低价位天线阵列的制作方法

文档序号:7124537阅读:126来源:国知局
专利名称:低价位天线阵列的制作方法
技术领域
本发明涉及天线阵列,更具体地针对低价位天线阵列和制造该天线阵列的方法,该天线阵列具有实质上平面的和曲面的表面,可应用于通信。
背景技术
天线阵列的制造有各种各样形式,在通信领域内有许多不同的应用。一种具体的应用场合是具有高容积和着重低成本的天线阵列,它们使用于移动通信系统基站中,诸如美国的工作于约800MHz的蜂窝传输系统和工作于约1900MHz的个人通信业务(PCS)系统的基站中,以及使用于世界范围内的其他无线和移动通信应用中。
基站天线阵列的形式上,采用着广泛多样的结构,它们在尺寸、成本和可靠性方面有着明显差异。通常的基础天线阵列典型地包括两个或多个各别的辐射器;一个传输网络,使来自天线接口端的射频功率在各个辐射器之间进行分配;一个机械结构,确保所有单元构成一个组合体;以及一个天线罩。一种基本的基站天线阵列类型由周知的圆柱体偶极子阵列组成。此类天线阵列一般地有大量的部件,结构上制造成本高,物理尺寸大,以及重量比较高。另一种基本的基站天线阵列类型使用金属薄板偶极子辐射器组成,由分立的介质隔离片支撑的金属薄片组成微带功率分配网。各个金属零件通常由铝材薄片冲压成,然后依靠高强度的劳动予以组装。另一种常规的基站天线阵列使用印刷电路板(PCB)构成功率分配电路,使用同轴电缆连接金属偶极子或配线辐射器。
又一种常规的基站天线阵列类型使用PCB构成功率分配网络,并使用分立的PCB构成偶极子辐射器。对于具有高增益值和8个以上辐射器的基站天线来说,通常需应用基于高性能聚四氟乙烯(PTFE)的PCB材料来构成功率分配网络,以保持低的网络损耗,避免信号衰减。基于高性能PTFE的PCB材料比之其他类型的PCB材料成本高得多。就生产工具成本、加工、组装方便性和有利实现较大的电路复杂性而言,应用由PCB作为功率分配网络和辐射器构成的基站天线,其给出的优点超过应用金属薄片构成的类似天线。
已经提出各种构造的平面天线阵列,借以减低制造成本、减小物理尺寸和减轻总的天线阵列重量。这些天线阵列在组成上有各种样的结构,利用多样的夹层类型布置,并利用多样的材料作为天线辐射器和电路。通常,形成平面天线阵列时采用筛网印刷法或是物理切割金属层法,诸如依靠冲压出辐射器配线或切割金属层的方法形成金属层中的辐射器配线,并依靠蚀刻金属层形成所需图案。这些类型的天线内包括有形成在很薄金属层或金属片上的一个或多个电路和辐射器,它们再支撑或安装于一般地较结实的各种介质底层上,诸如塑料、泡沫材料、StyrofoamTM、PVC树脂、玻璃纤维、聚丙烯、聚酯、丙烯酸或聚乙烯等基底层。虽然,这些常规的阵列结构改善了天线阵列的某些特性,诸如部件的数目小和重量轻,但在电性能,制造工艺成本和总的机械结构方面尚需改进。
因此,需要一种天线阵列例如供基站场合应用,能以降低的成本予以制造。还希望在达到降低所需阵列成本的同时,保持可接受的天线阵列的电性能。进一步,希望形成一种灵活的天线阵列,能做成曲面结构应用于一定场合。

发明内容
本发明针对低价位的天线阵列和制造此类阵列的方法,供通信应用,诸如应用作基站天线。按照本发明的天线阵列又可以设计成平面形式或者有灵活的结构,或是某些应用中希望的曲面阵列结构。
按照本发明实施例的天线阵列由多层组成,各层之间可取地互相粘合。天线阵列内包括有在两个或多个介质层上形成的多个金属辐射器单元,而介质层依次地粘合至金属基底层上。介质层的厚度选择为可提供所需的间隔供辐射器单元工作应用。辐射器单元可取地形成于软性的介质载体层上,载体层可粘合至介质泡沫核心层上,介质核心层可以是软性的,或者可以为模塑的或切割成平面形状或非平面形状的。阵列内可包括一个或多个介质层,介质层上可形成许多无源辐射器单元,其中,介质层可取地粘合在金属辐射器单元的顶部。介质层和基底层封闭在包括天线罩的结构内,提供对外界环境的防护,并便利于使天线组件能在安全和坚实的状态下安装到其他结构上。
按照本发明实施例的阵列制造方法中,包括使各层互相粘合。辐射器单元的形成上,可取地是在使泡沫核心介质层粘合至基底层上之前,先蚀刻金属层。然后,使带有无源辐射器单元的介质层粘合至已经形成的辐射器单元上。根据需要,基底层可以部分地或整体地弯曲。
按照本发明实施例的低价位天线阵列设计上,使用了适合印刷电路板制造技术的各种低价位部件,它们可以在短时间内组装一起,组装后只需小量调整或不需调整便可得到所需性能。
因此,本发明提供一种具有多层结构的天线阵列,它包括金属层,上面形成有许多加电的天线辐射器单元和馈电单元;第一薄载体介质层,金属层形成于该所述第一薄载体介质层上;泡沫核心层,它具有顶部表面和底部表面,其中,第一薄载体介质层形成于泡沫核心层的顶部表面,胶粘层形成于泡沫核心层的底部表面,其中,胶粘层粘合至金属基底层上。
结合附图阅读下面的详细说明,容易理解本发明的其他特性和优点。


图1示明在基站环境内应用的按照本发明实施例的天线阵列;图2为分解的透视图,示明按照本发明实施例的天线阵列;图3为分解的透视图,示明具有天线罩单元的图2的天线阵列,形成完整的天线结构;图4为放大的分解透视图,部分地示明图2的天线阵列;图5为放大的分解图端视图,示明图2的天线阵列;图6的透视图示明带天线罩的图2的天线阵列,形成部分的完整天线结构;图7是图6上部分完整天线结构的顶视图;图8是分解的透视图,示明按照本发明另一个实施例的天线阵列;图9为分解的透视图,示明带有天线罩单元的图8的天线阵列实施例,形成完整的天线结构;图10为分解的透视图,部分地示明图8的天线阵列实施例;图11为放大的分解图侧视图,示明图8的天线阵列实施例;图12为部分的透视图,示明带有天线罩单元的图8的天线阵列实施例,形成部分的完整天线结构;图13是图12上部分完整天线结构的顶视图;图14A、14B和14C分别为安装在天线罩单元内完整天线阵列结构的侧视图、底视图和顶视图;图15为沿图14A中线条15-15剖开的完整天线阵列和天线罩结构的截面图;图16是图15上完整天线阵列结构的透视图;图17是本发明的曲面天线阵列实施例的透视图;图18是图17上天线阵列结构放大的部分透视图;图19A和19B分别为本发明的另一个曲面天线阵列实施例的透视图和顶视图;图20的概略图示明在基站环境内应用本发明的曲面天线阵列;图21示明制造本发明一种天线阵列实施例的工艺步骤;图22示明制造本发明另一种天线阵列实施例的工艺步骤;图23的部分透视图示明本发明的天线阵列天线罩实施例,能够支撑完整的天线结构;图24是图23上天线罩的侧视图或端视图,上面安装有完整的天线结构;以及图25的部分透视图示明图23的天线罩单元,在其中安装有天线结构。
具体实施例方式
现在,参看图1,基站或小区站点10可包括至少一个而通常为多个的本发明之天线阵列12,它们的实施详细地公开了图2至图16上。这些图中标明的相同参考号指各附图内相同的或类似的部件。基站天线阵列12通常包容在实质上密封的天线罩(示明于图14至图16)内,它们再以常规方式安装到基站塔桅14上。如这里的使用情况,天线阵列为具有一定尺寸、间隔和辐射序列的诸天线单元的组合体,使得各个辐射器单元组合一起的电场在特定方向上产生最大强度,而在其他方向上电场强度极小。描述此种组合体时,术语天线阵列可以与阵列天线互换地使用。
在诸如一个或多个覆盖区16内,基站天线阵列12中的每一个对移动或固定通信系统(未示出)的小区提供覆盖,诸如是对于美国的工作在大约800MHz上的蜂窝传输系统和工作在大约1900MHz上的个人通信业务(PCS)系统提供覆盖,或是对于具有固定或移动用户系统的其他天线通信提供覆盖。本发明的基站天线阵列在天线阵列12中示明为平面结构,在曲面天线陈列18中示明为曲面结构(曲面结构的实例详细地公开于图17至图20内)。曲面天线阵列18可安装在第二基站塔桅14’上,能使基站10的通信覆盖地点增大到覆盖区16的上方,诸如到达山头上或者飞机19上。
本发明的第一天线阵列实施例以分解图示明于图2,图中各个单元未按尺寸比例绘制。天线阵列实施例20为双极化天线,包含两个正交的线极化,这里以16个各别的辐射器示明。本技术领域内的熟练人员知道,本发明并不限制于双极化天线,也可应用到单种极化特性的天线上,还能应用到不同于所示实施例的各辐射器的数目上,阵列内辐射器数目可以少些或多些。阵列20内包括PCB堆叠或夹层22,堆叠22上包含许多形成于金属层60上的(示明于图5中)、沿堆叠22长度方向布置的辐射器单元或配线24,并按常规方式用所需的馈电电路26连接诸辐射器单元24。可取地,首先借助于诸如胶粘层62(示明于图5中)使金属层60附装或粘合到比较薄的载体介质层27上,然后,诸如通过通常的化学蚀刻工艺沿堆叠22的长度方向形成许多辐射器单元或配线24,用所需的馈电电路26连接诸辐射器单元24。应理解到,术语粘合可以包括用于粘合的常规技术,它包括但不限制于应用胶粘剂或紧固件进行接合。
然后,借助胶粘层30使PCB堆叠22粘合到比较厚的泡沫核心介质层28上。天线阵列20的其余部分可取地包括胶粘和释脱层32,它首先粘合至泡沫核心介质层28底侧上,当各层粘合在一起时,便完成一个堆叠或夹层组合体34。诸如通过通常的化学蚀刻工艺,此时也可以在组合体上再形成带有所需馈电电路26的许多个辐射器单元或配线24。诸辐射器单元24如所需的馈电电路26形成后,以常规方法修整堆叠34。然后,去掉层32的释脱部分(诸如是聚酯材料或类似的剥脱层,图中未示出),再依靠其余的胶粘剂使堆叠34粘合到基底层或导电托35上。
堆叠22、介质层28和导电托35之每一个各包括成对的中央孔径组36,它们互相啮合,应用于对PCB堆叠22上的馈电电路26实现射频信号连接。沿堆叠22、介质层28和导电托35的边缘形成有另外的多个啮合孔径组38,这些孔径组38应用于使安装托架48安装到导电托35上(如图3中所示)。由导电托35内的孔径组38承纳螺栓或螺钉或类似的器件(图中未示出),由堆叠22和介质层28上的也是径组38提供出用于螺栓头的公差余隙。
堆叠34和导电托35安装一起后形成天线结构40的一部分,这些部件示明于图3上。在天线结构40上形成天线阵列20的壳套,以防护天线受环境情况的影响,诸如下雨、冰雹、降雪、灰尘和刮风等。尽管天线阵列20通常安装于基站上的暴露位置处,但在其他应用场合下,天线阵列20安装中可以带有或不带有其他类型的保护或壳套。天线结构40中包括天线罩覆盖构件42,它可以安装至底部的导电托35上。天线罩覆盖42的两端由一对端盖44包封,它们由诸如螺钉(未示出)之类的紧固件固着到基底层35或天线罩覆盖42上,构成完整包封的天线结构40。
天线罩覆盖42在制造上可以用合适的室外品级的塑料材料进行模压,对于损耗应确保适当的射频性能,并具有合适的介电常数。塑料材料还应有适宜的尺寸稳定性,在低温下不会变脆。天线罩材料可取地采用室外品级的聚氯乙烯(PVC),它包含有抗紫外线(UV)的稳定剂材料,可在室外环境下保持耐久性。采用PVC材料是一种良好的选择,已经证明,可用作基站的天线罩。
基底层35内包含成对的中央孔径组36,可与其他各层内的孔径组36进行接合。孔径组36供一对射频连接件46使用,使射频功率传输给PCB堆叠22上的馈电电路26。射频连接件46形成供天线结构40用的接口端口或端口连接件。由于直接的射频信号路径内,天线结构20或40中仅有的金属对金属的接触是射频连接件46处的焊点连接,所以最后形成的天线结构20或40能提供良好的无源互调(PIM)性能。用每单音20W的两个载波单音进行测试时,PIM通常小于-150。
天线结构40可取地又包括一对安装托架48,借助于诸如螺栓或螺钉(未示出)之类的紧固件如前面所述地可通过孔径组38固着到基底层35上。托架48应用来将天线12安装到任何希望的位置处,诸如安装到小区塔桅14上。
堆叠34和基底层35在图4中以放大的部分透视图示明。它较清楚地示明带有辐射器单元24和馈电电路26的PCB堆叠22。另外,至少介质层28和基底层35之每一个都包含一对孔径50,在它们上面安装端盖44。制造堆叠34以及安装到导电托35上时,孔径对50还可以应用于堆叠22、各层22、28、30和32(需要时,它们每一层各包含孔径对50)的对准。一般地,可以在堆叠的各层内都形成孔径,借以确保紧固件周围的公差余隙或凸出特征,否则,在不同的堆叠内会有局部的凸出。
堆叠34和导电托35在图5中又以放大的端视图示明。同样地,各单元未按尺寸比例示明。另外,比较薄的载体介质层27与金属层60在位置上间隔开,在金属层60上已制作或者将制作上图案,以形成辐射器24和馈电电路26。依靠胶粘层62使金属层60粘合剂载体介质层27上,形成堆叠22。导电托35可取地又包含一对相对的纵向边沿槽隙,用于在将端盖44安装至导电托35上之前使天线罩覆盖42先行滑入。
虽然,具体的材料和各层厚度并不十分严格,但下面列述某些典型的尺寸和材料。一个优选实施例中,金属层60为薄的铜箔,经蚀刻形成单元24和26。铜箔60可取地为电解淀积(ED)型铜箔,对于与载体介质层27之上的胶粘层62表面相接触处的铜箔,可进行化学处理,该处理通常称为反面处理铜箔。金属层60每平方英尺面积重1盎司,相应的厚度大约0.0014英寸。也可以应用其他铜箔,包括一般较贵的辊轧铜箔以及在粘合面上具有减小的表面剖面的ED铜箔。铜箔有多样的重量,诸如可应用每平方英尺重0.5或2盎司的铜箔。从基站天线使用上的成本和信号电流容量看,1盎司铜箔是可取的。载体介质层27可以是低损耗的聚酯薄膜,厚度大约为0.003至0.005英寸,也有厚到0.010英寸的。金属层60和比较薄的载体介质层27可以用比较薄的胶粘层62粘合一起。胶粘层62能结合湿涂敷工艺应用于金属层60与载体介质层27之间,凝固后形成可处理的薄片,随后加工成整体的组合体即堆叠22。得到的薄片组合体或即堆叠22通常是柔软的,至少可以在一个平面内做成弯曲的形状。
泡沫核心层28可取地为封闭单元的泡沫,借以实质上限止水分吸入天线环境内,并容许泡沫核心层28经受湿印刷电路板工艺,比较小量地吸收流体。泡沫核心层28可以是一种膨化的聚烯烃塑料材料,典型密度为每立方英尺重2、4、6、9或12磅。一种此类材料是膨化聚乙烯,它可取地能在制造中使用典型的辐射工艺形成交联键,增强材料性能。在其他的塑型工艺中,可以使用热激励化学交联键媒剂。应用辐射工艺的一种交联键封闭单元膨化聚乙烯泡沫周知的有由Vulcan公司、Tennessee公司和Vulcan国际公司的全资子公司及Delaware公司制造的VultraCellTM。第二种交联键封闭单元膨化聚乙烯泡沫周知的是由Sekisui美国公司的分部Vlotek制造的VolaraTM。Valtek制造有多种品级的其他交联键封闭单元聚烯烃泡沫材料,适合于本应用场合。卷筒型聚烯烃泡沫材料为软性的,通过粘合能形成其他目的用的形状,应用这里说明的部件和常规的工艺与组装技术,能将天线制造成在一个或多个平面内呈现弯曲形状。
泡沫核心层28的介电常数取决于形成泡沫核心层28所用的膨化材料的密度和介电常数。在模塑方式下制造的诸如膨化聚苯乙烯(EPS)之类的硬性低密度泡沫,典型密度为每立方英尺重1.25至2.5磅。此类低密度泡沫的介电常数为1.02至1.04,接近空气的介电常数。此之膨化聚苯乙烯泡沫,挤压成形的聚苯乙烯泡沫更为可取,因为利用泡沫颗粒构造成膨化型泡沫时会发生的小的空隙通道减小了,水分吸入随之减少。尽管如此,对某此应用来说EPS的水分吸入还是足够低的。每立方英尺重6磅密度的挤压型交联键聚乙烯泡沫,介电常数的典型值为2.3。其他交联键膨化聚烯烃泡沫的介电常数值为1.35。本发明中可应用的一种泡沫核心层28厚度大约为0.090英寸。塑料材料的密度低,介电常数值小时通常地其损耗系数也低。
可应用于泡沫核心介质层28的硬性泡沫材料有英国诺里奇(Norwich)市EMKAY塑料有限公司制造的RohacellTM。RohacellTM是一种聚甲基丙烯酯(PMI)硬性泡沫,没有CFC、溴和卤素,据称是100%密度单元和各向同性的。RohacellTM泡沫具有优良的机械性能,在高温下有高的尺寸稳定性,耐溶剂,热传导系数特别低。它们强度值和弹性模量与剪切模量迄今没有任一种其他的相同毛重密度的泡沫塑料能超过它。该RohacellTM泡沫可以有各种样密度,包括每立方英尺为2、3.25、4.68和6.87磅。在相同的密度下,RohacellTM泡沫的介电常数通常小于软性聚烯烃族泡沫的介电常数。例如,每立方英寸4.68磅的RohacellTM泡沫的介电常数在2GHz上大约为1.08。RohacellTM泡沫能变成热弹性的。所以,在170℃-190℃温度下能够成形。所需的变形温度取决于成形程度和密度。某些场合下,在加热下通过机械方式或变形方式,可以得到曲面的泡沫形状。
导电托35可以用铝形成,厚度约为0.125英寸口本技术领域内的熟练人员知道,示明的实施例中的号电托或基底层35也是一个关键的结构单元,所示明的相关厚度已具有所需的硬度和强度。也可以有其他实施例,包括依靠天线罩覆盖42作为关键的结构单元,而基底层35可以是比较薄的铝或者其他合适的导电材料金属层,厚度为0.003-0.010英寸量级。
图5中包括由金属层60、胶粘层62和比较薄的载体介质层27构成的堆叠22的一个实施例,可以从美国东普罗维登斯市罗得岛的Arlon工程薄片和涂敷公部处得到,参见其敷铜聚酯薄片(CPL)的产品说明。Arlon CPL产品中的胶粘层62是一种有专利权的Arlon热成形氨基甲酸乙酯胶粘体系。金属化导电的堆叠22可以从软性电路产业内的大量供应商那里得到,比较薄的载体介质层27为聚酰亚胺材料的产品,已知的有杜邦公司的KaptonTM薄膜。Arlon CPL产品由于其较低的介电常数和低得多的吸水性,比之基于聚酰亚胺薄膜的薄片更为可取。
胶粘层30和62可以是聚丙烯压敏转移胶粘剂,诸如明尼苏达州圣保罗市内3M公司在商标名VHBTM下制造一种产品类型,厚度值为0.002-0.005英寸量级。也能应用其他聚丙烯胶粘剂体系,包括湿性应用体系。虽然,聚丙烯胶粘剂体系是可取的,但本发明不限制于只应用聚丙烯胶粘剂体系。对于胶粘层32,应用压敏胶粘剂(PSA)是可取的,易于使堆叠34组装到基底层35上。
比较薄的载体介质是27不限制于聚酯材料,可以应用具有比较低的水分和射频能量吸收性的任何合适的低价位塑料材料,它们在泡沫核心层28与铜箔60之间实质上起阻止渗透的聚合物膜片的作用。塑料材料还应提供平滑表面以应用于印刷和蚀刻,并进一步起阻挡层的作用,防止在PCB产业内典型的化学处理中穿透泡沫核心层28的表面。应用比较薄的载体介质层27是构造低成本天线中的关键因素,它有助于在使得所需的馈电电路26连接至辐射器单元24上进行导电图案制造中,可应用标准的PCB工艺,并易于应用常规的聚丙烯胶粘剂体系粘合到泡沫核心层28上。泡沫核心层28可以是软性的,或者可以用模塑或切割法制成所需的平面或非平面的构造。
图6和图7示明天线结构40部分组装件的两个视图,包括组装的堆叠22和34以及互相粘合的各层28、30和32,它们安装于基底层35上,但没有加上天线罩覆盖42。
本发明的第二个天线阵列实施例70中,包括有与第一个天线阵列实施例20实质上相同的堆叠34,图8中示明实施例70的分解图。除了堆叠34的各层外,上述的天线阵列70包括有类似于堆叠22的堆叠71,堆叠71上无源的辐射器单元或配线组72可取地形成于或借助胶粘层粘合于薄的载体介质层74上(示明于图11中)。无源辐射器单元或配线组72可通过辐射器单元或配线组24予以激励,与没有无源辐射器单元或配线组72的类似天线阵列设计相比较,它可增大天线阵列20的工作带宽。薄的载体介质层74可以与薄的载体介质层27相同。辐射器单元72与相应的辐射器单元24进行无源耦合。辐射器单元72不包括任何馈电电路,而依靠再一个介质层76使辐射器单元72与堆叠22间隔开预定的距离,介质层76的厚度等于相关的辐射器单元24与72之间所需的无源耦合的预定距离。介质层76通过胶粘层78连接或粘合到堆叠71上。辐射器单元72与可以直接连接到介质层76上,不用介质层74和胶粘层78。介质层76可以由通常的膨化聚苯乙烯材料形成,可模塑或切割成所需的尺寸。介质层的优选实施例为单块式的封闭单元泡沫结构,具有比较小的密度值以及实质上均匀的厚度值。然后,介质层76借助于胶粘层80接合至堆叠22的顶部。其中包含附加的载体介质层74及其上面的辐射器单元72、以及介质层76的堆叠71,与堆叠34一起组成再一个多层组合体或堆叠82,使之如前面所述地安装到导电托35上。
位于导电托35上的堆叠82又如图9中所示地安装入天线结构40,它包含有先前对于图3所示的那些相同的部件。除了附加的两层74和76之外,两个天线结构20和70可以相同。
图10中的放大的部分透视图示明堆叠或夹层结构82。连同堆叠71和介质76一起,较清楚地示明带有辐射器单元24和馈电电路26的导电堆叠22。泡沫核心层28和基底层35每一个又包括一对孔径50,端盖44安装于上面。在制造夹层结构82以及将它安装到导电托35上时,孔径对50又能利用来使各层互相对准。
图11中又以放大的端视图示明带有导电托35的堆叠82。同样地,各层未按尺寸比例示明。另外,图中介质层74与无源辐射器单元组72是间隔开的,后者已经或将要由金属层制作出图案(未示出)。金属层或形成的辐射器单元组72依靠胶粘层73接合到载体介质层74上。一个优选实施例中,导电层72可以是类同于金属层60的薄铜箔。载体介质层74类同于载体介质层27,也可以是比较薄的低损耗聚酯材料,厚度大约为0.003-0.005英寸。介质层76可以是封闭单元的聚苯乙烯,损耗低,介电常数小,厚度约0.375英寸。胶粘层73、78和80同样地为通常的压敏胶粘剂,厚度大约为0.002-0.005英寸。另外的实施例中,导电层72可以是激光切割或冲压切割的铝、黄铜或紫铜薄片,厚度为0.05英寸量级。然后,各个辐射器配线72可以是各别的薄片件,再接合到载体介质层74上,在那里能够与介质层76直接粘合。当形成为各别的配线时,辐射器配线组72可以按特定的天线应用的需要,以任何合适的厚度尺寸形成。
图12和图13示明部分的组装天线结构70的两个视图,包含组装的堆叠82及互相接合的各层22、28、74和76,它们安装于基底层35上,但没有天线罩覆盖42。
图14A、14B、14C、15和16示明在形成天线阵列70中天线结构40的天线罩内,组装的堆叠82的各个视图。
图17至图20示明的天线阵列实施例是非平面式的,天线阵列的各部分都是非平面形的。在这些设计的实施中,对于泡沫核心层28可取地采用软性的或者可以由平面薄片热成形的材料。
图17示明本发明的曲面天线阵列实施例90的透视图。介质层27和28可以由软性材料形成,诸如可压缩和可顺应的泡沫材料,或是如前面所述地可通过模塑或切割制成。作为一个天线阵列的例子,天线阵列90形成于圆柱形衬底或基底层92上,包含两个堆叠34,它们形成一对具有许多辐射器单元24的天线20。通过在圆柱形或曲面衬底92上形成天线20,天线20可给出实质上360°的覆盖。天线罩结构类同于天线结构40中的那样(未示出),可以安装在天线阵列90上以形成一种天线结构,它具有减小的尺寸和重量,在审美角度上较令人满意。然后,天线阵列90可以按所需进行安装,诸如安装于小区塔桅14上面或是其上方(未示出)。
图18是天线阵列90放大的部分透视图,包含图17中天线20之一的一部分。天线阵列90在使用中也可以不加天线罩,但若特定在应用中有需要,可包括一个保护涂敷层或其他型式的覆盖。
图17和图18上所示实施例中,围绕圆柱体92上天线20的弯曲方向,是在沿圆柱体长度方向上天线阵列90平面的横截方向内。天线阵列90笔直地沿天线阵列的主尺寸方向。在该具体的、具有曲面的天线阵列90的实施例中,各个天线阵列辐射器单元24的指向为同一方向。这种布置在估算远场辐射图特性时能提供一种条件,使各别的辐射器的贡献与天线阵列的贡献可区分开。图17和图18的这类特定实施例中,曲面目的的达到是在阵列平面的横截面内形成一种图案,用围绕中央安装结构提供出多个天线阵列的紧凑布置。对于两个或多个天线阵列,用于每一个阵列的信号接口可以是独立的,以给出扇区覆盖;或者,对应于每个阵列的信号可以进一步组合,以给出宽阔的扇区覆盖或全方向覆盖。
图19A和19B示明沿阵列方向弯曲的天线阵列100的透视图。图19A示明的实施例100中,天线阵列顺应圆柱体衬底的形状102。图19B示明的实施例100’中,相对于上述的均匀曲率的圆柱体衬底102来说,其阵列具有不均匀的曲率。该特定的实施例中,每一个各别的阵列辐射器单元24指往不同的方向。这种总体情况有益于提供宽广扇区的覆盖或全方向覆盖。所成形的图案可做到将信号以不均一的幅度值和/或相对的相位值分配给各别的辐射器单元24。
图20概略地示明在基站环境内应用一对本发明的曲面天线阵列110。图20示明两个阵列110,每个阵列有一个非平面的部分112。实施例110提供的覆盖着重于安装结构的两侧区域,同时,提供一部分能量指向安装结构的上方。在提供成形的波来覆盖上述这种做法显得特别重要,因为往往希望从地面上同飞机进行通信,这时要求最大的天线方向性近乎水平方向,同时又要求在安装结构的天顶方向上给出连续的覆盖区。阵列110可安装于小区塔桅14’的顶端,包括一个拱形的上端112,如图1中的曲面天线18所示地可提供对小区塔桅14’上方目标或高处的覆盖。
现在,参看图21,示明用于制造本发明天线阵列第一实施例的一种方法120。参考图5,首先说明制造天线阵列20的实施例。步骤122上,首先利用胶粘层62使金属层60接合到载体介质层27上。然后,在步骤124上,利用胶粘层30使载体介质层27接合到泡沫核心介质层28上。介质层27通常是一个薄的载体层供金属层60应用,而由介质层28提供所需的介质间隔或厚度,以便辐射器单元24正常地工作。
然后,在步骤126,使胶粘层32接合到介质层28上以形成堆叠或夹层结构34。胶粘层32可取地为一种双面介质带,在胶粘层28的反面是释脱层(未示出)。然后,在步骤128上,通过蚀刻出所需的辐射器图案,可取地使得在金属层60上形成天线加电单元即辐射器单元24和馈电电路26。工艺上,一般地包括在蚀刻步骤之后以常规方式修整堆叠34。然后,在步骤130上,通过去掉释脱层、利用胶粘层使上面已形成辐射器单元24和馈电电路26的堆叠34接合到基底层35上。将射频连接件46用机械方法附装到导电托35上,再焊接到金属层60上,以使它们有正常的电连接。如图3中所示,需要时加上其余的机械单元以完成最后的保护覆盖或天线罩组合件40,所以可添加上可选步骤132。如果需要,加电的单元24和电路26也可以在步骤122之后形成。
现在,参看图22,示明一种方法用于制造本发明另一个天线阵列实施例。参考图11,对制造天线阵列70的实施例进行说明。在工艺处理140中,首先可重复方法120中的步骤122至步骤130。在步骤142上,利用胶粘层62使金属层60接合到载体介质层27上。然后,在步骤144上,利用胶粘层30使载体介质层27接合到泡沫核心介质层28上。然后,在步骤146上,可将胶粘层32接合到泡沫核心介质层28上,以形成堆叠34。同样地,胶粘层32可取地为双面介质带,在泡沫核心层28的反面具有释脱层(未示出)。然后,在步骤148上,通过蚀刻出所需的辐射器图案,使天线导电单元即辐射器单元24和馈电电路26形成于金属层60上;但是,也可以在步骤142之后形成加电的天线辐射器单元24和馈电电路26。然后,在步骤150上,利用胶粘层32可使上面已形成辐射器单元24和馈电电路26的堆叠34接合到导电托35上。
象第一个可选实施例那样,在步骤152上,利用胶粘层73以使得到成无源辐射器单元72的金属层接合到薄的载体介质层74上,形成堆叠71。步骤154上,在金属层上蚀刻出无源单元,以形成各个辐射器配线72。然后,在步骤156上,利用胶粘层78,使堆叠71中的载体介质层74接合到介质层76上。然后,在步骤158上,利用胶粘层80,通过将介质层76接合到堆叠22中相应辐射器单元24的顶部,使介质层76接合到堆叠34上。同样地,将射频连接件46用机械方法附装到导电托35上,再焊接到金属层60上,以使它们有正常的电连接。象上面那样,当需要时,如图9中所示地加上其余的机械单元以完成最后的保护覆盖或天线罩组合件40,因此,添加上可选步骤160。
另一个可选实施例中,辐射器单元72也可以直接粘合到介质层76上,这就不用载体介质量74和蚀刻步骤154。该实施例中,步骤150之后,在步骤162中用激光或冲压切割方法形成各个辐射器单元。然后,在步骤164上,将无源辐射器单元72一个个地粘合到介质层76上。然后,其余步骤象前面说明的步骤那样,是同样的步骤158和可选步骤160。
上面的论述中,基底层就象金属导电层60那样只不过是另一个金属薄片,它可以替代硬性的导电托35。该实施例中,如图23至图25上所示,带有基底层薄片的堆叠34或82由诸如天线罩170之类的非导电体支撑。天线罩170可通过焊接或机械方式使多个部件组装在一起,或者可以是一个整体的冲压成形单元,又或者如图所示地由一整片材料形成。在天线罩170形成中,可以使用象天线罩覆盖42那样相同或类似的材料。虽然,对堆叠34或82的支撑可采用任意数量的配置,但天线罩170上采用的是在天线罩170的相对侧壁176和178上形成的一对相对槽隙172和174。侧壁176和178与顶盖186相邻接或者与顶盖180形成一体。顶盖180在图中示明为拱门形状,但也可以为平面形状或是按需要的其他形状。侧壁176和178又邻接底盖182或者与之形成一体。同样地,底盖182虽然示明为平面形状,但也可以是按需要的其他形状。图中示明,堆叠82安装于天线罩170的槽隙172和174内。可取地,堆叠34或82依靠金属薄片背板35滑入天线罩170内(示明于图25),然后,用类似于端盖44的端盖(未示出)将开口的两端盖住。需要时,在底盖182上可包括一个或多个支撑184,它们形成或安装在底盖182内(图中示明为一对支撑184),以帮助支撑堆叠34或82。
如上所述,本发明的低价位天线阵列设计中应用适合于印刷电路板制造技术的各种低成本部件,它们能在短时间内组装一起,组装后只需小量或不需调整便可得到所需的性能。
虽然,用几个优选实施例已说明了本发明,但本技术领域内的熟练人员容易理解到,对说明的和公开的本发明可作出许多修改、增补和删减,但它们不偏离本发明的精神和范围。例如,虽然,对于天线阵列70,在辐射器单元72上只示明一但无源辐射器单元76,但需要时可以附加一组或多组无源辐射器单元到天线阵列70上。泡沫核心层28和泡沫层76示明为一体式结构,但也可以是用加热或超声技术之类焊接形成的多层或叠片结构,一起地可有两个或多个泡沫核心层。另外,与曲面基底层相结合时,泡沫核心层28和泡沫层76可以用一片片线性或平面切块拼装成符合形状或即“曲面”样式,而不是连续弯曲的结构形式。因此,对于实质上连续弯曲的基底层部分,泡沫核心层28和泡沫层76可以做成小片式、线性或平面形的拼装结构。
权利要求
1.一种具有多层结构的天线阵列,包括金属层,具有多个加电的天线辐射器单元,并在其中形成有馈电单元;第一薄载体介质层,所述金属层形成于所述第一薄载体介质层上;泡沫核心层,具有顶部表面和底部表面,其中,所述第一薄载体介质层形成于所述泡沫核心层的所述顶部表面上;以及胶粘层,形成于所述泡沫核心层的所述底部表面上,其中,所述胶粘层粘合到一个金属基底层上。
2.权利要求1中的天线阵列,其中,所述金属层以胶粘方式接合到所述第一薄载体介质层上。
3.权利要求1的天线阵列,其中,所述第一薄载体介质层以胶粘方式粘合到所述泡沫核心层上。
4.权利要求1的天线阵列,其中,所述金属基底层是一个薄的金属层。
5.权利要求4的天线阵列,进一步包括一个不导电的天线罩覆盖结构,包封住所述天线的各层,并对所述各层提供支撑。
6.权利要求1的天线阵列,进一步包括使所述天线各层以胶粘方式互相粘合。
7.权利要求1的天线阵列,进一步包括一个天线罩覆盖结构,包封住所述天线的各层。
8.权利要求1的天线阵列,其中,所述多个天线层中至少一部分形成于曲面基底层上。
9.权利要求8的天线阵列,其中,所述多个天线层之每一层形成于曲面基底层上。
10.权利要求8的天线阵列,其中,所述泡沫核心层形成为曲面形状,以适合所述曲面基底层。
11.权利要求1的天线阵列,其中,所述金属基底层实质上是一个硬性支撑的金属层。
12.权利要求1的天线阵列,进一步包括至少一个第二介质层,形成于所述金属层上,有多个无源辐射器单元形成于所述第二介质层的顶部表面,其中,所述各无源辐射器单元与所述金属层内相应的各辐射器单元之间有电耦合。
13.权利要求12的天线阵列,进一步包括在第二薄载体介质层顶部表面形成有所述多个无源辐射器单元,在所述第二介质层上形成有所述第二薄载体介质层。
14.权利要求12的天线阵列,进一步包括使所述各层以胶粘方式互相粘合。
15.权利要求12的天线阵列,进一步包括天线罩覆盖结构,包封住所述天线的各层。
16.权利要求12的天线阵列,其中,所述金属基底层是一个薄的金属层。
17.权利要求16的天线阵列,进一步包括不导电的天线罩覆盖结构,包封住所述天线的各层,并提供对所述天线各层的支撑。
18.权利要求12的天线阵列,其中,所述多个天线层中至少一部分形成于曲面基底层上。
19.权利要求18的天线阵列,其中,所述多个天线层之每一层由软性材料形成,以顺应于所述曲面基底层。
20.权利要求18的天线阵列,其中,所述泡沫核心层形成为曲面形状,以适合所述曲面基底层。
21.权利要求12的天线阵列,其中,所述金属基底层实质上是一个硬性支撑的金属层。
22.一种具有多个层的天线阵列,包括金属层,具有多个加电的天线辐射器单元,并在其中形成有馈电单元;第一薄载体介质层,所述金属层形成于所述第一薄载体介质层上;泡沫核心层,具有顶部表面和底部表面,其中,所述第一薄载体介质层形成于所述泡沫核心层的所述顶部表面上;至少一个第二介质层,形成于所述金属层上;以及多个无源辐射器单元,形成于第二薄载体介质层的顶部表面,其中,所述多个无源辐射器单元与所述金属层内相应的各辐射器单元之间有电耦合,所述第二薄载体介质层形成于所述第二介质层上,其中,所述各层互相粘合而形成堆叠,胶粘层形成于所述堆叠中的所述泡沫核心层的底部表面上,并其中由胶粘层使所述堆叠粘合到一个金属基底层上。
23.权利要求22的天线阵列,进一步包括天线罩覆盖结构,包封住所述天线的各层。
24.权利要求22的天线阵列,其中,所述金属基底层是一个薄的金属层。
25.权利要求24的天线阵列,进一步包括不导电的天线罩覆盖结构,包封住所述天线的各层,并提供对所述天线各层的支撑。
26.权利要求22的天线阵列,其中,所述多个天线层中至少一部分形成于曲面基底层上。
27.权利要求26的天线阵列,其中,所述多个天线层之每一层由软性材料形成,以顺应于所述曲面基底层。
28.权利要求26的天线阵列,其中,所述泡沫核心层形成为曲面形状,以合适所述曲面基底层。
29.权利要求22的天线阵列,其中,所述金属基底层实质上是一个硬性支撑的金属层。
30.一种制造天线阵列的方法,包括步骤形成一个具有顶部和底部表面的泡沫核心层;在第一薄载体介质层上粘合一个金属层,并使所述第一薄载体介质层粘合到所述泡沫核心层的所述顶部表面上;在所述泡沫核心层的所述底部表面上施加胶粘层;在所述金属层上蚀刻出多个辐射器单元和馈电单元;以及形成金属基底层,利用所述胶粘层使所述泡沫核心层,所述第一薄载体介质层和所述金属层与所述金属基底层粘合。
31.权利要求30的方法,进一步包括步骤,使所述天线各层包封入天线罩覆盖内。
32.权利要求30的方法,进一步包括步骤,使一个薄的金属层形成所述金属基底层。
33.权利要求32的方法,进一步包括步骤,形成一个不导电的天线罩覆盖结构以提供对所述天线各层的支撑,并将所述天线各层包封和支撑于所述天线罩覆盖结构内。
34.权利要求30的方法,包括有使所这多个天线层中至少一部分形成于一个曲面基底层上的步骤。
35.权利要求34的方法,包括有使所述多个天线层之每一层形成自一种软性材料、并使所述天线各层符合于所述曲面基底层形状的步骤。
36.权利要求34的方法,包括有使所述泡沫核心层形成为曲面形状以适合所述曲面基底层的步骤。
37.权利要求30的方法,包括有使所述金属基底层形成为实质上硬性支撑的金属层以用于所述天线各层的步骤。
38.权利要求30的方法,进一步包括步骤,使至少一个第二介质层粘合到所述金属层上,并在所述第二介质层的顶部表面形成多个无源辐射器单元,它们与形成于所述金属层内各相应的辐射器单元之间有电耦合。
39.权利要求38的方法,进一步包括步骤,在第二薄载体介质层的顶部表面形成所述的多个无源辐射器单元,并使所述第二薄载体介质层粘合到所述第二介质层上。
40.权利要求38的方法,进一步包括使所述天线各层包封入天线罩覆盖结构内的步骤。
41.权利要求38的方法,包括有使所述多个天线层中至少一部分形成于一个曲面基底层上的步骤。
42.权利要求41的方法,包括有使所述多个天线层之每一层形成自一种软性材料、并使所述天线各层符合于所述曲面基底层形状的步骤。
43.权利要求41的方法,包括有使所述泡沫核心层形成为曲面形状以适合所述曲面基底片的步骤。
44.权利要求38的方法,包括有使所述金属基底层形成为实质上硬性支撑的金属层以用于所述天线各层的步骤。
45.一种制造天线阵列的方法,包括步骤形成一个具有顶部和底部表面的泡沫核心层;在第一薄载体介质层上粘合一个金属层,并使所述第一薄载体介质层粘合到所述泡沫核心层的所述顶部表面上;在所述泡沫核心层的所述底部表面上施加胶粘层;在所述金属层上蚀刻出多个辐射器单元和馈电单元;形成金属基底层,利用所述胶粘层使所述泡沫核心层,所述第一薄载体介质层和所述金属层与所述金属基底层粘合;使至少一个第二介质层粘合到所述金属层辐射器单元和馈电单元上;以及在所述第二介质层的顶部表面形成多个无源辐射器单元。
46.权利要求45的方法,进一步包括步骤,使所述天线阵列包封入天线罩覆盖内。
47.权利要求45的方法,进一步包括步骤,所述金属基底层形成自一个薄的金属层。
48.权利要求45的方法,进一步包括步骤,形成不导电的天线罩覆盖结构,用以支撑和包封所述天线罩覆盖结构内所述天线的各层。
49.权利要求45的方法,包括有使所述多个天线层中至少一部分形成于一个曲面基底层上的步骤。
50.权利要求49的方法,包括有使所述多个天线层之每一层形成自一种软性材料、并使所述天线的各层顺应所述曲面基底层形状的步骤。
51.权利要求49的方法,包括有使所述泡沫核心层形成为曲面形状的适合所述曲面基底层的步骤。
52.权利要求45的方法,包括有使所述金属基底层形成为实质上硬性支撑的金属层以用于所述天线各层的步骤。
全文摘要
说明一种低价位天线阵列及制造该天线阵列的方法,阵列为平面形式或结构上是灵活的,或者是曲面的阵列结构。天线阵列中具有多个加电的金属天线和辐射器单元,它们形成于粘合到金属基底层上的泡沫核心层上。辐射器单元可取地形成于粘合到泡沫核心层上的一个薄的介质层上。天线阵列中可包括一个多个附加的介质层,其每一个的上面可形成多个无源辐射器单元,它们安装于加电辐射器单元的顶上。制造该天线阵列时可取地包括使各层互相粘合。形成加电辐射器单元时,可取地在使泡沫核心层粘合到基底层上之前先进行蚀刻。然后,使附加的介质层和无源辐射器单元粘合到基底层上已经形成的加电辐射器单元上。
文档编号H01Q1/24GK1736000SQ03825885
公开日2006年2月15日 申请日期2003年1月31日 优先权日2003年1月31日
发明者詹姆斯·蒂勒里, 唐纳德·L.·伦雍 申请人:Ems技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1