具有树脂封壳的元件及其制作方法

文档序号:6831106阅读:242来源:国知局
专利名称:具有树脂封壳的元件及其制作方法
技术领域
本发明主要涉及具有树脂封壳的元件(如半导体元件),本发明尤其涉及无引线安装面型的树脂封装式半导体元件(这种结构适宜于提高安装密度)。本发明还涉及此类半导体元件的制作方法。
近来,电子元件的小型化趋势提出了树脂封装式封壳的引出线以更小间距布置的要求。因此,有必要提出可使引线间距进一步减小的树脂封装式封壳新结构及其制作方法。


图1A、1B和1C是具有传统树脂封装式封壳的半导体元件示意图。该元件包含树脂1、芯片2、外引线3、连线4(由铜铝(Au-Al)合金制成),以及冲模垫5。图1A、1B及1C所示封壳被称为SSOP(热装式小轮廓封壳)。接在电路板上的外引线3呈鸥翼形。
图2是另一种型式半导体元件的剖视图。该元件包含焊球6和安装基座7,被树脂封装的芯片2和焊球6装在安装基座7上。图2所示封壳被称为BGA(焊球网阵)型,其中的焊球6起着安装基座7上的端子的作用。
图1A、1B及1C所示SSOP型封壳的缺点在于其内引线8的所需布线面积较大(内引线与外引线一体),而且外引线3也需要较大的布线面积。因此,SSOP型封壳需要较大的安装面积。
由于需要设置安装基座7,所以图2所示GBA型封壳的成本较高。
本发明的基本目标是设法消除上述缺点,并提出相应的树脂封装式元件及其制造方法。
本发明的特定目标是提出安装面较小的低成本树脂封装式元件及其制造方法。
本发明的上述目标可由如下元件达到,该元件包括芯片(111);封装芯片的树脂封壳(112,151,314),该树脂封壳的安装面上设有树脂凸部(117,154,318);设在各树脂凸部处的金属膜(113,155,315);以及将芯片电极焊盘与金属膜接通的连接部分(118,101,163,245,313,341,342)。
该元件的结构可以是各金属膜由单层金属材料膜(113A)构成。
该元件的结构可以是各金属膜由相互叠合的多层金属膜(113B-113D,213E-213G)构成。
该元件的结构可以是各连接部分相应地包括连线(118),该连线被接在电极焊盘和金属膜上。
该元件的结构可以是各连接部分相应地包括连线118)和连接头(101,245),该连接头设在相应的金属膜上;且连线被接在电极焊盘和连接头上。
该元件的结构可以是树脂封壳为封壳模制件,因此树脂凸部在树脂封壳本体上形成。
该元件的结构可以是树脂封壳包含放置芯片的第一树脂部分(153)和覆盖芯片的第二树脂部分(152)。
该元件的结构可以是各连接部分相应地包括连线(118)和连接电极(156),位于第一树脂部分中的该连接电极通过进入树脂凸部而伸至金属膜上;且连线被接在电极焊盘和连接电极上。
该元件的结构可以是各树脂凸部(154)上相应地设有通孔(157),连接电极通过该通孔而伸至金属膜上。
该元件的结构可以是各金属膜(315)相应地具有伸向芯片下侧并被树脂封壳封装的引导部分(3151);且连接部分含有接在引导部分上的连线。
该元件的结构还可包括被树脂封壳封装的散热元件(340),芯片被装在散热元件上;该元件的结构可以是各连接元件相应地包括介于芯片(311)电极焊盘(312)与金属膜(315)之间的凸块(342)。
该元件的结构可以是各金属膜(315)相应地具有伸向芯片下侧并被树脂封壳封装的引导部分(3151);且连接部分含有介于芯片(311)电极焊盘(312)与金属膜引导部分(3151)之间的凸块(342)。
该元件的结构可以是各金属膜(315)相应地具有伸向芯片下侧并被树脂封壳封装的引导部分(3151),引导部分(3151)具有凹部(343);且连接部分含有凸块(342),该凸块介于芯片(311)电极焊盘(312)与金属膜引导部分(3151)之间并被设置在凹部(343)中。
该元件的结构可以是芯片(311)电极焊盘安装面的背面外露在与树脂封壳安装面相对的另一表面上。
该元件的结构还可包括接在芯片背面上的散热元件(345)。
该元件的结构还可包括设在芯片之电极焊盘安装面上的绝缘元件。
该元件的结构可以是连接部分包括含有导电颗粒(348)并可在给定压力下凝结起来的导电树脂。
本发明的上述目标还可由如下元件达到,该元件包括芯片(111);封装芯片的树脂封壳(151),其上设有第一树脂部分(153)和第二树脂部分(152),芯片被置于第一树脂部分(153)上并由第二树脂部分(152)覆盖;具有连线(118)和连接电极(172)的连接部分(118,172),连接电极被置于第一树脂部分(153)上并从其上突出;以及设在连接部分的连接电极上的相应金属膜(155)。
本发明的上述目标还可由如下元件达到,该元件包括芯片(111);封装芯片的树脂封壳(181),其上设有第一树脂部分(183)和第二树脂部分(182),芯片被置于第一树脂部分(183)上并由第二树脂部分(182)覆盖,第一树脂部分中设有通孔(184);设在第一树脂部分(182)上的电极部分(185),它可覆盖相应的通孔;以及将芯片电极焊盘与电极部分(185)接通的连接部分(118)。
该元件的结构可以是第一树脂部分包括树脂胶带(183)。
该元件的结构可以是各连接部分相应地包括连线,该连线被接在电极焊盘和电极部分(185)上。
本发明的上述目标还可由如下元件达到,该元件包括芯片(211);封装芯片的树脂封壳(212),该树脂封壳的安装面上设有树脂凸部(217,217B),该树脂凸部伸至安装面以下,并从树脂封壳的至少一个侧面处横向外伸;设在各树脂凸部处的金属膜(213);以及将芯片电极焊盘与金属膜接通的连接部分(218)。
该元件的结构可以是各金属膜由单层金属材料膜(113A)构成。
该元件的结构可以是各金属膜由叠合的多层金属膜(113B-113D,213E-213G)构成。
该元件的结构可以是各连接部分相应地包括连线(218),该连线被接在电极焊盘和金属膜上。
该元件的结构可以是各连接部分相应地包括连线(218)和设在金属膜上的连接头(101,245);且连线被接在电极焊盘和连接头上。
该元件的结构可以是树脂封壳为封壳模制件,因此树脂凸部在树脂封壳本体上形成。
该元件的结构可以是树脂凸部(217)从树脂封壳的多个侧面处横向外伸。
该元件的结构可以是树脂凸部(217B)仅从树脂封壳的一个侧面处横向外伸。
该元件的结构还可包括为树脂封壳(212)而设的支承元件(253),该支承元件(253)对于垂直安装在电路板上的元件起支承作用。
本发明的上述目标还可由如下元件达到,该元件包括芯片(211);封装芯片的树脂封壳(212),该树脂封壳的安装面上设有树脂凸部(291A,291B),该树脂凸部伸至安装面以下,并与树脂封壳的某一侧面大体齐平;设在各树脂凸部处的金属膜(290A,290B);以及将芯片电极焊盘与金属膜接通的连接部分(218)。
该元件的结构可以是树脂凸部包括第一凸部(291A)和横向长度长于第一凸部的第二凸部(291B),由此可使第二凸部伸在芯片下侧;且金属膜包括设在第一凸部上的第一金属膜(290A)和设在第二凸部上的第二金属膜(290B)。
该元件的结构还可包括设在树脂封壳安装面上的隔离体(293),其特征在于当元件被支承在电路板上时,隔离体将与另一元件相接触,从而使树脂封壳的侧面对着电路板。
该元件的结构可以是隔离体是散热元件。
本发明的上述目标还可由如下制作方法达到,该方法用来制作芯片由树脂封壳封装的元件,该方法包括a)制作引线架(120),该引线架的基底(121)上设有含相应金属膜(113)的凹部122;b)在引线架上安装芯片(111);c)设置连接部分(118,101,163,245),使之接通金属膜与芯片的电极焊盘;d)进行树脂的模制加工,使各个树脂封壳模制件分别覆盖相应的芯片及金属膜(金属膜由引线架支承);以及e)使树脂封壳模制件及树脂凸部(该树脂凸部对应着凹部)上的金属膜一同从引线架上分离下来。
该方法的形式可以是工序(e)包括蚀刻并溶解引线架的工序。
该方法的形式可以是工序(e)包括以机械方法将引线架从树脂封壳模制件上分离下来的工序。
该方法的内容还可包括在树脂封壳模制件上设置胶带的工序,该工序排在工序(e)之前。
该方法的形式可以是工序(c)包括在金属膜上设置连接头的第一工序,以及将连线接在芯片电极焊盘和连接头上的第二工序,连接头及连线相当于连接部分。
该方法的形式可以是对树脂进行模制加工的工序(d)使各个树脂封壳模制件结为一体。
该方法的形式可以是对树脂进行模制加工的工序(d)使各个树脂封壳模制件相互分离。
本发明的上述目标可由如下元件达到,该元件包括芯片(311);封装芯片的树脂封壳(314),该树脂封壳具有其安装面;设在各树脂封壳中的相应金属膜(315),该金属膜与安装面齐平并外露于其上;以及将芯片电极焊盘与金属膜接通的连接部分(313,101,342)。
该元件的结构可以是各连接部分相应地包括连线(313)和设在各金属膜上的相应连接头(101);且连线被接在电极焊盘和连接头上。
该元件的结构可以是各金属膜是由一种金属材料制成的单层膜(315A)。
该元件的结构可以是各金属膜包括叠合起来的多层金属膜(315B-315D)。
该元件的结构可以是各连接部分相应地包括介于芯片(311)电极焊盘(312)与金属膜(315)之间的凸块(342)。
本发明的上述目标可由如下制作方法达到,该方法用来制作芯片由树脂封壳封装的元件,该方法包括a)制作引线架(320),该引线架的基底(321)上设有金属膜(315);b)在引线架上安装芯片(311);c)设置连接部分(313,101),使之接通金属膜与芯片的电极焊盘;d)进行树脂的模制加工,使各个树脂封壳模制件分别覆盖相应的芯片及金属膜(金属膜由引线架支承);以及e)使树脂封壳模制件和金属膜一同从引线架上分离下来,从而使芯片外露在树脂封壳模制件的安装面上。
该方法的形式可以是工序(e)包括蚀刻并溶解引线架的工序。
该方法的形式可以是工序(e)包括以机械方法将引线架从树脂封壳模制件上分离下来的工序。
在以下结合附图所做的详细描述中,本发明的其它目标、特征及优点将得到更明确的介绍,其中图1A是普通SSOP型半导体元件的剖视图;图1B是图1A所示半导体元件的仰视图;图1C是图1A所示半导体元件的俯视图;图2是普通BGA型半导体元件的剖视图;图3是如本发明第一实施例所述半导体元件的剖视图;图4是图3所示半导体元件制作方法中某一工序的侧视图;图5是某一引线架的平面图,该引线架用于制作如本发明第一实施例所述的半导体元件;图6是图3所示半导体元件制作方法中另一工序的剖视图;图7是图6所示工序完成时的树脂封壳仰视图;图8是如本发明第二实施例所述半导体元件的剖视图;图9是用于图8所示半导体元件的树脂凸部的放大透视图;图10是用于图8所示半导体元件的另一种树脂凸部的放大透视图;图11是如本发明第二实施例所述半导体元件制作方法中某一工序的剖视图;图12是如本发明第二实施例所述半导体元件制作方法中另一工序的剖视图;图13是图12所示工序完成后的封壳仰视图;图14是如本发明第三实施例所述半导体元件的剖视图;图15是用于如本发明第三实施例所述半导体元件的树脂凸部的放大透视图;图16是如本发明第三实施例所述半导体元件的树脂凸部的放大透视图;图17是某一引线架的平面图,该引线架用于制作如本发明第三实施例所述的半导体元件;图18是如本发明第三实施例所述半导体元件制作方法中另一工序的剖视图;图19是如本发明第四实施例所述半导体元件的剖视图;图20是图19所示半导体元件制作方法中某一工艺的侧视图;图21是如本发明第五实施例所述半导体元件的剖视图;图22是如本发明第六实施例所述半导体元件的剖视图;图23是图22所示半导体元件制作方法中某一工序的剖视图;图24是如本发明第七实施例所述半导体元件的剖视图;图25是某一引线架的平面图,该引线架用于制作如本发明第八实施例所述的半导体元件;图26是另一引线架的平面图,该引线架用于制作图24所示的半导体元件;图27是如本发明第八实施例所述半导体元件制作方法中某一工序的剖视图;图28是如本发明第八实施例所述半导体元件的剖视图;图29是如本发明第九实施例所述半导体元件的剖视图;图30是某一引线架的平面图,该引线架用于制作如本发明第九实施例所述的半导体元件;图31是图30所示引线架的剖视图32是如本发明第十实施例所述半导体元件的剖视图;图33是如本发明第十实施例所述半导体元件的仰视图;图34是如本发明第十实施例所述半导体元件的平面图;该图表示了树脂封壳的内部形态;图35是单层结构金属膜的剖视图;图36是双层结构金属膜的剖视图;图37是三层结构金属膜的剖视图;图38是四层结构金属膜的剖视图;图39是如本发明第十实施例所述半导体元件制作方法中保护层制作工序的剖视图;图40是如本发明第十实施例所述半导体元件制作方法中保护层模样成形工序的剖视图;图41是如本发明第十实施例所述半导体元件制作方法中蚀刻工序的剖视图;图42A是引线架上接电部分的平面图;图42B是沿图42A中A-A线所做的剖视图;图43是某一引线架组件的平面图,该组件用于制作如本发明第十实施例所述的半导体元件;图44是如本发明第十实施例所述半导体元件制作方法中金属膜成形工序的剖视图;图45是已完成引线架的剖视图;图46是如本发明第十实施例所述半导体元件制作方法中芯片安装工序的剖视图;图47是如本发明第十实施例所述半导体元件制作方法中连接工序的剖视图;图48是图47所示连接工序变化型的剖视图;图49是如本发明第十实施例所述半导体元件制作方法中封装工序的平面图;图50是封装工序结束时的引线架剖视图;图51A是封装工序结束时的引线架平面图51B封装工序结束时的引线架侧视图;图52A是如本发明第十实施例所述半导体元件制作方法中胶带安装工序的平面图;图52B是如本发明第十实施例所述半导体元件制作方法中胶带安装工序的侧视图;图53是如本发明第十实施例所述半导体元件制作方法中分离工序的剖视图;图54A是封装工序结束时的半导体元件平面图;图54B是封装工序结束时的半导体元件侧视图;图55A是如本发明第十实施例所述半导体元件制作方法中封装工序第一变化型的平面图;图55B是如本发明第十实施例所述半导体元件制作方法中封装工序第二变化型的平面图;图55C是如本发明第十实施例所述半导体元件制作方法中封装工序第三变化型的平面图;图56是图55A所示引线架的胶带安装工序完成时的平面图;图57A是如本发明第十实施例所述半导体元件制作方法中封装工序第四变化型的平面图;的第四变化型的平面图;图57B是如本发明第十实施例所述半导体元件制作方法中封装工序第四变化型的侧视图;图58是图57A及57B所示第四变化型完成时的引线架剖视图;图59是如本发明第十实施例所述半导体元件制作方法中另一分离工序的剖视图;图60是如本发明第十一实施例所述半导体元件的剖视图;图61是如本发明第十一实施例所述半导体元件制作方法中金属膜基底成形工序的剖视图;图62是如本发明第十一实施例所述半导体元件制作方法中保护层成形工序的剖视图63是如本发明第十一实施例所述半导体元件制作方法中局部蚀刻工序的剖视图;图64是如本发明第十一实施例所述半导体元件制作方法中镀覆工序的剖视图;图65是如本发明第十一实施例所述半导体元件制作方法中保护层去除工序的剖视图;图66是如本发明第十一实施例所述半导体元件制作方法中光敏树脂涂覆工序的剖视图;图67是如本发明第十一实施例所述半导体元件制作方法中通孔成形工序的剖视图;图68是如本发明第十一实施例所述半导体元件制作方法中镀覆工序的剖视图;图69是如本发明第十一实施例所述半导体元件制作方法中保护层成形工序的剖视图;图70是如本发明第十一实施例所述半导体元件制作方法中蚀刻及保护层去除工序的剖视图;图71是如本发明第十二实施例所述半导体元件的剖视图;图72是如本发明第十二实施例所述半导体元件制作方法中金属膜基底成形工序的剖视图;图73是如本发明第十二实施例所述半导体元件制作方法中保护层成形工序的剖视图;图74是如本发明第十二实施例所述半导体元件制作方法中局部蚀刻工序的剖视图;图75是如本发明第十二实施例所述半导体元件制作方法中局部蚀刻工序的剖视图;图76是如本发明第十二实施例所述半导体元件制作方法中保护层去除工序的剖视图;图77是如本发明第十二实施例所述半导体元件制作方法中光敏树脂涂覆工序的剖视图;图78是如本发明第十二实施例所核实地导体元件制作方法中窗口成形工序的剖视图;图79是如本发明第十二实施例所述半导体元件制作方法中镀覆工序的剖视图;图80是如本发明第十二实施例所述半导体元件制作方法中保护层成形工序的剖视图;图81是如本发明第十二实施例所述半导体元件制作方法中蚀刻及保护层分离工序的剖视图;图82是如本发明第十三实施例所述半导体元件的剖视图;图83是如本发明第十四实施例所述半导体元件的剖视图;图84A是图83所示半导体元件的平面图;图84B是图83所示半导体元件的侧视图;图84C是图83所示半导体元件的仰视图;图85是如本发明第十四实施例所述半导体元件(安装在电路板上)的剖视图;图86是五层结构金属膜的剖视图;图87是六层结构金属膜的剖视图;图88是七层结构金属膜的剖视图;图89A,89B,89C及89E分别是表示连接工序变化型的剖视图;图90A,90B,90C,90D,90E,90F,90G,90H及90I分别是表示钉形凸块成形方法的侧视图;图91是模制工序中所用冲模的剖视图;图92是图91所示冲模的上冲横截面图;图93是封装工序结束时的引线架剖视图;图94是表示分离工序某一变化型的侧视图;图95是表示分离工序另一变化型的剖视图;图96是表示引线架上通孔的剖视图;图97是表示浇道框架上通孔的放大透视图;图98A及98B分别是表示浇道框架上通孔的平面放大图;图99A,99B及99C分别是表示分离工序又一变化型的剖视图;图100A是表示浇道框架上分离槽的侧视图100B是图100A所示分离槽的平面图;图101是表示浇道框架上分离槽的放大透视图;图102A,102B,102C,102D及102E分别是表示另一分离工序的剖视图;图103A及103B是表示封装工序的剖视图;图104是如本发明第十五实施例所述半导体元件的剖视图;图105是如本发明第十六实施例所述半导体元件的仰视图;图106是图105所示半导体元件的剖视图,该图中的半导体元件装在电路板上;图107是如本发明第十七实施例所述半导体元件的剖视图;图108是图107所示半导体元件的仰视图;图109是图107所示半导体元件的平面图,该图表示了树脂封壳的内部形态;图110是如本发明第十八实施例所述半导体元件的剖视图;图111是图110所示半导体元件的仰视图;图112是如本发明第十八实施例所述半导体元件(布置在电路板上)的剖视图;图113是某一不同于图112所示情形的结构剖视图。
图114是某一不同于图112及113所示情形的配置剖视图,该图中的半导体元件斜装在电路板上。
图115是如本发明第十八实施例所述半导体元件(安装在电路板上)的剖视图;图116是如本发明第十九实施例所述半导体元件的剖视图;图117是图116所示半导体元件的俯视图,该图表示了树脂封壳的内部形态;图118是单层结构金属膜的剖视图;图119是双层结构金属膜的剖视图;图120是三层结构金属膜的剖视图;图121是四层结构金属膜的剖视图;图122是如本发明第十九实施例所述半导体元件制作方法中保护层涂覆工序的剖视图;图123是如本发明第十九实施例所述半导体元件制作方法中保护层模样成形工序的剖视图;图124是如本发明第十九实施例所述半导体元件制作方法中金属膜成形工序的剖视图;图125是已完成引线架的剖视图;图126是如本发明第十九实施例所述半导体元件制作方法中芯片安装工序的剖视图;图127是如本发明第十九实施例所述半导体元件制作方法中连接工序的剖视图;图128是图127所示连接工序的变化型剖视图;图129是封装工序结束时的引线架剖视图;图130是如本发明第十九实施例所述半导体元件制作方法中分离工序的剖视图;图131是图130所示分离工序的变化型剖视图;图132A是如本发明第十二实施例所述半导体元件的剖视图;图132B是图132A所示半导体元件的俯视图,该图表示了树脂封壳的内部形态;图133是如本发明第二十一实施例所述半导体元件的剖视图;图134是如本发明第二十二实施例所述半导体元件的剖视图;图135是如本发明第二十三实施例所述半导体元件的剖视图;图136A是图133所示半导体元件的变化型剖视图,该元件中使用了图135中元件所使用的凸块。
图136B是图136A所示结构的变化型剖视图;图137是图134所示半导体元件的变化型剖视图,该元件中使用了图135中元件所使用的凸块。
图138是图137所示结构的变化型剖视图;图139A是某一半导体元件的剖视图,该元件将散热元件装在图138所示元件的芯片外露表面上;图139B是某一半导体元件的剖视图,该元件将含散热片的散热元件装在图138所示元件中的芯片外露表面上;图140是某一半导体元件的剖视图,该元件将绝缘元件配置在图138所示结构中;且图141A,141B及141C分别表示几种采用了非均质导电树脂的半导体元件的剖视图;优选实施例详细说明图3是如本发明第一实施例所述的半导体元件。图3所示元件包含芯片11、电极焊盘12、连线13、树脂封壳14、导线外露部分15、和焊球16。芯片11可以是半导体芯片、表面超声波(SAW)芯片,或多芯片模块等等。在本说明书中,芯片(含有下文所述的芯片)为半导体芯片。不过,如果封装的是SAW芯片,那么这种树脂封装元件应称为SAW元件等等。
连线13的一端由导线连接器接在芯片11上的电极焊盘12上,其另一端暴露在树脂封壳14底面的导线外露部分15处。导线外露部分15的直径大于连线13的直径。连线13的外露端与树脂封壳的底面齐平。连线13端部是在导线外露部分15处从树脂封壳14中露出的,焊球16在此处与连线13相连。
上述结构不象SSOP那样必须设置内导线和外导线,因此无需为布置内导线而设置布线区域,也不需要留出外导线的占用空间。此外,图3所示结构不象BGA型结构那样必须为焊球设置安装座。因此,如本发明第一实施例所述的半导体元件具有安装面较小,成本较低等特点。
以下介绍图3所示半导体元件的制作方法。
如图4所示,芯片11由模片连接剂18粘在引线架17上。引线架17由铜合金之类的合金材料制成,厚度为0.1~0.2mm。然后,将连线13接至芯片11的电极焊盘12及引线架17上的预定区域。该预定区域覆有Au、Ag、Pd或其它材料。
其后,如图5所示,将粘有芯片11的引线架17放入冲模(图中未示出)中并用模制树脂将其封住。在该工序中,模制树脂的分布应足以覆盖型线19所示区域,该区域包容了导线外露部分15。
此后,如图6所示,使树脂封壳14从引线架17上分离。该分离工序所采用的工序原理基于树脂封14与引线架17之间线膨胀系数的差异,也可以考虑以弱亲合力粘接性实现树脂封 壳14与引线架17的接合。例如,可采用表面覆有镀层或光洁度高的引线架17。上述技术将会简化分离工艺。
图7是分离工艺完成之后的封壳仰视图。导线外露部分被设置在芯片11周围。在接线工艺中,线端经碾压并被做成钉头形,因此各个导线外露部分15的面积大于各个连线13的截面积。
可以在图7所示状态下实施接线工艺,也可以如图3所示在导线外露部分15设置焊球16。焊球16的制作方法是预先将焊料做成球状(直径约为φ0.5~φ0.8),将球放在导线外露部分15处并施以焊剂,再进行软熔处理,这样便制成了球形的焊球16。
第二实施例以下结合图8至13介绍如本发明第二实施例所述的半导体元件及其制作方法。在这些图中,已在前述附图中出现过的同样元件仍采用原来的标号。
图8表示如本发明第二实施例所述的半导体元件,该元件具有从封壳底面(安装侧)突出(例如,突出量可为0.05~1.00mm)的树脂凸部21。各个地线外露部分15的面积大于各个连线13的截面积。
树脂凸部21可以如图9所示呈矩形平行六面体状、也可以如图10所示为圆柱体,还可以是其它任意形状。
焊球16接在导线外露部分15。树脂凸部21的存在使得焊球16未与封壳底面齐平,这种结构不受封壳屈曲或变形的影响。此外,该结构还降低了发生焊点桥接(即若干个焊球相连)现象的可能性。
以下介绍如本发明第二实施例所述半导体元件的制作方法。
如图11所示,用模片连接剂18将芯片11粘在引线架17上。然后用连线13将芯片11的电极焊盘与设在引线架17上的凹部22连接起来。在引线架17上的凹部22的底面覆有为接线而设的镀层。
其后,如本发明第一实施例所述方法,将粘有芯片11的引线架17放入冲模(图中未示出)中并用模制树脂将其封住。在该工艺中,树脂的分布区域应象本发明第一实施例所述情形那样包容导线外露部分15。
此后,如图12,按本发明第一实施例所述方法将树脂封壳14从引线架17上分离下来。
图13是分离工艺完成之后的封壳仰视图。树脂凸部15中的导线外露部分15设在芯片11周围。各个导线外露部分15的面积大于各个连线13的截面积。
在图13所示状态下,可将焊膏涂在电路板上的焊盘处,然后便可将封壳装在电路板上。还可以如图8所示为导线外露部分15设置焊球16。焊球16的制作方法仍如本发明第一实施例所用方法。
第三实施例以下结合图14至18介绍如本发明第三实施例所述的半导体元件及其制作方法。在这些图中,已在前述附图中出现过的同样元件仍采用原来的标号。
图14表示如本发明第三实施例所述的半导体元件,它具有设在封壳14中的凹部23及焊料填埋部分24。焊球16经由焊料填埋部分24而与连线13相接。
图15表示封壳在设置焊球16和焊料填埋部分24形成之前时的形态。凹部23底面低于封壳底面0.05~0.2mm。连线13的某一端暴露在凹部23的底面。各个导线外露部分的面积大于各个连线13的截面积。凹部23可以是矩形平行六面体形、圆柱形或其它任意形状。
与本发明第一和第二实施例中的情形相比,在焊球16与导线外露部分24之间设置焊料填埋部分24可以增强焊球16与导线外露部分24之间的连接强度。这是因为连线13的较粗一端13C可与焊料填埋部分24相接,而焊球16又可与焊料填埋部分24的整个外露表面相接。
以下介绍图14所示半导体元件的制作方法。
如图16所示,用模片连接剂18将芯片11粘在引线架17上。然后用连线13将芯片11的电极焊盘与引线架17上的凸部25连接起来。设在引线架上的凸部覆有为接线而设的镀层。
接着对引线架17进行除凸部25以外的局部蚀刻加工以形成凸部25,如图17中斜线所示。也可以用冲压工艺形成凸部25。在冲压工艺中,端子成形处设有冲头,引线架17在冲压过程中将产生塑性变形。
其后,如本发明第一实施例所述方法,将粘有芯片11的引线架17放入冲模(图中未示出)中并用模制树脂将其封住。在该工艺中,树脂的分布区域应象本发明第一实施例所述情形那样包容导线外露部分15。
此后,如图18所示,按本发明第一实施例所述方法将树脂封壳14从引线架17上分离下来。
图13是分离工艺完成之后的封壳仰视图。需要说明,图13曾被用来描述上文的本发明第二实施例。还需说明,在用来描述第二和第三实施例的封壳仰视图中,凹部与凸部是无法区分的。暴露在凹部23中的导线外露部分15是围绕芯片11布置的。仍如本发明第一实施例所述情形,各个导线外露部分15的面积大于各个连线的截面积。
导线外露部分15应设置焊球16,如图14所示,其作用是使半导体元件装在电路板上。焊球16的成形方法是将其直接放入凹部23内并经软熔处理使之成为球形。该工序中的焊料填埋部分24中装有焊料。也可以采用网板印刷技术将焊膏填入焊料填埋部分24中,并将焊球放至此处加热处理,从而使焊球变为球形。
第四实施例以下结合图19至20介绍如本发明第四实施例所述的半导体元件。在这些图中,已在前述附图中出现过的同样元件仍采用原来的标号。
与本发明的第一实施例相比,其第四实施例的不同之处在于连线13端部与焊球16之间设有连接头(突出体)26。各个导线外露部分15的面积大于各个连线的截面积。因此,连线13与焊球16可以实现可靠的接触。
图19所示元件的制作方法如下。如图20所示,将芯片11粘在引线架17上,然后用导线连接器将连线13接至芯片11的电极焊盘及引线架17的连接球26上。在芯片11粘在引线架17上之后以及连线13被接好之前,连接头26被设置在引线架17上的给定位置处。
此后,按本发明第一实施例所述方法,将粘有芯片11的引线架放入冲模(图中未示出)中并用模制树脂将其封住。然后,仍按本发明第一实施例所述介法将树脂封壳从引线架17上分离下来。在这种状态下,元件便可装在电路板上。也可以如图19所示在导线外露部分15设置焊球16。焊球16的制作方法与本发明第一实施例所述方法相同。
第五实施例以下结合图21介绍如本发明第五实施例所述的半导体元件。图21所示半导体元件相当于图8所示本发明第二实施例与图19所示本发明第四实施例的综合型。在图21中,已在前述附图中出现过的同样元件仍采用原来的标号。
本发明的第五实施例具有这样一个特点连接头26从树脂凸部21的底面上外露,且焊球16与外露的连接头26相接。这种结构不受封壳屈曲的影响,它还可以降低发生焊点桥接现象(即某些焊球连通)的可能性。此外,连接头26比连线13端部大,因此,元件在电路板上的安装具有更好的接触可靠性。
第六实施例以下结合图22和23介绍如本发明第六实施例所述的半导体元件。在这些图中,已在前述附图中出现过的同样元件仍采用原来的标号。
本发明第六实施例具有这样一个特点上述焊球16被作为安装端子的图22所示连接头27所代替。每个连接头具有从树脂封壳14底面突出的凸部。凸部的长度不妨定为10微米。因此,连接头27不需要类似于焊球16的任何型式焊球。也就是说,连接头27可以直接装在电路板上。
以下是图22所示半导体芯片的制作方法。
如图23所示,按本发明第一至第五实施例所述方法,用模片连接剂18将芯片11粘在引线架17上。然后将连13接至芯片11的电极焊盘及引线架17的凹部28。凹部28的直径小于连接头27的直径。连接头27被压在凹部28上时将会局部地嵌入其中,这使得它们二者呈现出图23所示的装配关系。引线架17上凹部28的底面覆有为接线而设的镀层。
此后,按本发明第一实施例所述方法将粘有芯片11的引线架17放入冲模(图中未加表示)中并用模制树脂将其封住。其后,仍按本发明第一实施例所述方法将树脂封壳从引线架17上分离下来。
第七实施例以下结合图24介绍如本发明第七实施例所述的半导体元件,除采用了连接头29以外,该元件与第三实施例所述元件在结构上几乎完全相同。
如图24所示,焊球16通过焊料填埋部分24与连线13相连。此外,焊料填埋部分24中线13之间还设有连接头29。连接头29的尺寸大于连线13线端,这会提高接触可靠性。此外,焊料填埋部分24的存在也增大了焊球16的接合强度。
第八实施例以下结合图25至28介绍如本发明第八实施例所述的半导体元件及其制作方法。在上述的本发明第一至第七实施例中,芯片11暴露在树脂封壳14底面上。在本发明第八实施例中,芯片11粘在某一冲模台32上,该冲模台32暴露在树脂封壳14的底面上,如图26和28所示。
以下是图28所示半导体元件的制作方法。
用模片连接剂将芯片11粘在引线架31的冲模台32上。然后将引线架31叠在引线架30上并用点焊将其固定。再将连线13接至芯片11的电极焊盘及引线架30上的给定位置处。引线架30的给定位置处或整个引线架30覆有为接线而设的镀层。
如图25所示,将引线架30和31放入冲模(图中未加表示)中并将其用模制树脂封住。在该工艺中,模制树脂的分布区域包容了导线外露部分15。然后,用机械方法仅将引线架30从树脂封壳14上分离下来。此后,按本发明第一实施例所述方法设置焊球16。
第九实施例以下结合图29至31介绍如本发明第九实施例所述的半导体元件及其制作方法。在这些图中,已在前述附图中出现过的同样元件仍采用原来的标号。
如图29所示,将主要成分为Pb-Sn的焊丝34接在芯片11的电极焊盘12上,以此形成第一球端35。焊丝34穿过引线架33,并在引线架33上芯片11安装面的反面处形成第二球端36。
将第二球端36焊接在电路板的印制基脚上,以此实现图29所示半导体元件在电路板上的装配。由于焊线34的端部形成了与电路板接通的第二球端36,所以接线工序及接线端子(用来接通电路板)的成形工序是同时进行的。
以下介绍图29所示半导体元件的制作方法。
如图30所示,对引线架33中部进行局部蚀刻以保留各冲模台的周边部分,这样便形成了局部蚀刻区37。引线架33具有图30和31所示的通孔38。其后,用模片连接剂将芯片11粘在引线架33的冲模台上。
然后,先将焊线34接在芯片11的电极焊盘12上,再将它接在引线架33上的给定位置。在第二步接线工序中,用毛细管(图中未示出)的端部将由电火花形成的焊球压在通孔38上,从而将焊球推出通孔38。这样,引线架33上芯片安装面的反面处便形成了第二球端。
此后,将粘有芯片11的引线架33放入冲模中并用模制树脂将其封住。在该工艺中,模制树脂应分布至第二球端36周围的区域中。然后,将树脂封壳14从引线架33上分离下来。
第十实施例以下介绍如本发明第十实施例所述的半导体元件及其制作方法。
图32是如本发明第十实施例所述半导体元件110的截面图,图33是半导体元件110的仰视图。图34是含在树脂封壳112(下文将述及)内的半导体元件110平面透视图。
半导体元件110主要由芯片111、树脂封壳112及金属膜113构成。芯片粘在芯片定位树脂115上,芯片111上表面设有多个电极焊盘114。该芯片111可以是半导体芯片,SAW芯片,多芯片模块等等。
树脂封壳112由模制环氧树脂一类的材料制成,如下文所述。封料腔可用来制作树脂封壳112。与树脂封壳112一体的树脂凸部117位于树脂封壳112底面(安装面)上的某给定位置处。树脂凸部117的间距不妨设定为0.8mm。
用金属膜113相应地覆盖各个树脂凸部117。在金属膜113与电极座之间设置连线118以使金属膜与芯片111接通。采用类似于前述连接头26的连接头101来改善连线118在金属膜113上的连接性能。以后将详细介绍金属膜113。
如此制成的半导体元件110无需任何在SSOP中所使用的内、外导线,因此也无需专为内、外导线设置布线区域和空间。这将减小半导体元件的体积。此外,半导体元件110无需任何在BGA中所用的焊球,因而其成本较低。树脂凸部110和金属膜113还共同地起着类似于BGA型元件中焊接凸起的作用,因而具有较高的安装密度。而且,半导体元件110不受树脂封壳112变形或屈曲的影响。
以下结合图35至38介绍金属膜113。这些图是某一金属膜113的放大视图。
如上所述,金属膜113覆盖树脂凸部117并经连线118接通至芯片11。该金属膜113还起外接端子的作用,它经焊接而接通至电路板上的电极元件。
金属膜113可由单层金属膜或多层叠合金属膜制成。图35表示由单层膜制成的金属膜,而图36至38分别表示由多层膜制成的金属膜113B、113C及113D。
以下内容涉及金属膜113(113A-113D)的一种或几种备选材料。金属膜118内部接在连线118上,而其外部则焊在电路板的电极上。因此要求金属膜内部(最内层)附着性好且其外部(最外层)焊接性好。以下材料可满足上述性能要求(下文中专指金属膜性能要求)。
图35所示的单层金属膜113A材料应同时具备良好的附着性及焊接性。这样的材料有银(Ag)或钯(Pd)等。
图36所示金属膜113B由内、外层113B-2、113B-1构成。举例来说,由钯(Pd)制成的外层113B-1和由金(Au)制成的内层113-2即可满足金属膜性能要求。
图37所示金属膜113C由外层113C-1、中间层113C-2和内层113C-3构成。举例来说,由金(Au)制成的外层113C-1、由镍(Ni)制成的中间层113C-2、以及由金(Au)制成的内层113C-3即可满足金属膜性能要求。
还可采用如下材料组合。
113C-1 113C-2 113C-3钯(Pd) 镍(Ni) 钯(Pd)金(Au) 钯(Pd) 金(Au)焊料镍(Ni) 金(Au)焊料镍(Ni) 钯(Pd)
由于引入了中间层113C-2,上述组合可在满足金属膜性能要求的同时改善外层113C-1和内层113C-3之间的连接特性。
图38所示金属膜113D由外层113D-1、第一中间层113D-2、第二中间层113D-3和内层113D-4构成。各层用料如下。
113D-1 113D-2 113D-3 113D-4焊料镍(Ni) 钯(Pd) 金(Au)钯(Pd) 镍(Ni) 钯(Pd) 金(Au)由于中间层113D-2和113D-3的存在,上述配方可在满足金属膜性能要求的同时改善外层113D-1和内层113D-4之间的连接特性。
以下介绍如本发明第十实施例所述的半导体元件110制作方法。作为范例,下文的描述将针对设有三层结构金属膜113C的半导体元件110,该金属膜113C由外层113C-1、中间层13C-2及内层113C-3构成。
半导体元件110是借用图45所示引线架120制成的。引线架120上的金属导电元件121具有多个凹部122。各凹部122中设有金属膜113C。凹部122的位置对应着树脂凸部117的成形位置。成形的金属膜113C应嵌入树脂凸部。
下文所述引线架120的结构可用来制作多个半导体元件110。因此,金属膜元件121上配有多处凹部122和多个金属膜113C,如图42A所示,图中标号123所示工装孔中可嵌入引线架120的装拆工具。
在介绍半导体元件110的制作方法之前,先结合图39至45对引线架120的制作方法加以描述。
如图39所示,先备好由铜之类导电材料制成的覆层形金属元件121。在金属元件121的上下表面设置抗蚀膜124(保护层涂敷工序)。抗蚀膜124由光敏树脂制成并由旋涂器涂敷至给定厚度。此外,所用金属元件的工装孔123还可在设置抗蚀膜124之前由冲压等方法制成。
此后,用设在抗蚀膜上的掩模(图中未示出)进行曝光工序。接着实施显影工序以去除凹部122及工装孔123处的相应抗蚀膜124部分。这样便制成了图40所示的保护层模样(保护层成样工序)。在保护层成样工序中,用于设置接电端125(图42A或图42B所示)的那部分抗蚀膜124也应被除去。接电部分125是在下述金属膜成形工序中涂敷而成的。若采用上述含冲压工装孔的金属元件,工装孔123的对应窗口便无需设置。
在上述保护层成样工序之后,应对保护层模样已成形的金属元件121进行蚀刻(蚀刻工序)。在蚀刻工序中,应从金属元件121的上表面对其相应的凹部122及接电部分125处进行局部蚀刻。还应从金属元件121上下表面蚀刻对应于工装孔123的部分。对于铜制金属元件121来说,蚀刻工序中应采用诸如氯化铁之类的蚀刻剂。
这样便在金属元件121上的给定位置处制成了凹部122和工装孔123,如图41所示。接电部分125也如图42A和42B所示在金属元件121上制成。用局部蚀刻工艺将凹部122深度控制为金属元件厚度的60%。
接电部分125位于金属元件121纵向的端部。金属元件121在接电部分125处是外露的。通过对接电部分125进行镀覆即可将金属元件121的电势控制在给定值上。需要指出,图42B是沿图42A中A-A线所做的剖面图。
图42A中各虚框所示区域表示半导体元件110的成形位置。该图中的金属元件121上可做出34个半导体元件110。每个半导体元件110都相应地设有多个凹部122。
用图43所示引线架组件128可在一个金属元件上做出更多的半导体元件110。引线架组件128具有框架126,多个金属元件121分别由分置于其纵向相对两侧的连接部分127接在框架126上。引线架组件128上还应设置接电部分125。接电部分125可设置在框架126上,这样便可经由连接部分127向所有金属元件121馈电。
采用引线架组件128有助于提高半导体元件110制作方法的效率。此外,与图42A所示结构相比,保护层成样工序及蚀刻工序也将更为简单。
蚀刻工序之后是制作金属膜113C的金属膜制作工序(前文已简要述及)。本发明第十实施例中的金属膜113C是镀覆而成的。例如,可将金属元件121置入电镀室中进行电解镀覆。在该工序中,上述接电部分125也应同时镀成。
由于金属膜113C由外层113C-1、中间层113C-2和内层113C-3构成,因此这三层膜均应由镀层工序制成。如果外层113C-1、中间层113C-2和内层113C-3分别由金(Au)、钯(Pd)和金(Au)制成,那么镀层工序将由镀覆金制内层113C-3开始,接下来是用钯(Pd)镀覆中间层113C-2,然后再用金(Au)镀覆外层113C-1。可以通过调整镀覆时间来控制各层膜113C-1至113C-3的厚度。图44表示金属膜113C已制成后的金属元件121。
金属膜113C和树脂封壳112必须一同从引线架120上分离下来,下文将对此加以详述。因此,金属膜113C应具备可从金属元件121上平滑分离下来的特性。有鉴于此,在制作金属膜之前,凹部122中设置了一种有助于分离工艺的材料,如导电膏。因此,金属膜113C是在上述材料上制成的。
需要指出,金属膜113C的制作可采用除镀层技术以外的薄膜制作方法,如蒸镀法和溅射法。
除凹部122外,工装孔123处的金属元件121也是外露的,因此,在金属膜镀覆工序中,各工装孔123中也形成了与金属膜113C结构相同的薄膜。不过这无关紧要,因为工装孔123的作用仅在工具的装卡及金属元件的装拆定位。
此后进行的保护层去除工序将除去保护层模样124a(抗蚀膜124)。因此形成了图45所示的引线架120。如上所述,引线架120的制作工艺序列较为简单,它包含保护层涂覆工序、保护层成样工序、蚀刻工序、金属膜制作工序及保护层去除工序。
以下结合图46至59介绍半导体元件110的制作方法,该方法采用了由上述工艺制成的引线架120。
如图46所示,将芯片固定树脂115置于芯片111在引线架120上的设定位置处。然后将芯片111粘在芯片固定树脂115上(芯片粘接工序)。芯片固定树脂具有绝缘性及粘接性。因此芯片111可由芯片固定树脂115的粘接力固定在引线架120上。
在芯片粘接工序之后,将引线架120装在某一接线装置上。如图47所示,芯片111电极焊盘114与金属膜113C(确指内层113C-3)之间的连线118将接通芯片111与金属膜113C。在接线工序中,可先将连线118一端接至电极焊盘114(第一接线工序),然后将其另一端接至金属膜113C。
也可以如图48所示,先将连线118的一端接至金属膜113C,然后再将其另一端接至电极座114。这一改变有助于降低连线118的高度,从而减小半导体元件110的厚度。
还可以采用上文提及的图32所示连接头101。这时连线118接至连接头101上。
所设定的电极焊盘114间距小于金属膜113C设定间距。此外,第一接线工序的接线区大于第二接线工序的接线区。因此,如果采取先金属膜113C后电极焊盘114的接线顺序,那么连线118的布线密度将可提高。
接线工序之后将进行封装工序,此时,在引线架120上制成的树脂129将封住芯片111并由此形成树脂封壳112。下文所述树脂封壳是模制而成的。当然,也可以采用封料腔技术。
图49所示示意图表示树脂129模制完成之后且冲模上仍装有引线架120时的状态。在图49中,标号130表示卷边压模,标号131表示浇道,且标号132表示浇口。如图49所示,在引线架120上制作了多个树脂封壳112。在封装工序之后的当时状态下,各树脂封壳112是由浇口132处的树脂部分129连接起来的。在下文中,该树脂部分将被称为带浇口树脂部分。
图50是对应着其半导体元件110的某一树脂封壳放大截面图。如图50所示,树脂129是由冲模(上模)型腔(图中未示出)的设定形状成形的,此时的引线架120起下模的作用。将树脂129充入凹部122(确指由金属膜113C构成的凹部),如此便制成了与凹部122匹配的前述树脂凸部117。此时,树脂封壳112是浸渍在引线架120上的。
制成树脂封壳112之后便除去浇口树脂、浇道残留树脂131及卷边模130。因此,各树脂封壳112会在导架120彼此分离,如图51A和51B所示。如上所述,树脂封壳112是浸渍在导架120上的,因此相互分离的各个树脂封壳112尚不能从导架120上分离下来。
封装工序之后实施胶带装配工序。在该工序中,胶带133被装在树脂封壳112的顶部。胶带的某一表面涂有胶粘剂,其基带可在后续分离工序中不受蚀刻剂的损坏。胶带133将各个树脂封壳112连在一起,因此,树脂封壳112即使从引线架120上分离下来也会被胶带133支承住。
胶带133的装配是在树脂封壳112制成之前的某一适当时刻进行的。例如,可在封装工序之前将胶带133装入冲模内。此时,树脂封壳112在制作时便已由胶带133连接起来。
胶带装配工序之后进行的分离工序可使树脂封壳112从引线架120上分离下来。在图53所示分离工序中,引线架120被置入蚀刻剂中并因此溶解。分离工序所用的蚀刻剂必须只能溶解引线架120而不应溶解金属膜113C。在引线架120被完全溶解之后,树脂封壳112便脱离引线架120。上述分离工序可以可靠并方便地使树脂封壳112脱离引线架120。
图54A和54B表示分离完成之后的半导体元件110。此时的半导体元件110由胶带支承。因此,分离工序之后的芯片便于处理。在胶带被卷绕并运输后,在电路板上便可自动安装半导体元件110,一如普通的芯片和电子元件。
上述制作方法不象普通制作工艺那样需要引入导线切割工序和导线成形工序(即做成鸥翼形),因此它较为简单。
以下介绍上述半导体元件110制作方法的变化型。
图55A表示封装工序的第一变化型。在上述方法中,树脂封壳是由浇口树脂部分112连在一起的,见图49。浇口树脂部分的去除方法如图51A和51B所示,而胶带133的装配方法如图52A和52B所示。如上所述,胶带133的作用在于保护各个已分离树脂封壳112的初始位置。
在第一变化型中,浇口树脂部分及浇道131内残留树脂129取代胶带133而成为各个树脂封壳112之间的树脂连接体。在下文中,该树脂连接体将被称为浇道框架134。这将提高浇口树脂部分及浇道131内残留树脂129的利用率。半导体元件110运输之前应除去浇道框架134。在该变化型中,运输之前可如图56所示设置胶带133并除去浇道框架134(树脂连接体去除工序)。
在运输之前设置胶带133有助于避免胶带在分离工序及半导体元件110测试工序中受到损坏。其优点还在于半导体元件110可以在将其粘附的胶带之卷绕状态下运输。
图55B是图55A所示封装工序的变化型,其中的浇道框架134沿纵、横方向分布。
图55C是图55A所示封装工序的另一变化型,其中的树脂框架112受到浇道框架134的纵向及横向支承。待去除的树脂可以有效地用做浇口树脂部分及浇道框架。
图57A、57B和58是封装工序的第四变化型。在上述的本发明第十实施例中,树脂封壳112在封装工序完成之后便彼此分离。而在第四变化型中,树脂封壳112在封装工序之后仍彼此相连。
图57A和57B表示第四变化型中封装工序完成之后的引线架120。这些图中的树脂封壳112象板式巧克力那样彼此相连。相邻树脂封壳112的边界处设有槽135。因此,无需胶带也可保持各个树脂封壳112的初始位置。各个树脂封壳112在槽135处彼此分离,这将有助于分离工序。
图58表示图57A和57B所示树脂封壳的成形冲模136。如图58所示,冲模136上模的型腔中含有与槽135匹配的凸部138。冲模136的下模含有放置引线架120的凹部140。用结构简单的冲模136便可制作出图57A和图57B所示的树脂封壳112连接体。
图59表示分离工序的变化型。上述分离工序采用了蚀刻加工。本变化型代之以机械方法将树脂封壳112从引线架120上分离下来,而不是将引线架120溶解掉。该变化型的分离工序不需要蚀刻剂而且耗时较少。另一方面,需要考虑所采用的机械分离方法是否会使金属膜113C产生向树脂凸部117的转移。消除这一可能性的方法是在凹部122中预先设置可以增强机械分离特性的部件。
第十一实施例以下介绍如本发明第十一实施例所述的半导体元件。
图50表示如本发明第十一实施例所述的半导体元件150。在该图中,已在前述关于半导体元件110的附图中出现过的相同元件仍采用原来的标号。
半导体元件150的一个特点在于其树脂封壳151是由上树脂层152和下树脂层153构成的双层结构。下树脂层153上的若干给定位置处设有树脂凸部154。各个树脂凸部154上覆有由钯(Pd)之类材料制成的单层结构金属膜155。
下树脂层153上设有连接电极156,该电极的下部延伸部分162伸过下树脂层153上的通孔157。下部延伸部分162的端部接至相应的金属膜155。各连接电极156的相应上部接线部分163位于下树脂层153上。连线118便接在这个上部接线部分163上。
上、下树脂层152、152可由相同或不同的材料制成。例如,装有芯片111的下树脂层153可由隔热和机械强度较好的树脂制成。而上树脂层152的材料应具有较好的散热性。这样便改善了芯片111的性能。
也可以采用由三层或三层以上树脂构成的树脂封壳。
以下结合图61至70介绍如本发明第十一实施例所述的半导体元件150制作方法。半导体元件150的制作方法中含有半导体元件110制作方法中没有的金属膜155及连接电极156成形工序。对于其它部分的制作工序来说,上述两种元件的制作方法可以是相同的。因此,下文的介绍将集中在金属膜155及连接电极156的制作方法。
如图61所示,先备好铜(Cu)之类材料制成金属板料121。在该金属板121的上下表面设置由光敏树脂制成的抗蚀膜(保护层涂覆工序)。然后用设在抗蚀膜上的掩模实施曝光处理。此后进行显影处理,从而除去抗蚀膜上对应于凹部的部分。这样便得到了图62所示的保护层模样124a(保护层成样工序)。
在保护层成样工序之后,应对已形成保护层模样124a的金属板121做蚀刻处理(蚀刻工序)。该工序只对金属板上表面做局部蚀刻。这样便在由上侧保护层模样124a界定的凹部成形区域制成了凹部158,如图63所示(该图是图62中B处的局部放大图)。
接续蚀刻工序的是镀覆金属膜155的金属膜成形工序。将金属板121置入电镀腔内进行电解镀敷。用于所述本发明实施例的各金属膜165具有钯(Pd)制单层结构。因此,金属膜155成形仅需一次镀覆工序。图64表示了含有镀覆在23部158中金属膜155的金属板121。
需要指出,金属膜155的制作方法可以是除电镀法之外的其它薄膜制作方法,如蒸镀法和溅射法。
在金属膜155制成之后,可进行保护层去除工序以除去保护层模样124a。这样便制成了图65所示的引线架159。
其后,用上述已制成的引线架159制作半导体元件150。先在具有镀层凹部155的表面上制作下树脂层153。凹部155中的那部分下树脂层153便构成了树脂凸部154,如图66所示。
此后,如图67所示,在下树脂层153的树脂凸部154中做出通孔157。这样,金属膜155便通过通孔157暴露出来。
接着便在下树脂层153的整个表面上制成具有预定厚度的导电金属膜160,如图68所示。上述连接电极156使得自金属膜160。金属膜160是由非电解镀敷法、蒸镀法或溅射法制成的。金属膜160在其制作过程中充入通孔157中,由此便制成了下部延伸部分162,如图69所示。因此,金属膜160与金属膜155之间是接通的。
此后,将抗蚀膜涂敷在金属膜160上并实施曝光和显影工序。于是,连接电极156的设定位置处便形成了保护层模样161,如图69所示。然后,以保护层模样161为掩模对金属膜160做蚀刻处理。这样,除连接电极156设定区域以外的所有金属膜160便被除去。
在图70所示已制成连接电极156的结构中,其下部延伸部分162与金属膜155相接,其用来连接连线118的上部接线部分163则分布在下树脂层153上侧。
连接电极156成形工序的其它后续工序类似于参照图46至54B所做描述中的相应部分,在此不再赘述。
第十二实施例以下介绍如本发明第十二实施例所述的半导体元件。
图71表示如本发明第十二实施例所述的半导体元件170。在图71中,已在半导体元件150中出现过的相同部分仍采用原来的标号。
半导体元件170的树脂封壳151具有含上树脂层152和下树脂层153的双层结构,其金属凸部171由连接电极172本体延伸而成。该金属凸部171可替代树脂凸部154。各金属凸部171上设有由钯(Pd)之类材料制成的单层金属膜155。
加接电极172设在下树脂层153上。金属凸部171通过下树脂层153上的窗口(通孔)173与相应的金属膜155相接。连线118接在连接电极172上部的接线部分174上,该接线部分174分布在下树脂层153的上表面上。
半导体元件170具有与半导体元件150相似的双层结构树脂封壳151,这将改善半导体元件170的特性。此外,金属膜155与金属凸部171之间因直接相接而可以具有较低的阻抗。这样就使半导体元件170的电特性得以进一步改善。需要指出,树脂封壳151并不限于双层结构,它可以采取由三层或三层以上薄膜组成的结构。
以下结合图72至81介绍半导体元件170的制作方法。该方法的特殊之处在于其金属膜155和连接电极172的成形工序,而其其它工序则与半导体元件150的相应制作工序大致相同。因此,以下的描述仅涉及金属膜155和连接电极172的成形工序。
如图72所示,先备好由铜(Cu)之类材料制成的金属板料121。然后在金属板料121的相对两表面上设置由光敏树脂制成的抗蚀膜。接着便对抗蚀膜做曝光和显影处理,这样便制成了具有窗口的保护层模样124a,上述窗口位于凹部158的设定位置处,如图73所示。
对已做成保护层模样124a的金属板121进行蚀刻处理(蚀刻工序)。该工序仅对金属板121上表面做局部蚀。刻这样便在金属板121上制成了凹部158,如图74所示,该图是图73中C部分的截面放大图。
在蚀刻工序之后实施金属膜制作工序,亦即用镀敷方法在凹部158中做出金属膜155,如图75所示。除镀敷方法外,还可以采用蒸镀法或溅射法。在此之后,由保护层去除工序除去保护层模样,由此便制成了图76所示的引线架159。
然后在引线架159上做出半导体元件170。如图77所示,将下树脂层153置于金属板121上具有凹部158的一侧表面上。其后,如图78所示,将下树脂层153上对应于凹部158的那一部分除去,由此便形成了窗口或通孔173。金属板121便通过窗口173暴露出来。
接着便在下树脂层153的整个表面上做出具有预定厚度的导电金属膜160。金属膜160的制作方法可以是非电解镀敷法、蒸镀法或溅射法。金属膜160在其制作过程中充入通孔158中,由此便制成了金属凸部171,如图79所示。这样,金属膜160便与金属膜155相接通。
窗口173的尺寸大于通孔157的直径,因此,金属凸部171与金属膜155之间将具有更大的接触面积。这样,金属凸部171与金属膜155之间的电接触将具有较低的阻抗。
在已制成的金属膜160上沉积出抗蚀膜并进行曝光和显影处理。这样便在连接电极172的设定位置处制作出保护层模样161。接着,以保护层模样161为掩模对金属膜160进行蚀刻。这样,金属膜160上除被掩模覆盖的部分便会被除去。
因此,如图81所示,在已制成连接电极172的结构中,金属凸部171与金属膜155是相接的,而且用来与连线118相接的接线部分174则分布在下树脂层153的上侧。
连接电极172制作工序的其它后续工序类似于参照图46至53B所描述的相应情况,在此不再赘述。
第十三实施例以下结合图82介绍如本发明第十三实施例所述的半导体元件180。图82中与半导体元件150相同的部分仍采用相同的标号。
半导体元件180具有由上树脂层182和下树脂层183构成的树脂封壳181,其下树脂层183由带状绝缘树脂制成。窗口184设在带状树脂183上的预定位置处,设在带状树脂183底面(安装面)上的外部电极膜185可覆盖窗口184。连线118通过窗口184接至电极膜185。
半导本元件180具有因采用双层封壳结构而带来的性能优点,而且其制作成本也因树脂带183对引线架120或159的替代而降低。
第十四实施例以下介绍如本发明第十四实施例所述的半导体元件。图83是如本发明第十四实施例所述半导体元件210的剖视图。图84A是半导体元件210的平面图,图84B是其正视图,图84C是其仰视图。
半导体元件210结构简单,它含有芯片211,树脂封壳212和金属膜213。芯片211的上表面上设有若干个电极焊盘214,而芯片211则粘在芯片固定树脂215上。芯片211可以是半导体芯片、SAN芯片、多芯片模块等。
树脂封壳212是由环氧树脂模制(或罐封)而成的,其上设有与其它部分一体的树脂凸部217。树脂凸部217的位置是预定的。各个树脂凸部217从树脂封壳212的底面(安装面一侧)向下伸,同时也从其侧面212a横向伸出。树脂217的配置间距不妨定为约0.8mm。
各个树脂凸部217由金属膜213覆盖。金属膜213与电极焊盘214由其间的连线218接通。金属膜213的结构如图35至38所示,下文将对此加以介绍。
如此制成的半导体元件不象SSOP那样需采用内、外引线,因此无需设置内、外引线的布线区域和空间,这样将缩小半导体元件的尺寸。另外,半导体元件210不象BGA型元件那样需采用焊球,因此成本较低。此外,树脂凸部217和金属膜213共同地起着BGA型元件中焊接凸部所起的作用,这将提高安装密度。而且,半导体元件210也不受树脂封壳212屈曲或变形的影响。
现结合图85介绍半导体元件210的另一优点。如图85所示,装有半导体元件210的电路板250上设有连接电极251,该电极对应着金属膜213所处的位置。金属膜213被焊接在连接电极251上,标号219表示其焊区。焊区219沿金属膜213横向分布,而且横向伸至树脂封壳212以外。因此,可对焊区219进行目检,如图85所示。这一特点有助于测试半导体元件210在电路板250上的安装及焊接合格性。
各金属膜213可如图86、87及88所示采取多层结构,从而满足上述薄膜性能要求。
图86所示五层结构的金属膜213E是由外层213E-1、第一中间层213E-2、第二中间层213E-3,第三中间层213E-4,及内层213E-5构成的。各层的用料组合如下。
213E-1 213E-2213E-3213E-4213E-5Au PdNiPdAu焊料 NiAuPdAuPd NiAuPdAuPd NiCuNiPdAu NiCuNiAuAu PdNiAuPd图87所示六层结构的金属膜213F由外层213F-1,第一中间层213F-2,第二中间层213F-3、第三中间层213F-4、第四中间层213F-5及内层213F-6构成的。各层的用料组合如下。
213F-1213F-2213F-3213F-4213F-5213F-6AuPdNiAuPdAuAuPdNiCuNiPdPdNiCuNiPdAu图88所示七层结构的金属膜213G由外层213G-1,第一中间层213G-2,第二中间层213G-3、第三中间层213G-4、第四中间层213G-5、第五中间层213G-6及内层213G-7构成。各层的用料组合如下。
213G-1 213G-2 213G-3 213G-4 213G-5 213G-6 213G-7Au Pd Ni Cu Ni Pd Au图86、87和88中示出了前述连接头101。该连接头101可被采用,也可略去,如图83所示。
半导体元件210的制作可采用参照图39至59所描述的方法。
连接头101可由下文所述的螺栓头或钉式凸部替代。
图89A表示芯片安装工序(已参照图46做过介绍)完成后的状态。引线架220由前述方法制成,其凹部222中设有呈图37所示三层结构的金属膜213C。带有电极焊盘214的芯片211被粘在芯片连接树脂215上。
图89B表示金属膜213C内壁上设有钉式凸部245时的状态。制成钉式凸部245后,将毛细管246移至预定电极焊盘214上方,如图89C所示。连线218便在这种状态下被接至电极焊盘上(第一次接线)。然后将毛细管246移至预定钉式凸部245上方。这样的移动将使连线218延伸至钉式凸部245上方。
其后,如图89D所示,使毛细管246受到钉式凸部245的挤压,由此使连线218接在钉式凸部245上(第二次接线)。重复上述过程,从而使电极座214与钉式凸部245(金属膜213C)被连线218接通,如图89E所示。
象使用连接头101一样,使用钉式凸部245可改善接线可靠性。亦即,连线218可被可靠地接在钉式凸部245上,从而提高了接线218与金属膜213C之间的线路连接可靠性。
钉式凸部的制作方法如图90A至90I所示。下文所述连线218采用金线。出于简化考虑,图90A至90I仅表示了金属膜及其附近的情形。
首先,如图90A所示,将毛细管245移至金属膜213C上方。其次,用接线装置上的打火棒(图中未示出)产生火花,由此在连线218端部形成球端(直径不妨取90μm)。
然后,如图90B所示,降下毛细管245并使之挤压球端247。在该状态下,不妨用超声波焊接法将球端247接在金属膜213C上。球端247因毛细管245的挤压而产生较大变形,因此其直径为10~120μm,而高度则为30~40μm。
在上述接线工序之后,将毛细管246从球端247处升起约300μm,如图90C所示。然后,如图90D所示,将毛细管246横移约40~50μm,由此使毛细管处于横向偏离球端247中心的位置。
其后,如图90E所示,在维持毛细管246偏移位置的同时使其下降并压挤球端247。接着,在连线218被夹紧的状态(此时不进行连线218的进给)下升起毛细管246,如图90F所示。这样便使连线218断开并形成钉式凸部。
在上述钉式凸部245的制作方法中,毛细管246对球端247的压挤将使钉式凸部245与金属膜213C之间形成紧密接触。而且球端247的展面也较大。因此,如图90G至90I所示,球端247的较大展面将保证接线工艺的可靠性。连线218和钉式凸部245的材料(金)相同,其焊接性很好,这样便使连线218与钉式凸部245之间的连接可靠性大为改善。
如图90F的说明内容所述,连线218是在毛细管246压挤球端247后的上升过程中被其断开的。此时的毛细管246仍处于偏移位置。因此,由于从球端247向上伸出的凸部248(残留连线)的存在,接线将不受影响。
除金以外,连线218还可以采用覆有绝缘层的镀覆金线。采用这种镀覆金线可以防止连线218与其它部分的短路。因此,在布线密度要求较高的场合中应推荐使用镀覆金线。
如上所述,半导体元件210可由半导体元件110的制作方法制成。但二者在其模制工序中所用冲模的形状却略有不同。这是由于各树脂凸部217是沿横向伸至封壳212以外的,如图85所示。
图91表示树脂封壳212模制工艺所用的上模256和下模257。上模256的型腔258中设有拐角部分258a。拐角部分258位于凹部222上方,这使凹部222的局部被上模256所覆盖。这样,所制成的各个树脂凸部217便具有位于图91中D处的横向延伸部分。
如图92所示,上模256中设有浇口232,如图中箭头所示,树脂穿过浇口232而被浇入。因此,树脂封壳212便如图93(对应于图50)所示而被制成。需要指出,引线架220上可制作多个树脂封壳212。标号223表示工装部分,它对应图50所示的工装部分。
图53所示分离工序可由图94所示的另一种分离工序来代替。图94所示蚀刻装置260包含进给盘261、蚀刻室262和接收盘263。附有树脂封壳212的引线架220被粘在胶带233上,胶带233被卷在进给盘261上。蚀刻腔262内设有喷散蚀刻剂的喷嘴264。胶带233从进给盘261上输送至蚀刻腔262中,面朝喷嘴264的引线架220便在蚀刻腔262中受到蚀刻。蚀刻工艺将溶解引线架220上除金属膜231C以外的部分。这样便将树脂封壳212从引线架220上分离下来。
胶带233是由不受蚀刻剂影响的材料制成的,因此,树脂封壳212在引线架220溶解后仍受到胶带233的支承。支承封壳212的胶带233在离开蚀刻腔262后便被接收盘263卷起。因此,上述蚀刻装置可以自动地使封壳212脱离引线架220。
图94所示蚀刻装置也可用来制作如本发明其它实施例所述的半导体元件。
可以使用图95中分离工序来代替图53或图59中分离工序。在图95所示分离工序的引线架220蚀刻过程中,树脂封壳212由卡具294支承。如图95所示,卡具294由板式基座295和垂立的定位销296构成。引线架220和浇道框架234具有图96所示的通孔297和298。确切地说,通孔297设在引线架220上,而通孔298则设在浇道框架234上。如图96所示,相通的通孔297和298构成了相应的单个孔。卡具294上的定位销296可被插入通孔297和298中。
图97表示设在浇道框架234中的通孔298。图98A和98B也表示设在浇道框架234中的通孔298。浇道框架234中设有环形部分299,而通孔298是在环形部分299中成形的。在环形部分299中设置通孔298的做法将使浇道框架234获得设定的机械强度。因此,不存在浇道框架234在通孔298处发生断裂的可能性,这样便可使树脂封壳212在分离工序中被分离下来。
又如图95所示,在通孔297和298中插入定位销时须使树脂封壳212朝向基座295。这样可以避免引线架220与卡具294之间的相对运动。在这种状态下,将树脂封壳212,浇道框架234、引线架220连同卡具294一起插入图94所示的蚀刻腔262中。蚀刻剂以较高压力被喷散出来并使引线架220溶解。此时,高压蚀刻剂也会作用在树脂封壳212和浇道框架234上。但定位销294对树脂封壳212和浇道框架234的支承是牢固的,因此蚀刻剂的喷射作用不会导致上述各部件发生位移。假中上述各部件发生位移,就必须使它们回复至原位。定位销294的制作材料不受蚀刻剂影响,因而可重复使用。
图99A、99B和99C表示另一种分离工序。如前所述,运输之前须除去浇道框架234。图99A、99B和99C所示分离工序具有专门的浇道框架234去除工序。用定位工具294A维持树脂封壳212与浇道框架234的固有间距。定位工具294A具有垂立在基座295上的隔层部分2100。这些隔层部分2100隔出了多个容腔2101和2102。如图99A所示,树脂封壳212面对着相应的树脂封壳容腔2101,而浇道框架234则面对着相应的浇道框架容腔2102。
在树脂封壳212(连同浇道框架234)和引线架220被定位工具294A支承的状态下,隔层部分2100将对着树脂封壳212与浇道框架234的结合部。该结合部要比其它部分薄,因此其机械强度也将弱于其它较厚部分。不过,这些较薄部分的机械强度可以保证它们在高压蚀刻剂的喷射作用下不发生断裂。
浇道框架234上设有槽2103。如图100A、100B和101所示,这些槽2103沿浇道框架234的心分布。开有槽2103的部分将具有弱于其它部分的机械强度,不过该强度可以保证浇道框架234不发生断裂。
在上述分离工序中,定位工具294A的位置如图99A所示。树脂封壳212和浇道框架234因高度不同而使其组合结构中出现台阶部分。隔层2100可嵌入台阶部分中的凹部,因而使树脂封壳212不致偏离其原位。
如图99A所示,在引线架220的浇道框架234成形面的背面上设有网格件2104。该网格件2104不妨碍蚀刻剂穿过其中,因而不影响引线架220的蚀刻工序。此外,网格件2104因受力而将引线架220压向定位工具294A。因此,树脂封壳212,浇道框架234和引线架220将得到定位工具294A的可靠支承。这样,导呆220在蚀刻过程就不会发生任何定位误差。
图99B表示引线架220和网格件2104已由蚀刻工艺除去。图99B中的树脂封壳212和浇道框架234是连接在一起的。而且,树脂封壳212面对着容腔2101,而浇道框架234则面对着容腔2102。
接着对树脂封壳212和浇道框架施加压力,由此使隔层2100接触到树脂封壳212与浇道框架234之间的结合部。结合部要比其它部分薄,如图99C所示,它可以轻易地被断开而不致对树脂封壳212产生附加应力。
需要指出,树脂封壳212(半导体元件210)可由容腔2101容纳,而断开的浇道框架234则由容腔2102容纳。这种方法可以自动分检半导体元件210和浇道框架234,因而使制作过程得以简化。
图102A至102E表示另一分离工序。图102A表示树脂封壳212由引线架220支承的情形。其中未设浇道框架234。在完成封装工序之后及除去引线架220之前,将某一片状构件2105覆盖在树脂封壳212上,如图102B所示。片状构件2105无需附设胶粘剂,而前述胶带233则使用了胶粘剂。
其后,如图102C所示,用真空吸附法使片状构件2105附着在树脂封壳212上(片状构件吸附工序)。此时,片状构件2105将发生与树脂封壳212外形相匹配的变形并附接在其上。这样树脂封壳212由片状构件2105支承。需要指出,片状构件2105对树脂封壳212的支承并没有使用胶粘剂。
此后,将由引线架220和片状构件2105支承的封壳212置入蚀刻腔262中并对引线架220做蚀刻处理。图102D表示了蚀刻处理结束之后的情形。此时的树脂封壳212由片状构件2105支承。
最后,如图102E所示,将由片状构件2105支承的树脂封壳212盛入树脂封壳收纳容器2106中,驱动某一收纳工具,使树脂封壳212逐个落下。于是,各个树脂封壳212便从片状构件2105上脱落并被盛入容器2106中(树脂封壳收纳工序)。
需要指出,片状构件2105对树脂封壳212的支承并没有使用胶粘剂,因此,上述封壳收纳过程的进行将比较容易。
可以用图103A和103B所示的封装方法代替容器2106的使用。在图102D所示装配完成之后,将第二个片状构件2108装在树脂封壳212上,这样,树脂封壳212便被第一个和第二个片状构件2105及2108包住(包装工序)。这样图103A和103B所示的组件便可作为已包装的产品处理。
第十五实施例以下结合图104介绍如本发明第十五实施例所述的半导体元件。在图104中,与本发明第十四实施例所述相同的部分仍由原号表示。
图104所示半导体元件210A具有这样一个特点其树脂封壳212的某一侧边上设有树脂凸部217A。这种树脂凸部217A的设置可以通过在引线架220上适当选定凹部222的位置来实现。
半导体元件210A在电路板250上的安装方法如下。如图104所示,电路板250上设有配备导电体的通孔252,该通孔对应着树脂凸部217A。半导体元件210A因其树脂凸部217A插入通孔252中而被竖立起来。其后,将各树脂凸部217A上的相应金属膜213焊接在通孔252中的导电体上。由于半导体元件210A被垂直安装,所以上述方法的安装密度较高。此外,该方法也便于从半导体元件210A外侧检查金属膜213与通孔252中导电体之间的焊接质量。
第十六实施例图105是如本发明第十六实施例所述半导体元件210B的平面图,图106表示安装在电路板250上的半导体元件210B。在这些图中,与前述附图中相同的部分仍由原标号表示。
半导体元件210B具有这样一个特点树脂封壳212的某一侧边上设有支承元件253。支承元件253对树脂封壳212的支承作用可使半导体之件210B竖立在电路板250上。象半导体元件210A一样,半导体元件210B也有一个设在树脂封壳212某一侧边上的树脂凸部217B基准。
半导体元件210B的安装方法是使树脂凸部217B位于电路板250上的连接电极251处,并通过焊区219焊接在其上。上述焊接可采用软熔焊接法,因此较为简便。本发明第十六实施例也具有第十五实施例的同样优点。
第十七实施例以下结合图107至109介绍如本发明第十七实施例所述的半导体元件210C。在这些图中,与前述附图中相同的部分的仍采用原标号表示。
半导体元件210C的特点之一是其上设有横向长度不等的树脂凸部291A和291B。确切地说,第一树脂凸部291A较短而第二树脂凸部291B较长。第一、第二树脂凸部291A和291B分别设有相应的金属膜290A和290B。金属膜290A横向尺寸较小,而金属膜290B横向尺寸较大。第二树脂凸部291B和第二金属膜290B伸在芯片211下侧。
上述树脂凸部291A和291B的设置简化了连线218至金属膜290A、290B的线路。如图107所示,连线218从芯片211的两侧伸至金属膜290A和290B。另一方面,在图104中,连线218是通过芯片211的某一侧放线的。因此,有必要使图104所示芯片211上的电极焊盘214排在芯片211的某一侧。在图107至109所示结构中,电极焊盘214被置于芯片211的四侧。即便如此,连线218对树脂封壳212某一侧部金属膜290A、290B的定线也是简单的。
如果元件210C与元件210A具有相同数量的电极焊盘214,那么元件210C上电极焊盘214的布置间距将大于元件210A上的相互间距。换言之,在同样间距下,元件210C上的电极焊盘214数目将可多于元件210A。此外,电极焊盘214与金属膜290A、290B之间可由较短的连线218接通。因此,连线218的短路及连线218阻抗的增加等现象将得以避免。
第十八实施例图110是如本发明第十八实施例所述半导体元件210D的剖视图,且图111是半导体元件210D的仰视图。在这些图中,与前述附图中相同的部分仍用原标号表示。
半导体元件210D具有这样一个特点树脂凸部291A与树脂封壳212的侧面212a大体齐平。树脂凸部291A排在树脂封壳212的一侧并具有相同的横向长度。因此,金属膜290A便排在树脂封壳212的一侧。
在树脂凸部291A与侧面212a大致齐平的情况下,仍可以从树脂封壳212一侧目检金属膜290A与电路板之间的焊接质量。
半导体元件210D的安装如图112所示。多个半导体元件210D并排地竖直排列,并以这种状态被焊接在电路板250上。半导体元件210D配有对其起支承作用的支承元件292。该支承元件292不妨由树脂(胶粘剂)制成,但它不同于图105和106所示的支承元件253。也就是说,支承元件292是与树脂封壳212异体的分离元件。因此,支承元件292的位置可在任意时刻任意选定。
并排竖直排列的各半导体元件210D之间会形成间隙。可以在半导体元件210D被安装并固定在电路板250上之前将隔离体293设置在上述间隙中。隔离体293的作用在于加强半导体元件210D在电路板250上的竖立状态及其安装可靠性。
图113所示安装方法的特征在于图112所示隔离体293被散热元件293A所代替。散热元件293A除起隔离体作用外还可扩散半导体元件210D产生的热量。散热元件293A可推荐使用导热性好的材料,以便于实现良好的导热性能。对于并排紧密排列的半导体元件210D来说,其热量可以由散热元件293A可靠并高效地扩散掉。因此,半导体元件210D的工作可靠性便得以改进。
图114表示又一种安装方法。各半导体元件210D彼此接触。这是通过将半导体元件斜装在电路板250上而实现的。半导体元件210D以一定角度θ斜装在电路板250上并由支承元件292支承。图114所示安装方法不需要隔离体,用于安装半导体元件210D的附件也较少。但图114所示安装方法在散热性能上不如图113所示安装方法。
多个半导体元件210C也可如图115所示并排竖立在电路板250上。此时,第二树脂凸部291B起着隔离体及散热元件的作用,因此无需再设任何隔离体及散热元件。
第十九实施例以下结合图116和117介绍如本发明第十九实施例所述的半导体元件。图116是沿图117中虚线所做的该半导体元件剖视图,而图117则是其树脂封壳内部的俯视图。
图116所示半导体元件310包含芯片311,电极焊盘312、连线313、树脂封壳314及金属膜315。芯片311可以是半导体元件、SAW芯片、多芯片模块等。连线313端部接至芯片311上的电极焊盘312,其另一端接至金属膜315,金属膜315暴露在由模制树脂制成的树脂封壳314的底面上。金属膜315与树脂封壳314底面大体齐平。各金属膜315的尺寸不妨定为宽0.4mm,长0.75mm,高10μm,其排列间距也不妨定为0.65mm。
上述结构不象SSOP结构那样必须设置内、外引线,因此无需设置内,外引线所需的相应布线区域和空间。此外,图3所示结构不象BGA型结构那样需为焊球设置基座。因此,如本发明第一实施例所述的半导体元件仅需较小的安装面积,而且其成本也较低。
金属膜315与芯片311由连线313接通。金属膜315起着半导体元件310外接端子的作用。在半导体元件310被装在电路板(图中未示出)上时,金属膜315将被焊接在电路板上的电极部分中。
金属膜315可以象前述金属膜113和213那样为单层或多层结构。金属膜315也需满足前述的薄膜性能要求。
图118是单层结构金属膜315A的截面放大图。金属膜315A不妨由银(Ag)或钯(Pd)制作。
图119是双层结构金属膜315B的截面放大图,该结构由外层315B-1和内层315B-2构成。举例来说,外层315B-1可以是0.05~2μm厚的钯材料层,内层315B-2可以是10埃~0.5μm厚的金材料层。也可以采取外层315B-1为金、内层315B-2为钯的方案。
图120是三层结构金属膜315C的截面放大图。该结构由外层315C-1、中间层315C-2及内层315C-3构成。以下是该层状结构的某一范例。外层315C-1为10埃~0.5μm厚的金材料层,中间层315C-2为0.5~20μm厚的镍材料层,且内层为0.1~0.5μm厚的金材料层。
另可选取以下组合315C-1315C-2315C-3AuNiAuPdNiPdAuPdAu焊料 NiAu焊料 NiPd图121是四层结构金属膜315D的截面放大图,该层状结构由外层315D-1、第一中间层315D-2、第二中间层315D-3及内层315D-4构成。以下是该四层结构的一个型式范例。外层315D-1是5~20μm厚的焊料层,第一中间层315D-2是1~20μm厚的镍层。第二中间层315D-3是0.05~2μm厚的钯层,且内层315D-4是10埃~0.5μm厚的金层。
作为另一范例,外层315D-1是0.05~2μm厚的钯层、第一中间层315D-2是1~20μm的镍层,第二中间层315D-3是10埃~0.5μm的钯层,且内层315D-4是10埃~0.5μm的金层。
另可选取以下组合315D-1 315D-2 315D-3 315D-4Au Pd Ni PdPd Ni Au Pd焊料Ni Au Pd此外,五层结构金属膜315也可采用图86说明中所介绍的相应材料组合,而六层结构金属膜315可采用图87说明中所介绍的相应材料组合。
也可使用连接连线313端部的前述连接头101。
可以用图125所示引线架320制作上述半导体元件310。为达到同时制作多个半导体元件310的目的,可采用具有图42A所示结构的引线架320、或采用图42所示多个引线架组件,如图43所示。
引线架320也可取如下结构。如图122所示,通过实施保护层涂覆工序,在具有工装孔323(对应于图42A中的孔123)的金属元件321的两个相对表面上设置抗蚀膜324。
接着,由曝光及显影工序获得具有图123所示保护层模样324a的结构。在曝光工序中,抗蚀膜324上所设的掩模具有对应于金属膜315位置的窗口。抗蚀膜324的暴露部分将由显影工序除去。曝光及显影工序也将除去抗蚀膜34上对应于图42A所示接电部分125的区域。
其后,由金属膜成形工序形成图124所示结构。该工序(可以是镀覆过程)使图42A所示接电部分125形成镀膜电极、并将金属元件321置入镀覆腔中。图124所示结构是由外层315C-1、中间层315C-2及内层315C-3构成的三层结构。这时,金属元件321上镀有金质内层351C-3、内层351C-3上又镀有钯质中间层351C-2,而中间层351C-g上又镀有金质外层351C-1。上述三层膜的厚度均可由镀覆时间的控制而得到调整。
后续的分离工序必须使金属膜351C与树脂封壳312一起从引线架320上分离下来。因此,须使金属膜351C具有可从金属元件321上平滑脱落下来的特性。为此,在金属膜351C制成之前,金属元件321的外露部分中设有可促进分离过程的某种材料,如导电膏等。因此,金属膜351C实际上是在上述材料上形成的。
需要指出,金属膜351C的制作还可选用除镀覆法之外的其它薄膜制作方法,如蒸镀法和溅射法。
此后,由保护层去除工序将保护层模样324a(抗蚀膜324)除去,从而形成图125所示的引线架320。
半导体元件310可用图125所引线架来制作。
如图126所示,在芯片安装工序中,将芯片固定树脂316置于引线架320上的预定位置处,并将芯片311置于芯片固定树脂316之上。芯片固定树脂316起着隔离和粘接作用。因此,芯片311可以借芯片固定树脂316的粘接作用而被安装在引线架320上。
接着将引线架320装在接线装置上,同时按图127所示方式设置连线313。确切地说,连线313是被接在电极焊盘312和金属膜315上的。前述的接线顺序(第一次及第二次接线)仍适用于连线313的连接。具体来说,如果先将连线313的一端接至金属膜315C,然后才将另一端接至电极焊盘312,那么所形成的连线313高度(如图128所示)小于由上述接线顺序的逆序所形成的连线313高度(如图127所示)。
后继的模制工序与结合图49所介绍的方法相同。在该模制工序中,各个芯片311都设有图129所示的树脂封壳314。模制工序之后的引线架320形态如前述的图51A及51B所示。
接下来的胶带粘接工序与先前参照图52A及52B所介绍的方法相同。
其后便是与前述图53所示分离工序相当的分离(蚀刻)工序,如图130所示,其中,标号333所示胶带相当于前述图53中的胶带133。
在引线架320被蚀刻掉之后,半导体元件由胶带333支承,其形态如前述的图54A及54B所示。
也可以采用如前述图59所示的分离工序,见图131。
以上便是半导体元件310的制作过程。
第二十实施例图132A和132B表示如本发明第二十实施例所述的半导体元件310B。在这些图中,与半导体元件310中相同部分的标号不变。半导体元件310B与半导体元件310的不同之处如下。金属膜315被做在树脂封壳314本身的树脂凸部318上,而且树脂封壳314的底面设有绝缘膜317。此外,金属膜315具有伸向芯片311的引导部分3151。在将半导体元件310B装在电路板上时,树脂凸部318对树脂封壳314的屈曲起着减缓作用,该树脂凸部318还可以防止相邻金属膜发生桥接。由于伸至芯片311的引导部分3151的存在,各金属膜315间具有较大间距。
对于树脂凸部318分布在树脂封壳整个底面上的凸面式半导体元件来说,上述优点是尤为显著的。这时,无需采用小的接线凹部间距就可缩减各凸起部分的间距。在半导体元件310B被装到电路板上时,绝缘膜317便界定出了焊接区域。此外,绝缘膜317还可以防止因引导部分3151氧化而出现的半导体元件310B老化现象,它也可以防止发生桥接现象。
半导体元件310B的制作方法近似于半导体元件310的制作方法。树脂凸部310是通过对设有保护层模样324a(见图123)的金属元件321加以局部蚀刻而形成的。局部蚀刻所形成凹部类似于图41所示凹部122。设置在上述凹部(图44)中的金属膜315可在树脂凸部318上形成。接线方法如图47所示。剩余的保护膜形状构成了绝缘膜317部分,由此界定出引导部分3151。
第二十一实施例图133表示如本发明第二十一实施例所述的半导体元件310C。在图133中,与图132A及132B所示半导体元件310B中相同的部分仍用相同的标号表示。半导体元件310B上设有由强导热性材料制成的散热元件340。作为推荐方案,可取消图132A所示的绝缘膜317,因为绝缘膜317不利于散热。
散热元件340被粘在引线架上的某给定位置处,而其上又固接着芯片311。使用散热元件340将满足较大功耗芯片的安装要求。
第二十二实施例图134表示如本发明第二十二实施例所述的半导体元件310D。在图134中,与半导体元件310B及310C中相同的部分仍由相同的标号表示。半导体元件310D中的凸块或连接头341取代了金属膜315的引导部分3151。凸块341位于凸部中并与金属膜315相接。图134所示结构适用于树脂凸部318排列间距不太狭窄的场合,凸块341可以增强连线313在金属膜315上的连接可靠性。同图133所示情形一样,半导体元件310D中也可使用散热元件340。
第二十三实施例图135表示如本发明第二十三实施例所述的半导体元件310E。在图135中,与前述附图中相同的部分仍由相同的标号表示。半导体元件31E中没有设置将电极焊盘312与金属膜315的连线,取代该连线的是凸块342。使用凸块342可以降低半导体元件310E的高度,进而获得较薄的封壳。凸块342可被用来进行倒装式接线,这种方法比接线法快捷,因而可以缩短电极焊盘312与金属膜315之间的连接工时。
半导体元件310E的制作方法类似于半导体元件310的制作方法,但以下部分除外。在芯片311被安装在引线架320上时,倒装式接线使得电极焊盘312与金属膜315由凸块342接通,该凸块343可以预先设置在电极座312或金属膜315上。
在图136A所示半导体元件310F中,凸块342取代了图132所示半导体元件310B中的连线313。倒装接线实施于金属膜315的引导部分3151。这样可以增大设在树脂凸部318上的金属膜315的排列间距。
图136B所示半导体元件310G是图136A所示结构的变化型。在图136B中,金属膜315的引导部分3151中设有凹部343,而某一凸块342又以倒装式接线嵌在凹部343中。设置凹部343将有利于凸块342的定位。
图136A及136B所示结构中未设置绝缘膜317。
图137半导体元件310H中的凸块342被设置在树脂凸部318中。为保证电焊盘312与凸块342的直接接触,树脂凸部318的高度应小于凸块342的高度。凸块342与引线架上的凹部嵌接,因此凸块342的定位将易于实现。
在图138所示半导体元件310I中,芯片311的背面暴露在树脂封壳314之外。这种结构使得芯片311产生的热量易于扩散至半导体元件310I之外。图138所示结构也适用于图135、136A及136B所示的半导体元件。
图139A所示半导体元件310J中设有由粘接剂344粘在芯片311背面的散热元件345。散热元件345可增强元件的散热性能。
图139B所示半导体元件310K的散热元件345具有若干个散热片346。这将进一步改善散热性能。
图140半导体元件310L中设有与树脂封壳314底面齐平的绝缘元件347。该绝缘元件347可由绝缘胶带或粘结剂之类的材料构成。设置绝缘元件347是基于如下考虑由于芯片311与引线架320之间的间隙很小,因此模制树脂在树脂模制工序中将难以进入上述间隙中,从而无法实现合格的密封性能。如果事先在芯片311的元件成形表面上设置绝缘元件347,那么该绝缘元件347的防泄漏作用将相当于上述间隙中完全充有模制树脂的效果。绝缘元件347可在进行倒装式接线之前装在芯片311或引线架320上。
在图141A所示半导体元件310M中,非均质导电树脂348起着凸块342与金属膜315之间的电及机械连接作用。凸块342被置于芯片311的电极焊盘上。而在图141C中,凸块被置于金属膜315上。也可以采用电极焊盘上设置凸块342a且金属膜315上设置凸块342b的方案。各个凸块342、342a、342b均应由树脂348覆盖。
在树脂348受压时,其中的微导体(导电颗粒)将在凸块342与金属膜315之间结成一体,由此使线路接通。
图141B所示凸块342被置于引线架320的金属膜315侧面。而在图141C中,凸块342a和342b被分别置于芯片311电极焊盘和金属膜315上。
使用非均质导电树脂342可以防止相邻凸块之间发生短接,这种现象往往会在半导体元件被装上电路板时发生。
本发明并不仅限于已提出的几个特定实施例,在本发明的范围内还存在其它变化型及改进型。
权利要求
1.一种关于芯片由树脂封壳封装的元件的制作方法,该方法包括a)制作引线架(120),该引线架的基底(121)上设有含相应金属膜(113)的凹部;b)在引线架上安装芯片(111);c)设置连接部分(118,101,163,245),使之接通金属膜与上述芯片的电极焊盘;d)进行树脂的模制加工,使各个树脂封壳模制件分别覆盖相应的芯片及金属膜(金属膜由引线架支承);以及e)使树脂封壳模制件及树脂凸部上的金属膜一同从引线架上分离下来,该树脂凸部对应着上述凹部。
2.如权利要求1所述的方法,其特征在于上述工序(e)包括蚀刻并溶解引线架的工序。
3.如权利要求1所述的方法,其特征在于上述工序(e)包括以机械方法将引线架从树脂封壳模制件及金属膜上分离下来的工序。
4.如权利要求1所述的方法,还包括在树脂封壳模制件上设置胶带的工序,该工序排在上述工序(e)之前。
5.如权利要求1所述的方法,其特征在于上述工序(c)包括在金属膜上设置连接头的第一工序,以及将连线接在芯片电极焊盘和上述连接头上的第二工序,上述连接头及上述连线相当于上述连接部分。
6.如权利要求1所述的方法,其特征在于上述对树脂进行模制加工的工序(d)使各个树脂封壳模制件结为一体。
7.如权利要求1所述的方法,其特征在于上述对树脂进行模制加工的工序(d)使各个树脂封壳模制件相互分离。
全文摘要
一种元件,它包含以下部分芯片(111);封装芯片的树脂封壳(112,151,314),该树脂封壳的安装面上设有树脂凸部(117,154,318),树脂凸部上设有相应的金属膜(113,155,315)。芯片的电极焊盘与金属膜由连接部分(118,101,163,245,313,343,342)电连接,每个所述树脂凸部都被所述金属膜整体地覆盖。
文档编号H01L21/00GK1549317SQ20041004763
公开日2004年11月24日 申请日期1996年11月8日 优先权日1995年11月8日
发明者米田义之, 一, 辻和人, 治, 织茂政一, 司, 迫田英治, 正德, 野本隆司, 小野寺正德, 河西纯一 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1