一种非磁性金属来替代介质材料用于间隔层136时,则可对永磁区124作电接触。
再参看图8,在永磁(PM)区124与磁阻结构(MRS)间的间隔最好为50至250A。对于屏蔽的MR磁头取约400A或更小的间隔,据认为这可以通过对磁阻装置的导电区122提供纵向偏移,于其中感生一单畴态而作出满意的巴克豪森噪声抑制(BNS)。导电区122与永磁区124间的间隔可以由间隔层136保持。间隔层136可以是铬之类的非磁性金属,或是氧化铝之类的介质材料,但要在导电区122与永磁区124之间保持所需的间隔。
下面参看图9,其中示明了本发明一磁阻装置150的另一实施例。磁阻装置150包括一与毗邻的永磁区154分隔开的导电区152。导电区152可包括一将于图10中作进一步描述的MR结构。与前述实施例相同,MR结构156以具有一种包括MR层164与下部软磁层166在内的三层结构。在MR层164与软磁层166内间则设置有磁性分隔层168。永磁区154是由永磁层158组成并通过间隔层162与导电区152分开。在图9的实施例中,导线160在永磁区154与磁阻装置150接触。这可以通过将铬之类非磁性金属取代介质材料,用作间隔层162而得以实现。
磁阻装置150的导电区152最好具有与此装置所需的磁道宽度相等的长度。利用非磁性的金属间隔层162则可使导线160与永磁区154接触而避免电流并联效应,这种电流并联效应通常会在与导电区152直接接触时发生。
再来参看图11,其中示明了本发明之磁阻装置170的一个最佳实施例。在此实施例中,导电区172取椭圆构型。永磁区174仍依前述和图10所示方式与导电区172分隔开。使导电区172取椭圆形的显著优点是,可以减小导电区172与永磁区174会合处附近的去磁能量密度。利用图11中所阐明的,相对于导电区172,就以前所述的正交式边界实施变形技术,是可以推断出能获得类似的优点的,在导电区172与永磁区174之间,还可以采用其它一些锥状剖面形、曲线分隔区和非正交的边界。
导电区172的椭圆端部区可以为例如基本上如虚线所示的导线182接触。
下面参看图12,其中示明了制造本发明的磁阻装置的有代表性的工艺流程。MR结构200,它可以是前述的那种三层结构,由光刻胶202摹制出一MR导电区204。MR结构200未为光刻胶202覆盖的部分,则如图12c所示被蚀刻掉。间隔层206沉积在余剩的衬底端部结构上,使得它在导电区204处与MR结构200的端部邻接,形成基本上与前面图7与10中所示的相同的结构。间隔层206可包括一非磁性金属208或是氧化铝之类的介质材料。如图12e所示,永磁区210形成在间隔层206的顶部上。永磁区210可以作各向同性地沉积,而后在最终的几道处理工序之后应用适当的磁场,使之沿此磁阻装置的主轴取向并固化。此外,永磁区210也可经各向异性地沉积。可以用图12f所示另外的光刻胶处理工序,使光刻胶212的图案形成在组合式的结构上,为图12g所示的离子研削工序作准备,而得以蚀刻去永磁区210与分隔层206的余剩部分,留下此装置的端部214。在最后一道处理工序中,从该装置上除去光刻胶,留剩下如图12h所示之本发明的磁阻装置,它具有一磁阻激活区,此激活区与给它提供纵向偏压的永磁区共平面但分隔开。
在本发明上述几个实施例中,MR膜层与永磁膜层的复合件之磁通相配合,所形成的一种基本上连续的磁体在MR层与永磁层的会合处邻近具有很低的去磁能量。这在采用了一种椭圆形磁阻导电区时尤其如此。这样,此种MR传感器的矫磁力平均而言是很低的,但这一磁体永磁部分的矫磁力则很高。于是,这种复合成的膜层组在此装置的正常运行期间就不会断通。这样紧密的静磁耦合便在MR传感器内形成了一种纯净的易磁化轴向场,使此种装置保持为单畴态,从而抑制了巴克豪森噪声。
本发明的磁阻装置及其制造方法易于用紧密分开的铁磁屏障件来实现,此种装置能提供约1000至4000A的间隙(MRS到屏蔽件的间隔)宽度。永磁区至MR导电区所需的间隔最好约小于上述间隙宽度的一个数量级。因而,2000A的间隙宽度应表明有一200A的永磁区至MR导电区的间隔。
尽管上面结合特定的装置与处理工序描述了本发明的原理,但显然应该认识到,所作的这种描述只是用作例释而不是对本发明范围的限制。
权利要求
1.一种磁阻装置(120),它包括一个磁阻结构(126),此结构具有一主轴并有横切此主轴的相对配置的第一与第二端部(180);以及第一与第二永磁层(128),它们以大致共平面关系与上述磁阻结构的第一与第二端部相邻但分开地配置。
2.如权利要求1所述装置,其中磁阻结构(126)包括一磁阻层,以及一以处于其底部下关系大致共同延伸的较软磁性层(140),此装置还可包括一设置在上述磁阻层(164)与软磁层(166)之间的磁性分隔层(168)。
3.如权利要求2所述装置,其中所说磁阻层包括NiFe。
4.如权利要求2所述装置,其中所说软磁层(166)包括NiFeMo。
5.如权利要求2所述装置,其中所说磁性分隔层(168)包括钽。
6.如权利要求1所述装置,它还包括第一与第二电极,用来通过前述第一与第二永磁场给所说装置提供电接点,且其中所说的第一与第二电极包括Au并同所说磁阻结构接触。
7.如权利要求1所述装置,其中在所说第一与第二永磁层和所说磁阻结构的第一与第二端部间的间隔层厚度小于400A,且此间隔层包括一非磁性金属层。
8.如权利要求1所述装置,其中所说磁阻结构的第一与第二端部一般由一椭圆确定,此椭圆的焦点一般在此磁阻结构的主轴上。
9.如权利要求1所述装置,其中所说磁阻结构的第一与第二端部不与前述主轴正交。
10.如权利要求1所述装置,其中在所说第一与第二永磁层同所说磁阻结构的第一与第二端部之间的间隔层,是由一种介质材料确定。
11.如权利要求1所述装置,其中所说永磁层包括CoPt。
12.一种磁阻装置(150),它包括一具有两个端部的磁阻导电区(152);与上述导电区之相对端部毗连的分隔层(162);以及第一与第二永磁区(158),它们在上述导电区的端部与所说间隔层相邻接且大致共平面,由此,所说的第一与第二永磁区为该磁阻导电区提供纵向偏压。
13.形成一种磁阻装置的方法,它包括以下各工序在一磁阻结构上确定一磁阻导电区;以邻接的间隔层叠置于此磁阻导电区的相对端部上;同时在此导电区端部处,形成与前述间隔层邻接的第一与第二永磁区,给此磁阻导电区提供纵向偏压。
14.如权利要求要求3所述方法,其中所说的确定一磁阻导电区的工序包括以下步骤在上述磁阻结构上形成图案化的光刻胶以确定所说磁阻导电区;以及蚀刻掉此图案化光刻胶周围的磁阻结构。
15.如权利要求13所述方法,其中所说的确定一磁阻导电区的工序产生出一大致椭圆形的磁阻导电区。
16.如权利要求13所述方法,其中所述叠置工序包括沉积一种非磁性金属的工序。
17.如权利要求16所述方法,其中所说沉积工序是用铬来实现。
18.如权利要求13所述方法,其中所说叠置工序包括沉积一种介质材料的工序。
19.如权利要求13所述方法,其中所说形成工序包括沉积一种硬磁材料的工序。
20.如权利要求19所述方法,其中所说沉积工序是用CoPt来实现。
21.如权利要求13所述方法,它还包括如下步骤使光刻胶图案化以确定出所说磁阻装置;在所说已图案化的光刻胶的周围蚀刻掉所说间隔层与永磁区;同时除去此图案化的光刻胶。
22.如权利要求21所述方法,其中所述蚀刻工序通过离子束研削装置完成。
23.一种成形磁阻装置的方法,它包括如下步骤从一种磁阻结构确定出一磁阻台面;使此台面的侧壁部分与一间隔层重叠;同时产生一与该隔间层相邻的永磁层,以给上述磁阻台面提供纵向偏压。
24.如权利要求23所述方法,其中所说确定工序是由图案化光刻胶实现。
25.一种形成磁阻装置的方法,它包括如下步骤在一装置衬底上产生一磁阻结构;在上述磁阻结构内确定一磁阻导电区;首先,在上述磁阻导电区周围除去所说磁阻结构,留下其暴露的两相对端部;将一间隔层叠置到所说衬底与磁阻导电区上;形成一与该间隔层邻接的永磁区;其次,从所说磁阻导电区上,除了在它上述暴露的两相对端部处,除去前述间隔层;由此,上述永磁区中与所说磁阻导电区暴露之两相对端部邻接的部分,即给此导电区提供一纵向偏压。
全文摘要
能提高巴克豪森噪声抑制性能的一种改进了的磁阻装置及其制造方法。描述的一种共平面装置具有一MR结构导电区,通过为一非磁性金属或介质隔间层所分隔的两相对永磁层,给它提供纵向偏压。能在MR层与永磁层会合处邻近显著减少去磁能,尤其当采用椭圆形导电区时是如此。利用自调整工艺迅速且有重现性地制造出此大致共面式的装置。所述的纵向偏压技术能与所有周知的横向偏压技术相结合。
文档编号G11B5/39GK1091543SQ9311451
公开日1994年8月31日 申请日期1993年11月10日 优先权日1992年11月12日
发明者詹姆斯·L·尼克斯, 盖伊·F·鲁斯, 安东尼·C·赫尔姆斯, 保罗·D·莱因霍尔茨, 丹尼尔·J·奥康纳 申请人:落矶山磁技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1