液滴排出装置、图案的形成方法及半导体装置的制造方法

文档序号:6843905阅读:182来源:国知局
专利名称:液滴排出装置、图案的形成方法及半导体装置的制造方法
技术领域
本发明涉及一种用于半导体装置的图案形成的液滴排出装置。此外,涉及通过使用本发明的液滴排出装置制作的图案的形成方法及半导体装置的制造方法。
背景技术
以压电方式和热发泡方式为代表的按需喷墨式液滴排出技术、或者连续式液滴排出技术倍受瞩目。该液滴排出技术历来用于活字、图像的描绘,近年来开始尝试将该液滴排出技术应用于微细图案形成等半导体领域、DNA芯片制作等生物、医疗领域、微化学芯片制作等化学、医疗领域。
将液滴排出技术应用于半导体领域的优点可列举为易于进行大面积构图和高精细构图、可以实现半导体制作工序的简化、可以对材料有效利用等。
在将上述液滴排出法应用于半导体领域的图案形成时,要求高于活字或图像的描绘中所需要的液滴滴落精度。特别是在由通过非晶半导体膜形成的TFT(非晶硅TFT)或通过结晶半导体膜形成的TFT(多晶硅TFT)构成的图像显示装置中,图案大小的偏差或图案的位置精度将大大影响图像显示特性,并成为显示斑点或显示不良的原因。
针对上述问题,近年来,液滴排出装置自身的性能大大提高。即,通过使用光刻工序或聚焦离子束的半导体微细加工,制作高精度液滴排出装置,起因于装置的排出液滴的尺寸偏差或排出角度的偏差将变小。
另一方面,关于从液滴排出装置排出的液滴滴至被处理衬底上以后的位置控制,并没有找出充分的对策。在滴落的液滴相对于被处理衬底表面呈现拨液性的情况下,液滴与衬底的接触角大,液滴易于在衬底上滚动。相反当滴落的液滴相对于被处理衬底表面呈现亲液性,且液滴与衬底的接触角小时,滴落后的液滴易于在衬底上扩散,则对滴落后的液滴直径的控制较困难,固化后的液滴直径的偏差也很大。

发明内容
在本发明中提供一种能够对从液滴排出装置排出的液滴滴至衬底后的位置控制进行改善的图案制作方法。此外,还提供能够改善滴落后的液滴位置精度的液滴排出装置。而且,提供使用本发明的液滴排出装置的半导体装置的制造方法。
为了解决上述课题,在本发明中采取使用激光使从液滴排出装置排出至被处理衬底表面的液滴的滴落精度提高的以下单元。
作为第1单元,在液滴滴落至被处理衬底上的瞬间对液滴照射激光,在短时间内使液滴中的溶剂成分蒸发,促进液滴组成物(溶质)的固化。通过在滴落的液滴滚动或湿润扩散之前使固化结束,可以使滴落位置精度提高。较为理想的是通过在10-2Pa~104Pa左右的减压下进行一系列的液滴排出处理,从而加快固化且有效地排出溶剂成分。
作为第2单元,通过对被处理衬底表面照射激光,从而对照射部实施激光烧蚀加工,在被处理衬底上形成沟槽,使液滴排出至该沟槽内。通过使沟槽的宽度大于飞翔中的液滴直径以及滴落至被处理衬底以后的液滴的扩散直径,从而不易受到由飞翔角度、液滴排出装置的喷嘴的形状偏差引起的排出位置偏差的影响,能够将滴落后的液滴收纳至沟槽的内侧。即,能够在防止液滴在衬底上向沟槽外侧扩散的同时形成图案。
作为第3单元,通过对被处理衬底表面进行激光照射,在照射部产生化学变化或热变化,形成凹凸,进行提高与液滴之间的密接性的表面改质。此时,被处理衬底相对于所排出的液滴最好具有拨液性,可以把将要露出激光照射区域以外的液滴弹回来,并可以在防止液滴在衬底上扩散的同时形成图案。
作为第4单元,通过液滴排出装置向被处理衬底表面进行液滴的排出,液滴中的溶剂成分蒸发,在固化后进行激光的照射。溶质成分在通过激光照射变成溶融状态后,再次固化或再结晶,形成图案。利用多次液滴排出形成的点状图案的接触界面通过激光照射而液化,据此,点状的图案相连,能够形成连续的图案。
在此所说的图案包含栅布线、源布线、连接TFT与像素电极的布线、栅电极、以半导体材料为主要成分的活性层、有机发光层、抗蚀剂掩模、绝缘层等。
此外,激光并不仅限于由激光振荡器生成的相干光,即使是借助于由UV灯或卤素灯、闪光灯等发出的光,也可以通过与激光照射同样的方法,使液滴的滴落精度提高。
不仅限于第1单元,通过将处理环境置于10-2Pa~104Pa左右的减压下,能够加速固化,且有效地去除溶剂成分。此外也可以将第1~第3单元和第4单元并用来形成图案。而且,通过使用辊子使利用液滴排出单元形成的液滴的组成物(溶质)的图案平坦化,能够提高被处理物与液滴组成物的密接性。
此外,本发明包含以下构成。
本发明为一种液滴排出装置,其特征在于,具有排出液滴的单元;以及对从排出液滴的单元所排出的液滴进行改质的单元。所谓上述对液滴进行改质单元是使上述液滴的溶剂蒸发的单元,或者使液滴的溶质再结晶的单元。
此外,本发明是一种液滴排出装置,其特征在于,具有排出液滴的单元;以及对滴下上述液滴的被处理物的表面进行改质的单元。所谓上述对被处理物的表面进行改质单元是在上述被处理物上形成沟槽的单元,或者在上述衬底上形成凹凸的区域的单元。
作为上述排出液滴的单元,具有代表性的是使用压电元件或发热体排出液滴的单元,从排出口(喷嘴、喷头)排出液滴。此外,作为对液滴进行改质的单元及对滴下上述液滴的衬底表面进行改质的单元,可列举出照射激光的激光振荡器、发射强光的UV灯或卤素灯、闪光灯等。
上述激光振荡器可以使用气体激光振荡器、固体激光振荡器、金属激光振荡器、或半导体激光振荡器。此外,在上述激光振荡器与上述被处理物之间,可以使用调整从上述激光振荡器射出的激光的光束形状或光束路径的单元。而且,作为调整从上述激光振荡器射出的激光的光束形状或光束路径的单元的代表实例,有显微透镜阵列。
此外,也可以具有使排出液滴的单元与被处理物的相对位置变化的移动装置。而且,也可以具有控制上述液滴的滴落位置和从上述激光振荡器射出的激光的照射位置的控制装置。
此外,本发明是一种图案的形成方法,其特征在于从排出单元排出液滴,当上述液滴滴落至被处理面时,对上述液滴照射激光,使上述液滴的溶剂蒸发,形成图案。
此外,本发明是一种图案的形成方法,其特征在于对被处理面照射激光,当在上述被处理面形成沟槽后,从排出单元排出液滴,将液滴滴至上述沟槽,形成图案。
此外,本发明是一种图案的形成方法,其特征在于对被处理面照射激光,当在上述被处理面上形成凹凸区域后,从排出单元排出液滴,将液滴滴落至上述凹凸区域,形成图案。
此外,本发明是一种图案的形成方法,其特征在于从排出单元排出液滴,将上述液滴滴落至被处理面,当使上述液滴的溶剂蒸发后,照射激光使上述液滴的溶质再结晶,形成图案。
上述液滴可以在减压环境、或大气压环境下排出。此外,可以在形成上述图案后,将上述图案平坦化。而且,通过使滴落上述液滴的时间与对被处理面照射上述激光的时间同步,能够进一步提高图案的位置精度。
此外,本发明是使用上述图案形成方法来制造半导体装置的半导体装置的制造方法。而且,在此情况下,作为液滴,可使用具有导电性材料、抗蚀剂材料、发光材料或半导体纳米粒子的液体、刻蚀溶液等。
本发明包含使用上述液滴排出装置制作的半导体装置及其制造方法。此外,也可应用到半导体领域以外,即可适宜地利用到生物、科学、医疗领域。
通过使用激光的液滴排出法可以使图案精度有飞跃性的提高,结果不必使用光刻工序便能够直接描绘设计数据。不需要光掩模的设计及制造,此外简化制造工序,降低了生产成本,而且提高了产品的成品率。
此外,材料的利用效率大幅度提高,废液处理量减少,实现了有益于环境的工艺。
进而,与丝网印刷相比易于向大型衬底扩展,可以降低产品的单价,能够维持高精细的图案形成,并且能够高效利用材料来形成图案。


图1是示意性地表示使本发明的滴落精度提高的液滴排出方法的图。
图2是示意性地表示使本发明的滴落精度提高的液滴排出方法的图。
图3是示意性地表示使本发明的滴落精度提高的液滴排出方法的图。
图4是示意性地表示使本发明的滴落精度提高的液滴排出方法的图。
图5是表示在实施本发明的过程中所使用的液滴排出装置的一例的图。
图6是表示在实施本发明的过程中所使用的液滴排出装置的一例的图。
图7(A)~图7(B)是表示在实施本发明的过程中所使用的液滴排出装置的一例的图。
图8(A)~图8(D)是表示本发明的半导体装置的制作方法的一例的图。
图9(A)~图9(H)是表示使用本发明的电子设备的一例的图。
图10(A)~图10(C)是表示向接触孔填充液滴的方法的一例的图。
图11(A)~图11(C)是表示向接触孔填充液滴的方法的一例的图。
图12(A)~图12(C)是表示向接触孔填充液滴的方法的一例的图。
图13是表示液滴排出装置控制单元的构成的一例的图。
图14(A)~图14(C)是表示本发明的半导体装置的制作方法的一例的图。
图15(A)~图15(C)是表示本发明的半导体装置的制作方法的一例的图。
具体实施例方式
利用附图对本发明的实施方式进行详细说明。但是,本发明并不限于以下的说明,只要是本领域技术人员就能很容易理解可以不脱离本发明的宗旨及其范围而对其方式及具体内容进行各种变更。因此,本发明并不限于如下所示的实施方式的记述内容来进行解释。
(实施方式1)使用图1~4,对使用通过进行激光照射提高图案精度的液滴排出装置制造半导体装置的方法进行说明。图1示意性地表示了从正侧面观察被处理衬底101与液滴排出部的顶端102与液滴103的情况下的位置关系。液滴排出部由压电元件、液滴室、排出口(喷嘴、喷头)等构成,通过向压电元件施加规定的脉冲电压,使压电元件变形,向液滴室施加压力,使液滴从排出口排出。
排出的液滴使用将从钽(Ta)、钨(W)、钛(Ti)、钼(Mo)、铝(Al)、铜(Cu)、铬(Cr)、铌(Nb)中选择的元素、或者从以上述元素为主要成分的合金材料或化合物材料、AgPdCu合金等中适当选择出的导电性材料溶解或分散于溶剂中的液体。在溶剂中,使用醋酸丁基、醋酸乙基等的酯类,异丙醇、乙醇等的醇类,甲基乙基酮、丙酮等的有机溶剂等。溶剂的浓度以导电性材料的种类等适当决定即可。此外也可以使用抗蚀剂材料、发光材料等。
液滴排出部的喷嘴直径为数μm~数十μm,其依赖于液滴的粘度、表面张力、排出速度等,但是排出的液滴的直径还是基本相同的。一次排出的组成物的量为1~100pl,粘度在100cp以下,构成液滴的粒子的直径在0.1μm以下较为理想。这是为了防止发生干燥的情况,也是因为在粘度过高时,不能从排出口顺畅地排出组成物。结合所使用的溶剂、用途适当调节组成物的粘度、表面张力、干燥速度等。其中在形成布线等微细图案的情况下,需要千万亿分之一升等级或比其更小的液滴,需要使用对应的液滴排出装置。
此外虽然未作图示,但液滴的温度控制很重要,通过内置加热器进行液滴排出装置或衬底温度的控制。较为理想的是从液滴排出装置排出的组成物在衬底上连续滴下并形成线状或条纹状。但是,例如也可以按每个点等规定的各位置进行滴液。
从液滴排出部推出的液滴104在液滴排出部的顶端102与被处理衬底101之间的空间内飞翔后,滴落至被处理衬底101,形成液滴105。在液滴滴落的同时,向液滴105照射激光107,进行液滴的组成物(溶质)的固化,形成被固化的图案106。由于液滴的组成物在滴落时固化,因此不会在被处理衬底上移动或扩散。
接着,使用图2、图3对在向被处理衬底照射激光后进行液滴排出的方法进行说明。首先向被处理衬底201、301照射激光207、307,进行被处理衬底的表面处理。在图2的被处理衬底206上通过激光烧蚀法,在被处理衬底201的表面形成沟槽208。在图3的被处理衬底306中通过激光照射在被处理衬底306上形成微细的凹凸308。接着从液滴排出部顶端202、302排出液滴203、303,使其滴落至处理衬底上的沟槽208或凹凸308。通过将从液滴排出部推出的液滴204、304的直径设为沟槽208或凹凸区域308的宽度以下,液滴就精度准确地滴至激光照射的区域,液滴的组成物(溶质)固化,形成图案205、305。
接着,使用图4对在使用液滴排出装置向被处理衬底排出液滴并形成图案以后向图案照射激光的方法进行说明。从位于被处理衬底401上的液滴排出部顶端402排出液滴403,使被推出的液滴404滴落至被处理衬底401上,形成图案405。在图案405的形成中亦可使用图1~图3中所说明的方法。进而,通过向图案405照射激光407,使其溶融,就能够获得再固化后的图案406。通过本发明的液滴排出装置进行多次液滴排出并使滴落的液滴的组成物(溶质)重叠,由此能够形成线状图案或大面积的图案,而通过该激光照射处理,就能够使各图案(液滴的组成物)的界面物理性质的连续性提高。
在图1~4中,激光107、207、307、407使用柱面透镜或显微透镜阵列,设定线状、或点状等规定的光束形状,并设成使滴落的液滴全部被照射到的大小。此外通过利用光学多面体或电流镜等的机械扫描方式,也能够控制激光的照射位置,并使照射时间与液滴排出时间同步。照射位置也可以通过移动被处理衬底来进行控制。为了使激光通过被处理衬底与液滴排出部顶端的狭窄区域,使激光从被处理衬底上方,以与衬底面呈低角度的倾斜方向入射。在被处理衬底由玻璃等可以透过激光的材料构成的情况下,也可以从被处理衬底背面进行入射。
激光107、207、307、407可以使用Ar激光器、Kr激光器、受激准分子激光器、CO2激光器、YAG激光器、Y2O3激光器、YVO4激光器、YLE激光器、YalO3激光器、玻璃激光器、红宝石激光器、蓝宝石激光器或半导体激光器等。可以对应液滴的组成物(溶质)、溶剂的种类选择最适合的激光器。
本发明的实施方式中处理衬底的尺寸可以使用600mm×720mm、680mm×880mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mm、1500mm×1800mm、1800mm×2000mm、2000mm×2100mm、2200mm×2600mm或2600mm×3100mm这样的大面积衬底。
通过使用这种大型衬底,能够削减制造成本。作为可以使用的衬底,有以コ一ニング公司的#7059玻璃或#1737玻璃等为代表的钡硼酸玻璃或铝硼硅酸玻璃等的玻璃衬底。进而作为其他衬底,也可以使用石英、半导体、塑料、塑料膜、金属、玻璃环氧树脂、陶瓷等各种透光性衬底。此外,也可以使用以塑料衬底为代表的树脂衬底、以及N型或P型单晶硅衬底、GaAs衬底、InP衬底、GaN衬底、或ZnSe衬底等的半导体晶片、SOI(Silicon On Insulator绝缘体硅)衬底等、金属板等的导电性衬底。
(实施方式2)使用图5至图7,对为了实施上述实施方式而使用的液滴排出装置的一例进行说明。
图5、图6中所示的液滴排出装置,在装置内具有液滴排出单元501、601,通过由此排出溶液,从而在衬底502、602上形成所希望的图案。虽未作图示,但在液滴排出装置中内置有用于进行液滴排出的喷嘴驱动电源和喷嘴加热器,并具有用于使液滴排出装置移动的移动单元。在本液滴排出装置中,作为衬底502、602,可以适用于实施方式1中所记载的衬底。
在图5、图6中,衬底502、602从搬入口503、603搬入壳体504、604内部。衬底502、602设置于具有移动单元的搬送台上,能够移动至X-Y平面内的任意地点。液滴排出处理在衬底502、602通过搬送台的移动到达液滴排出单元501、601所等待的规定位置时开始。液滴排出处理通过液滴排出单元501、601与衬底502、602的相对移动和液滴排出的规定时间来达成,通过调节各自的移动速度和从液滴排出单元501、601排出液滴的周期,从而能够在衬底502、602上描绘出所希望的图案。特别是,由于液滴排出处理要求高精度,因此最好是在液滴排出时使搬送台的移动停止,仅使控制性高的液滴排出装置501、601进行扫描。
在上述壳体504、604中设置石英窗506、606,使通过设置于壳体外部的激光振荡器507、607振荡出的激光从石英窗506、606入射。其中,壳体或石英窗并不是必要的。在激光的光路中设置有光闸508、608、反射镜509、609、以及由柱面透镜等构成的光学系统510、610。在图5中激光从衬底502的斜上方入射。液滴排出装置501的液滴排出部顶端与衬底502的间隔为数毫米左右,因此所入射的激光相对于衬底502的法线方向呈45°以上的角度较为理想。在图6中示意性地表示了从衬底602的下面照射激光的情况,其他的构成与图5相同。该构成可以适用于衬底602为可透过激光的材质的情况。
而且,为了加速已滴落的液滴的干燥并除去液滴的溶剂成分,最好是在壳体504、604的排气口505、605设置减压装置511、611进行真空排气,但也可以在大气压下进行。此外虽未作图示,但也可以按照需要设置用于与衬底上的图案进行对位的传感器、或对衬底进行加热的单元、以及对温度、压力等各种物理特性值进行测定的单元。此外这些单元也可以通过设置于壳体504、604外部的控制单元进行统一控制。而且如果将控制单元通过LAN电缆、无线LAN、光纤等连接至生产管理系统等,便可以从外部对工序进行统一管理,带来生产性的提高。
在图7(A)中对使用半导体激光振荡器707的液滴排出装置进行说明。其特征在于具有壳体704、搬入口703、排气口705、减压装置711、液滴排出单元701,并使用半导体激光振荡器707。半导体激光振荡器由多个半导体激光阵列构成,最好与液滴排出单元701的各喷嘴相对应,而且半导体激光振荡器707与液滴排出单元701的液滴排出部也可以一体形成。此外虽未作图示,但可以在半导体激光振荡器707与衬底702之间设置显微透镜阵列等的光学系统,调整光束形状及光束的路径。通过以上的构成以规定的时间对从液滴排出单元701排出的液滴进行激光半导体激光束照射。
接着使用图7(B)表示半导体激光振荡器与液滴排出装置的一例。作为激光振荡器,设置面发光半导体激光振荡器715。面发光激光器能够向垂直于半导体衬底的方向取出光,可以使半导体激光器元件集成化。在图中仅示意性地记载了一个面发光半导体激光器元件,但实际是将该半导体激光器元件连续配置向纸面内侧方向,形成半导体激光阵列。另一方面,液滴排出部701由溶液室716、溶液供给口717、压电元件718、振动板719、喷嘴720组成,能够通过对压电元件施加规定的脉冲电压,从而使溶液从喷嘴720排出。此外施加于压电元件的电压需要选择不会产生伴线的最适合的波形。
半导体激光器元件及液滴排出部的任意一方都可以利用半导体微细加工形成,能够以微细的间隔对多个半导体激光元件及液滴排出部进行集成,并能够使一个半导体激光器元件与一个喷嘴相对应。或调整振荡器的设置角度,或通过镜子改变光束方向,对滴落至衬底702表面的液滴进行半导体激光照射。也可以通过设置显微透镜阵列,来进行光束调整。此外,也可设置对半导体激光器元件进行冷却的单元。
在本发明中以使用压电元件的所谓压电方式进行液滴的排出,而根据溶液材料的不同,也可以使用使发热体发热产生气泡来推出溶液的所谓热喷墨方式。这种情况下,采用将压电元件置换为发热体的结构。此外为了排出液滴,溶液与溶液室流路、预备溶液室、流体阻力部、加压室、溶液排出口(喷嘴、喷头)的可湿性很重要。因此使用于调整与材质之间的可湿性的碳膜、树脂膜等形成各个流路。
通过上述的装置构成,就可以使用排出液滴的单元在被处理衬底上高精度地形成图案。作为液滴排出方式,有使液滴连续排出并形成连续的线状图案的所谓顺序方式和排出点状溶液的所谓按需方式。在本发明的装置构成中,表示了按需方式,也可以使用顺序方式(未作图示)下的溶液排出单元。
(实施例)[实施例1]关于实施例1,使用图8(A)~(D)进行详细说明。不过,本发明并不限于以下的说明,只要是本领域技术人员就很容易理解可以不脱离本发明的宗旨及其范围而对其具体内容进行各种变更。因此,本发明并不限于如下所示的实施例的记述内容来进行解释。在此,使用本发明,对在同一衬底上形成驱动用TFT与开关用TFT及电容的制作工序进行说明。
作为衬底800,可以使用实施方式1中所记载的衬底。在本实施例中,使用玻璃衬底(コ一ニング公司制,#7059)。接着在衬底800上形成由绝缘膜制成的基底膜801。基底膜801采用单层或层叠结构的任意一种均可,在本实施例中,作为2层构造,使用溅射法,作为第1层,形成50nm厚的氮化氧化硅膜,作为第2层形成50nm厚的氧化氮化硅膜,其后通过CMP法等方法将表面平坦化。
接着,在基底膜801上形成半导体层。半导体层首先通过公知的方法(溅射法、LPCVD法、等离子体CVD法)以25~80nm的厚度形成非晶硅膜,接着使用公知的结晶方法(激光结晶法、使用RTA或炉内退火炉的热结晶法)使上述半导体膜结晶。
此外非晶硅膜也可以利用使用促进结晶的金属元素的热结晶法进行结晶。使含有Ni的溶液保持于非晶硅膜上,在该非晶硅膜上进行脱氢(500℃、一个小时)后,进行热结晶(550℃、四个小时)并形成结晶硅膜。而且,在通过激光结晶法制作结晶半导体膜情况下的激光器,使用连续振荡或脉冲振荡的气体激光器或固体激光器即可。作为前者的气体激光器,可举出受激准分子激光器、YAG激光器等,作为后者的固体激光器,可举出使用了掺杂有Cr、Nd等的YAG、YVO4等的结晶的激光器等。而且在非晶硅膜结晶时,为了获得大粒径的结晶,最好使用可以连续振荡的固体激光器,并应用基本波的第2~4高次谐波。在使用上述激光器的情况下,通过光学系统将从激光振荡器放射出的激光束会聚成线状,照射到半导体膜上较好。
在使用促进结晶的金属元素进行非晶硅膜的结晶的情况下,上述金属元素残留于结晶硅膜中。因此,在上述结晶硅膜上形成50~100nm的非晶硅膜,进行加热处理(使用RTA法、炉内退火炉的热退火等),使上述金属元素向该非晶硅膜中扩散,上述非晶硅膜在加热处理后进行刻蚀除去。结果,能够将上述结晶硅膜中的金属元素的含有量降低或去除。
为了控制TFT的阈值,进行微量杂质(硼)的掺杂(沟道掺杂)。
接着,将所获得的结晶硅膜构图为所希望的形状,形成岛状的半导体层802~804。半导体层802~804可以通过依据本发明的液滴排出方法来形成。即作为溶液,使用抗蚀剂,在通过激光照射进行滴落抗蚀剂的固化的同时,形成抗蚀剂图案。接着将该抗蚀剂图案作为掩模通过干法刻蚀形成半导体层802~804。而且作为形成上述半导体层的半导体膜,亦可使用非晶半导体膜、微结晶半导体膜、结晶半导体膜或具有非晶硅锗等非晶体构造的化合物半导体膜等。
接着,形成覆盖半导体层802~804的栅绝缘膜805。栅绝缘膜805使用等离子体CVD法或溅射法,膜厚设为40~150nm并以含有硅的绝缘膜来形成。在本实施例中,作为栅绝缘膜805通过等离子体CVD法形成厚度115nm的氧化氮化硅膜。
接下来,通过激光照射和液滴排出方法,在减压或真空中形成第1导电层(栅布线、栅电极、电容电极)806~809。在本实施例中,排出使用界面活性剂使Al的纳米微粒子分散至有机溶剂中的液体,形成栅图案。特别是,由于栅电极的图案精度较大地左右着晶体管特性,因此并用激光照射的情况在提高有源矩阵型的显示装置的性能上是有效的。激光照射并不用于所有的图案,例如仅用于特别重要的Si图案上的栅电极部分也是有效的。
此外,作为从喷嘴排出的组成物,也可使用使银(Ag)、金(Au)、铂(Pt)以10nm以下的颗粒直径分散的超微粒子(纳米金属粒子)。这样,使用将颗粒直径微细的粒子分散或溶解于溶剂的组成物时,能够解决喷嘴的喷孔阻塞的问题。而且,在使用液滴排出方式的本发明中,组成物的构成材料的颗粒直径需要小于喷嘴的颗粒直径。此外,也可使用聚乙烯二氧噻吩和聚对苯乙烯磺酸(PEDT/PSS)水溶液等的导电性聚合物(导电性高分子)。
此外,由于当将银或铜等低阻抗金属作为布线材料使用时,能够实现布线阻抗的低阻抗化,因此应用于大型衬底的情况是比较理想的。而且,由于这些金属材料很难通过通常的干法刻蚀法进行加工,因此通过液滴排出方法进行直接构图是极其有效的。但是,例如铜等的情况下,为了使晶体管的电特性不受到不良影响,最好设置防止扩散的屏障性的导电膜。通过屏障性的导电膜,能够在铜不向具有晶体管的半导体扩散的情况下进行布线。作为该屏障性的导电膜,可以使用从氮化钽(TaN)、氮化钛(TiN)或氮化钨(WN)中选择出的一种或多种的层叠膜。此外使用密度大且非常致密的氮化硅膜是非常有效的。此外,由于铜容易氧化,最好与抗氧化剂等并用。
随后,通过在形成第1导电层的衬底上在常压或减压、或真空中,以150~300℃的范围实施加热处理,使其溶剂挥发,使其组成物密度提高,并使阻抗值降低。但是,从液滴排出单元排出的组成物的溶剂适合在滴落至衬底以后挥发。如本实施例这样在真空下进行排出的情况,与通常的大气压下的情况相比,其特征在于蒸发速度快,特别是在使用甲苯等挥发性高的溶剂时,将组成物滴至衬底后,瞬间挥发。在这种情况下,加热处理的工序删除亦可。但是,组成物的溶剂并没有特别限定,即使是使用在滴下后挥发的溶剂的情况,通过实施加热处理,从而使其组成物密度提高,并达到所希望的阻抗值亦可。此外该加热处理可以在通过液滴排出方法形成各图案时分别进行,也可在任意的各工序中进行,也可以在所有的工序结束以后统一进行。
加热处理使用使用卤素等的灯作为加热源、直接对衬底进行高速加热的灯退火装置,或进行激光照射的激光照射装置。两者均能够通过使加热源进行扫描,仅在所希望的地点实施加热处理。作为其他方法,也可以使用设定为规定温度的炉内退火。但是,在使用灯的情况下,较为理想的是不会破坏进行加热处理的薄膜的组成而只能进行加热的波长的光,例如比400nm波长更长的光,即红外光以上的波长的光。从处理表面使用远红外线(代表波长为4~25μm)较好。此外,使用激光的情况下,衬底中光束点的形状最好是与滴落的液滴的队列对应,以与其列或行的长度相同的方式形成线状。这样,能够通过一次扫描结束激光照射。(图8(A))接着,如图8(B)所示,将栅电极807~809作为掩模,进行向半导体层802~804添加付予N型或P型的杂质元素的掺杂处理。在本实施例中,向半导体层802及804添加付予N型的杂质元素,向半导体层803添加付予P型的杂质元素,形成杂质区域。
其后,首先形成覆盖整个面的第1层间绝缘膜815。该第1层间绝缘膜815使用等离子体CVD法或溅射法,将膜厚设为40~150nm,通过含有硅的绝缘膜形成。而且,同样形成覆盖整个面的第2层间绝缘膜816。作为第2层间绝缘膜816,用通过CVD法形成的氧化硅膜、SOG(Spin On Glass旋涂玻璃)法涂敷的氧化硅膜、丙烯等有机绝缘膜或非感光性有机绝缘膜以0.7~5μm的厚度来形成。而且第2层间绝缘膜816,在缓和由形成于衬底800上的TFT产生的凹凸、实现平坦化方面的意义重大,因此平坦性较好的膜比较理想。而且,以0.1μm的厚度形成作为第3层间绝缘膜817的氮化硅膜。
随后,通过与上述情况同样地将激光照射和液滴排出并用,来形成用于形成接触孔818~824的抗蚀剂图案。接着,将该抗蚀剂图案作为掩模,通过各向异性干法刻蚀法形成接触孔818~824。该接触孔818~824也可以通过本发明的激光照射来形成。该情况下,抗蚀剂图案则一概不需要。此外,作为排出的溶液,如使用HF类等的酸类液滴,也可以形成使用了液滴的排出单元的接触孔。
接着,如图8(C)所示,通过激光照射与液滴排出的并用,形成第2导电层(源布线、漏布线)825~830,使其延伸至上述接触孔818~824的底部。在本实施例中,作为排出的组成物,使用用界面活性剂将银的纳米微粒子分散至有机溶剂中的溶液。
下面,如图8(D)所示,进行加热处理。通过到目前为止的工序,能够在具有绝缘表面的衬底800上形成晶体管。
接着,形成由透明导电体构成的像素电极,使其与第2导电层825全面电连接(未作图示)。用于像素电极的材料,作为一例,可列举出氧化铟与氧化锡的化合物(ITO)、氧化铟与氧化锌的化合物、氧化锌、氧化锡、氧化铟、氮化钛等。
以上,可以制作出由源布线(未作图示)、通过像素部的开关TFT1006及电容元件1009形成的图像部、通过驱动用TFT1007、1008形成的驱动用回路、以及端子部(未作图示)构成的有源矩阵衬底。而且,如果有需要,可将有源矩阵衬底或对象衬底分断成所希望的形状。此后,与形成了共用电极、滤色器、黑底等的对置衬底相贴合。然后以规定的方法注入液晶,完成液晶显示装置。向通过以上的工序所获得的液晶模块设置背景灯、导光板,用外罩覆盖,完成有源矩阵型液晶显示装置(透过型)。而且,外罩与液晶模块使用粘结剂或有机树脂固定。此外,由于是透过型,所以偏振片贴附于有源矩阵衬底与对置衬底两者上。
此外,本实施例表示的是透过型的例子,并无特殊限定,也可以制作反射型或半透过型的液晶显示装置。在获得反射型的液晶显示装置的情况下,作为图像电极使用光反射率高的金属膜、有代表性的如以铝或银为主要成分的材料膜、或这些的层叠膜等即可。
以上,对有源矩阵型的液晶显示装置进行了说明,对于有源矩阵型EL(Electro Luminescence电致发光)显示装置的情况也同样可以适用。此外,关于本发明例中列举出的材料、形成方法,也可以根据本发明的主要内容适当选择使用。
接下来,作为使用本发明的电子设备,可以列举出摄像机、数码照相机、护目镜型显示装置(头部佩戴显示装置)、导航系统、音响再生装置(汽车音响、组合音响等)、笔记本式个人电脑、游戏机、便携式信息终端(移动计算机、便携式电话、便携式游戏机或电子书籍等)、具备记录媒体的图像再生装置(具体来讲,其为可以再生数字化视频光盘(DVD)等的记录媒体并具备能显示其图像的显示器的装置)等。这些电子设备的具体例示于图9。
图9(A)为显示装置,其包含壳体9001、支撑座9002、显示部9003、扬声器部9004、视频输入端子9005等。本发明能够用于构成显示部9003的电路中。此外,如图9(A)所示的显示装置也通过本发明来完成。而且,显示装置包括个人电脑用、20~80英寸的电视广播接收用、广告显示用等的所有信息显示用显示装置。
图9(B)为数码照相机,其包含主体9101、显示部9102、图像接收部9103、操作键9104、外部连接端口9105、快门9106等。本发明能够用于构成显示部9102的电路中。此外,如图9(B)所示的数码照相机也通过本发明来完成。
图9(C)为笔记本式个人电脑,其包含主体9201、壳体9202、显示部9203、键盘9204、外部连接端口9205、指针鼠标器9206等。本发明能够用于构成显示部9203的电路中。此外,如图9(C)所示的笔记本式个人电脑也通过本发明来完成。
图9(D)为移动计算机,其包含主体9301、显示部9302、开关9303、操作键9304、红外线端口9305等。本发明能够用于构成显示部9302的电路中。此外,如图9(D)所示的移动计算机也通过本发明来完成。
图9(E)为具备记录媒体的便携式图像再生装置(具体言之,即DVD再生装置),其包含主体9401、壳体9402、显示部A9403、显示部B9404、记录媒体(DVD等)读入部9405、操作键9406、扬声器部9407等。显示部A9403主要显示图像信息,显示部B9404主要显示文字信息,本发明能够用于构成显示部A9403、显示部B9404的电路中。而且,在具备记录媒体的图像再生装置中还包含家庭用游戏机等。此外,如图9(E)所示的DVD再生装置也通过本发明来完成。
图9(F)为护目镜型显示器(头部佩戴显示器),其包含主体9501、显示部9502、臂部9503等。本发明能够用于构成显示部9502的电路中。此外,如图9(F)所示的护目镜型显示器也通过本发明来完成。
图9(G)为摄像机,其包含主体9601、显示部9602、壳体9603、外部连接端口9604、遥控信号接收部9605、图像接收部9606、电池9607、声音输入部9608、操作键9609、眼睛接触部9610等。本发明能够用于构成显示部9602的电路中。此外,如图9(G)所示的摄像机也通过本发明来完成。
图9(H)为便携式电话,其包含主体9701、壳体9702、显示部9703、声音输入部9704、声音输出部9705、操作键9706、外部连接端口9707、天线9708等。本发明能够用于构成显示部9703的电路中。而且,显示部9703能够通过在黑色背景上显示白色的文字来抑制便携式电话的电流消耗。此外,如图9(H)所示的便携式电话也通过本发明来完成。
如上,本发明的适用范围极其广泛,可以应用到所有领域的电子设备中。此外,在此所示的电子设备也可以使用本发明中所示的任何一种构成的半导体装置。
本实施例使用图10对使用液滴排出法向接触孔(开孔部)填充液滴组成物的方法进行说明。
图10(A)中,在于衬底3000上形成半导体3001并在该半导体3001上形成绝缘体3002后,在绝缘体3002上形成接触孔3003。在此,作为接触孔的形成方法,使用液滴排出法。即,通过从喷嘴排出湿法刻蚀溶液,对任意区域的绝缘膜进行刻蚀,形成接触孔3003。
接下来,如图10(B)所示,使喷嘴3004移动至接触孔3003的上方,向该接触孔3003连续排出液滴,以液滴填充该接触孔3003。
接着,如图10(C)所示,在对喷嘴3003的位置重置以后,可以通过按照位置A、位置B、位置C的顺序移动喷嘴,并有选择地排出液滴,使液滴填充至接触孔3003中。通过将如实施方式1所示的激光照射工序、及实施方式2所示的液滴排出装置适应于本实施例,能够形成在接触孔内填充有液滴组成物的导电体3005。在这种方法中,喷嘴3004将对同一地点进行多次扫描。通过以上的工序,使用液滴排出法,能够使接触孔的形成和布线的形成连续进行。
此外,本实施例还能够适应于实施例1及实施例2。
在本实施例中,使用图11(A)~(C),对通过与上述不同的扫描方法向接触孔(开孔部)填充液滴组成物的方法进行说明。
与实施例3相同,形成如图11(A)的接触孔。此外,图11(A)相当于图10(A)。
接着,如图11(B)所示,按照位置A、位置B、位置C依次移动喷嘴3004,并仅在形成布线的区域有选择地排出液滴,形成导电体3006。
接下来,如图11(C)所示,使喷嘴3004移动至接触孔3003的上方,向该接触孔3003连续排出液滴。
结果,能够使液滴填充至接触孔3003中。通过将如实施方式1所示的激光照射工序、及实施方式2所示的液滴排出装置适应于本实施例,能够形成在接触孔内填充有液滴组成物的导电体3007。在这种方法中,喷嘴3004对同一地点进行多次扫描。通过以上的工序,使用液滴排出法,能够使接触孔的形成和布线的形成连续进行。
此外,本实施例还能够适应于实施例1及实施例2。
接着,使用图12(A)~(C),对通过与上述不同的扫描方法向接触孔(开孔部)填充液滴组成物的方法进行说明。
与实施例3相同,形成如图12(A)的接触孔。此外,图12(A)的衬底、绝缘膜、以及接触孔相当于图10(A)。
在本实施例中,沿箭头方向移动喷嘴3004,有选择地排出液滴。
接着,如图12(B)所示,当喷嘴3004到达接触孔3003的上方后,连续排出液滴,以液滴组成物填充该接触孔。
结果,如图12(C)所示,能够使液滴组成物填充至接触孔3003中。通过将如实施方式1所示的激光照射工序、及实施方式2所示的液滴排出装置适应于本实施例,能够形成在接触孔内填充有液滴组成物的导电体3008。在这种方法中,喷嘴3004并不对同一地点进行多次扫描,而是在一个方向进行扫描即可。通过以上的工序,使用液滴排出法,能够使接触孔的形成和布线的形成连续进行。
此外,本实施例还能够适应于实施例1及实施例2。
使用图13,对使用液滴排出法制作输入个人电脑等的电路布线的系统进行说明。
作为成为基干的构成要素,可列举出具有CPU3100、易失性存储器3101、非易失性存储器3102及键盘或操作键等输入单元3103、液滴排出单元3104的液滴排出装置。如对其工作进行简单地说明,即在通过输入单元3103输入电路布线的数据后,该数据经由CPU3100记录至易失性存储器3101或非易失性存储器3102。然后,以此数据为基础,通过液滴排出装置3104有选择地排出液滴,能够形成布线。
此外,本实施例还能够适应于实施例1至实施例5。
通过上述构成,不需要以曝光为目的的掩模,能够大幅度地减少曝光、显影等工序。结果,生产量提高,能够大幅度地提高生产性。此外,本构成也可以用于对布线的断线处、或布线与电极间的电连接不良处等进行修理的目的。此情况下,较为理想的是例如向个人计算机等输入修理位置,使液滴从喷嘴排出至该位置。此外,即使对于至少一条边超过1m大小的大型衬底,也能够很简单地形成布线,进而在所希望的位置仅涂敷所需数量的材料即可,因此无用的材料变得很少,从而实现材料利用率的提高、制作费用的减少。
在本实施例中,并不是对实施例1中所示的正交错型TFT进行说明,而是对逆交错型TFT及使用该种TFT的有源矩阵型EL显示装置的制造方法进行说明。
作为衬底2000,可以使用实施方式1中所记载的衬底。在本实施例中,使用玻璃衬底(コ一ニング公司制造,#7059)。
接着,在衬底2000上,通过激光照射和液滴排出方法,在减压或者真空中形成第1导电层(栅布线、栅电极、电容电极)2001、2002(图14(A))。在本实施例中,排出使用界面活性剂将A1的纳米微粒子分散至有机溶剂中的液体,形成栅图案。特别是,由于栅电极的图案精度较大地左右着晶体管特性,因此并用激光照射的情况,在提高有源矩阵型的显示器的性能上是有效的。激光照射并不用于所有的图案,例如仅用于特别重要的栅电极部分也是有效的。
此外,作为从喷嘴排出的组成物,也可使用使银(Ag)、金(Au)、铂(Pt)以10nm以下的颗粒直径分散的超微粒子(纳米金属粒子)。这样,使用将颗粒直径微细的粒子分散或溶解于溶剂的组成物时,能够解决喷嘴的喷孔阻塞的问题。而且,在使用液滴排出方式的本发明中,组成物的构成材料的颗粒直径需要小于喷嘴的颗粒直径。此外,也可使用聚乙烯二氧噻吩和聚对苯乙烯磺酸(PEDT/PSS)水溶液等的导电性聚合物(导电性高分子)。
此外,由于当将银或铜等低阻抗金属作为布线材料使用时,能够实现布线阻抗的低阻抗化,因此应用于大型衬底的情况是比较理想的。而且,由于这些金属材料很难通过通常的干法刻蚀法进行加工,因此通过液滴排出方法进行直接构图是极其有效的。但是,例如铜等的情况下,为了使晶体管的电特性不受到不良影响,最好设置防止扩散的屏障性的导电膜。通过屏障性的导电膜,能够在铜不向具有晶体管的半导体扩散的情况下形成布线。作为该屏障性的导电膜,可以使用从氮化钽(TaN)、氮化钛(TiN)或氮化钨(WN)中选择出的一种或多种的层叠层。此外使用密度大且非常致密的氮化硅膜是非常有效的。此外,由于铜容易氧化,最好与抗氧化剂等并用。
随后,通过在形成第1导电层的衬底上在常压或减压或真空中,以150~300℃的范围实施加热处理,使溶剂挥发,使其组成物密度提高,并使阻抗值降低。但是,从液滴排出装置排出的组成物的溶剂适合在滴落至衬底以后挥发。如本实施例这样在真空下进行排出的情况,与通常的大气压下的情况相比,其特征在于蒸发速度快,特别是在使用甲苯等挥发性高的溶剂时,将组成物滴至衬底后,瞬间挥发。在这种情况下,加热处理的工序删除亦可。但是,组成物的溶剂并没有特别限定,即使是使用在滴下后挥发的溶剂的情况,通过实施加热处理,使其组成物密度提高,并达到所希望的阻抗值亦可。此外该加热处理可以在通过液滴排出方法形成各图案时分别进行,也可在任意的各工序中进行,也可以在所有的工序结束以后统一进行。
加热处理使用使用卤素等的灯作为加热源、直接对衬底进行高速加热的灯退火装置,或进行激光照射的激光照射装置。两者均能够通过使加热源进行扫描,仅在所希望的地点实施加热处理。作为其他方法,也可以使用设定为规定温度的炉内退火。但是,在使用灯的情况下,较为理想的是不会破坏进行加热处理的薄膜的组成而只能进行加热的波长的光,例如比400nm波长更长的光,即红外光以上的波长的光。从处理表面使用远红外线(代表波长为4~25μm)较好。此外,使用激光的情况下,衬底中光束点的形状最好是以与其列或行的长度相同的方式形成线状。这样,能够通过一次扫描结束激光照射。
接着,如图14(B)所示,形成覆盖第1导电层2001、2002的栅绝缘膜2003。栅绝缘膜2003可以使用例如氧化硅、氮化硅或氮化氧化硅等的绝缘膜。栅绝缘膜2003可以使用单层的绝缘膜,也可以将多个绝缘膜层叠起来。在本实施中,使用氮化硅、氧化硅、氮化硅依次层叠的绝缘膜作为栅绝缘膜2003。此外成膜方法可以使用等离子体CVD法或溅射法等。为了形成可以通过低成膜温度抑制栅极漏电流的细密的绝缘膜,使反应气体包含氩气等稀有气体元素,并混入所形成的绝缘膜中即可。此外也可以将氮化铝作为栅绝缘膜2003使用。氮化铝的热传导率比较高,能够使由TFT产生的热量有效地发散。
接着,形成第1半导体膜2004。第1半导体膜2004可以通过非晶(amorphous)半导体或不完全结晶半导体(SAS)形成。此外也可使用多晶半导体膜。在本实施方式中,使用不完全结晶半导体作为第1半导体膜2004。不完全结晶半导体其结晶性高于非晶体半导体并能获得高移动率,而且与多晶半导体不同,其在不增加用于使其结晶化的工序的情况下也能够形成。
非晶半导体可以通过使硅化物气体辉光放电分解来获得。作为代表性的硅化物气体,可举出SiH4、Si2H6。也可将该硅化物气体用氢气、氢气与氮气稀释后使用。
此外,SAS也可以通过使硅化物气体辉光放电分解来获得。作为代表性的硅化物气体,如SiH4,其他也可使用Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等。此外,可以通过使用以氢气、或向氢气中添加选自氦、氩、氪、氖中的一种或多种稀有气体元素的气体稀释该硅化物气体的方法,容易地形成SAS。最好是以稀释率为2倍~1000倍的范围对硅化物气体进行稀释。而且,也可以使CH4、C2H6等碳化物气体、GeH4、GeF4等锗化气体、F2等混入硅化物气体中,并将能量带范围调节为1.5~2.4eV,或0.9~1.1eV。将SAS作为第1半导体膜使用的TFT能够获得1~10cm2/Vsec或比此更高的移动率。
此外也可通过将多个由不同气体形成的SAS层叠起来,形成第1半导体膜。例如,可以将使用上述各种气体中含有氟原子的气体形成的SAS和使用含有氢原子的气体形成的SAS层叠起来,形成第1半导体膜。
借助于辉光放电分解的覆盖膜的反应生成可以在减压下或在大气压下进行。在减压下进行的情况下,在压力大致为0.1Pa~133Pa的范围内进行即可。用于形成辉光放电的电力供给1MHz~120MHz,较理想的是供给13MHz~60MHz的高频电力即可。压力取大致在0.1Pa~133Pa的范围内,电源频率取1MHz~120MHz,较理想的是取13MHz~60MHz。衬底加热温度取300℃以下,最好取100~250℃。作为膜中的杂质元素,氧、氮、碳等的大气成分的杂质控制在1×1020atoms/cm3以下较为理想,特别是,氧浓度设为5×1019atoms/cm3以下,最好是1×1019atoms/cm3以下。
此外,在使用Si2H6和GeF4或F2形成半导体膜的情况下,由于结晶从半导体膜的接近衬底一侧成长,因此离衬底越近半导体膜的结晶性越高。因而,在栅电极为比第1半导体膜更接近衬底的底栅型的TFT的情况下,由于可以将第1半导体膜中接近衬底一侧的结晶性高的区域作为沟道形成区域使用,因此能够进一步提高移动率,比较合适。
此外,在使用SiH4和H2形成半导体膜的情况下,距离半导体膜的表面越近的一侧越能够获得大的结晶颗粒。因而,当第1半导体膜为比栅电极更接近衬底的顶栅型的TFT的情况下,由于可以将第1半导体膜中远离衬底的一侧的结晶性高的区域作为沟道形成区域使用,因此能够进一步提高移动率,较为合适。
再者,SAS表示在有意地不添加以控制价电子为目的的杂质时的弱n型的导电型。这是由于因为进行高于使非晶半导体成膜时的电力的辉光放电,氧易于混入半导体膜中。因此,对于设置TFT的沟道形成区域的第1半导体膜,通过在与成膜同时或在成膜后添加付予p型的杂质,可以进行阈值控制。作为付予p型的杂质,具有代表性的是硼,将B2H6、BF3等的杂质气体以1ppm~1000ppm的比例混入硅化物气体中即可。例如,使用硼作为付予p型的杂质的情况下,将该硼的浓度设为1×1014~6×1016atoms/cm3即可。
接着,以与第1半导体膜2004中成为沟道形成区域的部分重叠的状态,在第1半导体膜2004上形成保护膜2005、2006。保护膜2005、2006可使用液滴排出法或印刷法形成,也可使用CVD法、溅射法等形成。作为保护膜2005、2006,可以使用氧化硅、氮化硅、氮化氧化硅等的无机绝缘膜、硅氧烷类绝缘膜等。此外也可将这些膜层叠起来作为保护膜2005、2006使用。在本实施方式中,将由等离子体CVD法形成的氮化硅、由液滴排出法形成的硅氧烷类绝缘膜层叠起来作为保护膜2005、2006使用。在此情况下,氮化硅的构图可以使用由液滴排出法形成的硅氧烷类绝缘膜作为掩模使用来进行。
进行第1半导体膜2004的构图。第1半导体膜2004的构图可以使用光刻法,也可以使用由液滴排出法形成的抗蚀剂作为掩模。在后者的情况下,没有必要另外准备曝光用的掩模,因此带来了成本的减少。在本实施方式中表示了使用通过液滴排出法形成的抗蚀剂2007、2008进行构图的例子。而且抗蚀剂2007、2008可以使用聚酰亚胺、丙烯等的有机树脂。而且,通过使用了抗蚀剂2007、2008的干法刻蚀,形成完成构图的第1半导体膜2009、2010(图14(C))。
接着,形成第2半导体膜,使其覆盖构图后的第1半导体膜2009、2010。向第2半导体膜添加付予一导电型的杂质。在形成n沟道型的TFT的情况下,向第2半导体膜添加付予n型的杂质,例如磷即可。具体言之,向硅化物气体添加PH3等的杂质气体,形成第2半导体膜即可。具有一导电型的第2半导体膜,与第1半导体膜2009、2010同样,可以通过不完全结晶半导体、非晶半导体形成。
而且在本实施例中,与第1半导体膜2009、2010相接形成第2半导体膜,但本发明并不限于此构成。在第1半导体膜与第2半导体膜之间也可以形成作为LDD区域发挥作用的第3半导体膜。在此情况下,第3半导体膜通过不完全结晶半导体或非晶半导体形成。而且,第3半导体膜,即使不有意地添加用于付予导电型的杂质,也将表示出其自身原有的弱n型导电型。因而无论是否向第3半导体膜添加用于付予导电型的杂质,均能够作为LDD区域使用。
接着,使用液滴排出法形成布线2015~2018,使用该布线2015~2018作为掩模,对第2半导体膜进行刻蚀。第2半导体膜的刻蚀可以在真空环境下或大气压环境下通过干法刻蚀来进行。通过上述刻蚀,从第2半导体膜形成作为源区或漏区发挥作用的第2半导体2011~2014。在对第2半导体膜进行刻蚀时,通过保护膜2005、2006,能够防止第1半导体膜2009、2010被过刻蚀。
布线2015~2018能够与栅电极2001、2002同样形成。具体言之,使用具有一个或多个Ag、Au、Cu、Pd等的金属或金属化合物的导电材料。在使用液滴排出法的情况下,能够在从喷嘴滴下将该导电材料分散至有机或无机类的溶剂中的溶液后,通过在室温下进行的干燥或烧成来形成。如能够通过分散剂抑制凝集并使其分散至溶液中,则可以使用具有一个或多个Cr、Mo、Ti、Ta、W、Al等的金属或金属化合物的导电材料。烧成在氧环境下进行,使布线2015~2018的电阻降低亦可。此外通过进行多次的借助于液滴排出法的导电材料的成膜,也可以形成多个导电膜层叠的布线2015~2018。
通过上述工序,形成开关用TFT2019、驱动用TFT2020(图15(A))。
接下来,如图15(B)所示,在形成层间绝缘膜之前,使用液滴排出法或印刷法等向形成接触孔的区域涂敷具有拨液性的有机材料2021。此情况下,在形成层间绝缘膜后,通过除去具有拨液性的有机材料2021,即使不进行刻蚀,也能够形成接触孔。在本实施例中,通过液滴排出法,涂敷具有拨液性的有机材料2021。作为具有拨液性的有机材料,使用以化学式Rn-Si-X(4-n)(n=1、2、3)表示的硅烷连接剂。R为包含烷基等的相对不活性的基、或乙烯基、氨基或环氧基等的反应性基的物质。此外,X由卤素、甲氧基、乙氧基或乙酸基等基质表面的氢氧基或通过与吸附水的聚合可以结合的加水分解基构成。在本实施方式中使用将具有氟基的氟烷基硅烷(FAS)、具有代表性的是将聚四氟乙烯(PTFE)溶解到n-辛醇中的溶液。此外具有拨液性的有机材料的去除可以通过用水洗净并以使用CF4、O2等的干法刻蚀来进行。
接着,如图15(C)所示,形成层间绝缘膜2022。层间绝缘膜2022可以使用有机树脂膜、无机绝缘膜或硅氧烷类绝缘膜形成。也可以使用被称为低介电常数材料(low-k材料)的材料作为层间绝缘膜2022。
接下来在形成电场发光层2024之前,为了除去吸附于层间绝缘膜2022的水分或氧气等,可以在大气压环境下进行加热处理或在真空环境下进行加热处理(真空焙烤)。具体言之,将衬底的温度设为200℃~450℃,最好是在250~300℃的范围内,在真空环境下进行0.5~20小时左右的加热处理。较为理想的是设为3×10-7Torr以下,如果可能设为3×10-8Torr以下最为理想。而且,在于真空环境下进行加热处理后使电场发光层成膜的情况下,通过将该衬底预先放置于真空环境下直至使电场发光层成膜之前,能够进一步提高可靠性。
然后,在层间绝缘膜2022的接触孔内,形成与驱动用TFT2020的电极2018相接的第1电极2023。而且在本实施例中,第1电极2023相当于阴极,其后形成的第2电极2025相当于阳极,但本发明并不限于该构成。第1电极2023也可相当于阳极,第2电极2025也可相当于阴极。
阴极可以使用功函数小的金属、合金、电传导性化合物、及其混合物等。具体言之,可以使用Li或Cs等的碱金属、以及Mg、Ca、Sr等的碱土类金属、包含这些金属的合金(Mg:Ag、Al:Li、Mg:In等)、以及除了这些金属的化合物(CaF2、CaN)之外,Yb或Er等的稀土类金属。此外在设置电子注入层的情况下,也可以使用Al等其他的导电层。再者自阴极一侧取光的情况下,也可以使用氧化铟锡(ITO)、氧化锌(ZnO)、氧化铟锌(IZO)、添加了镓的氧化锌(GZO)等其他的透光性氧化物导电材料。也可以使用进一步将2~20%的氧化锌(ZnO)混入含有ITO及氧化硅的氧化铟锡(以下,记作ITSO)或含有氧化硅的氧化铟中的材料。在使用透光性氧化物导电材料的情况下,最好在随后形成的电场发光层2024中设置电子注入层。此外,即使不是用透光性氧化物导电材料,通过以光可以透过的程度的膜厚(最好在5nm~30nm左右)形成阴极,也能够自阴极一侧获取光。此情况下,使用透光性氧化物导电材料形成与该阴极的上或下部相接的具有透光性的导电层,也可抑制阴极的薄膜阻抗。
在本实施方式中,作为相当于阳极的第1电极2023,使用Mg:Ag。而且第1电极2023也可以使用溅射法、液滴排出法或印刷法来形成。在使用液滴排出法或印刷法的情况下,即使不使用掩模,也可以形成第1电极2023。此外在使用溅射法的情况下,通过使用液滴排出法或印刷法形成光刻法中所使用的抗蚀剂,不需要另外准备曝光用的掩模,因而带来了成本的减少。
而且第1电极2023也可以通过CMP法、聚乙烯乙醇类多孔质体来进行拭净、研磨,以使其表面平坦化。此外在使用CMP法的研磨后,也可以对阴极表面进行紫外线照射并进行氧等离子体处理等。
接着,形成与第1电极2023相接的电场发光层2024。电场发光层2024可以通过单层来构成,也可以通过多个层层叠构成。在以多个层构成的情况下,在相当于阴极的第1电极2023上,以电子注入层、电子输送层、发光层、空穴输送层、空穴注入层的顺序进行层叠。而且在第1电极2023相当于阳极的情况下,以空穴注入层、空穴输送层、发光层、电子输送层、电子注入层的顺序层叠形成电场发光层2024。
而且,电场发光层2024即使使用高分子类有机化合物、中分子类有机化合物、低分子类有机化合物、无机化合物的任一种,也可以通过液滴排出法形成。此外中分子类有机化合物、低分子类有机化合物、无机化合物也可以通过蒸镀法形成。
然后形成覆盖电场发光层2024的第2电极2025。在本实施例中,第2电极2025相当于阳极。第2电极2025的制作方法最好是结合材料将蒸镀法、溅射法、液滴排出法等分开使用。
作为阳极,可以使用氧化铟锡(ITO)、氧化锌(ZnO)、氧化铟锌(IZO)、添加了镓的氧化锌(GZO)等其他的透光性氧化物导电材料。也可以使用进一步将2~20%的氧化锌(ZnO)混入含有ITO及氧化硅的氧化铟锡(以下,记作ITSO)或含有氧化硅的氧化铟中的材料。此外作为阳极,除了上述透光性氧化物导电材料之外,也可以使用由例如TiN、ZrN、Ti、W、Ni、Pt、Cr、Ag、Al等的一个或多个组成的单层膜、与以氮化钛和铝为主要成分的膜的层叠膜、氮化钛膜与以铝为主要成分的膜与氮化钛膜的三层结构等。只是在通过透光性氧化物导电材料以外的材料自阳极一侧取光的情况下,以光可以透过的程度的膜厚(最好在5nm~30nm左右)来形成。
通过第1电极2023与电场发光层2024与第2电极2025的相互重叠,形成发光元件。
而且,自发光元件的取光可以是来自第1电极2023一侧,也可以是来自第2电极2025一侧,也可以是来自于这两侧。在上述三个构成中,配合各目的的构成,选择阳极、阴极各自的材料和膜厚。如本实施方式中自第2电极2025一侧取光的情况,与自第1电极2023一侧取光的情况相比,能够以更低的功耗获得更高的亮度。
在图14(A)~(C)及图15(A)~(C)中,在不同的工序中对第1半导体膜与第2半导体膜进行构图,但本发明的半导体装置并不限于该制作方法。
此外,在第1半导体膜与第2半导体膜之间形成了保护膜,但本发明并不限于该构成,未必一定要形成保护膜。
而且,本实施例可以与其他实施例中记载的构成组合起来加以实施。
权利要求
1.一种液滴排出装置,其特征在于,具有排出液滴的单元;以及对从上述排出液滴的单元所排出的液滴进行改质的单元。
2.一种液滴排出装置,其特征在于,具有排出液滴的单元;以及使从上述排出液滴的单元所排出的液滴的溶剂蒸发的单元。
3.一种液滴排出装置,其特征在于,具有排出液滴的单元;以及使从上述排出液滴的单元所排出的液滴的溶剂已蒸发的、上述液滴的溶质再结晶的单元。
4.一种液滴排出装置,其特征在于,具有排出液滴的单元;以及对滴下上述液滴的被处理物的表面进行改质的单元。
5.一种液滴排出装置,其特征在于,具有排出液滴的单元;以及在滴下上述液滴的被处理物的表面形成沟槽的单元。
6.一种液滴排出装置,其特征在于,具有排出液滴的单元;以及在滴下上述液滴的被处理物的表面形成凹凸的区域的单元。
7.一种液滴排出装置,其特征在于,具有排出液滴的单元;激光振荡器;以及使上述排出液滴的单元和被处理物的相对位置变化的单元,通过从上述激光振荡器振荡出的激光,对从上述排出液滴的单元所排出的液滴进行改质。
8.一种液滴排出装置,其特征在于,具有排出液滴的单元;激光振荡器;以及使上述排出液滴的单元和被处理物的相对位置变化的单元,通过从上述激光振荡器振荡出的激光,对上述被处理物的表面进行改质。
9.如权利要求7或8所述的液滴排出装置,其特征在于,上述激光振荡器是气体激光振荡器、固体激光振荡器、金属激光振荡器、或半导体激光振荡器。
10.如权利要求7或8所述的液滴排出装置,其特征在于,在上述激光振荡器与上述被处理物之间,具有调整从上述激光振荡器射出的激光的光束形状或光束路径的单元。
11.如权利要求7或8所述的液滴排出装置,其特征在于,在上述激光振荡器与上述被照射物之间具有显微透镜阵列。
12.如权利要求7或8所述的液滴排出装置,其特征在于,具有控制上述液滴的滴落位置和从上述激光振荡器射出的激光的照射位置的单元。
13.一种图案的形成方法,其特征在于,从排出单元排出液滴,当上述液滴滴落至被处理面时,对上述液滴照射激光,使上述液滴的溶剂蒸发,形成图案。
14.一种图案的形成方法,其特征在于,对被处理面照射激光,当在上述被处理面形成沟槽后,从排出单元排出液滴,将液滴滴至上述沟槽。
15.一种图案的形成方法,其特征在于,对被处理面照射激光,当在上述被处理面上形成凹凸区域后,从排出单元排出液滴,将液滴滴落至上述凹凸区域。
16.一种图案的形成方法,其特征在于,从排出单元排出液滴,将上述液滴滴落至被处理面,当使上述液滴的溶剂蒸发后,照射激光使上述液滴的溶质再结晶,形成图案。
17.如权利要求13至16的任一项所述的图案的形成方法,其特征在于,上述激光从气体激光振荡器、固体激光振荡器、金属激光振荡器、或半导体激光振荡器射出。
18.如权利要求13至16的任一项所述的图案的形成方法,其特征在于,上述液滴在减压环境下排出。
19.如权利要求13至16的任一项所述的图像的形成方法,其特征在于,上述液滴在大气压环境下排出。
20.如权利要求13至16的任一项所述的图像的形成方法,其特征在于,在形成上述图案后,使上述图案平坦化。
21.如权利要求13至16的任一项所述的图像的形成方法,其特征在于,使滴落上述液滴的时间与对被处理面照射上述激光的时间相同。
22.一种半导体装置的制造方法,其特征在于,具有从排出单元排出液滴的工序;以及在从上述排出单元排出的液滴滴落至被处理面时对上述液滴照射激光、使上述液滴的溶剂蒸发形成图案的工序。
23.一种半导体装置的制造方法,其特征在于,具有对被处理面照射激光、在上述被处理面形成沟槽的工序;以及从排出单元排出液滴、向上述沟槽滴落液滴的工序。
24.一种半导体装置的制造方法,其特征在于,具有对被处理面照射激光、在上述被处理面形成凹凸区域的工序;以及从排出单元排出液滴、向上述凹凸区域滴落液滴的工序。
25.一种半导体装置的制造方法,其特征在于,具有从排出单元排出液滴并使上述液滴滴落至被处理面的工序;以及使上述液滴的溶剂蒸发后照射激光使上述液滴的溶质再结晶形成图案的工序。
26.如权利要求22至25的任一项所述的半导体装置的制造方法,其特征在于,上述激光从气体激光振荡器、固体激光振荡器、金属激光振荡器、或半导体激光振荡器射出。
27.如权利要求22至25的任一项所述的半导体装置的制造方法,其特征在于,上述液滴在减压环境下排出。
28.如权利要求22至25的任一项所述的半导体装置的制造方法,其特征在于,上述液滴在大气压环境下排出。
29.如权利要求22至25的任一项所述的半导体装置的制造方法,其特征在于,在形成上述图案后,使上述图案平坦化。
30.如权利要求22至25的任一项所述的半导体装置的制造方法,其特征在于,上述液滴的溶质是导电性材料、抗蚀剂材料、发光材料、或半导体纳米粒子。
31.如权利要求22至25的任一项所述的半导体装置的制造方法,其特征在于,使滴落上述液滴的时间与对被处理面照射上述激光的时间同步。
32.如权利要求22至25的任一项所述的半导体装置的制造方法,其特征在于,上述半导体装置是从显示装置、数码照相机、笔记本型个人电脑、便携式电脑、具备记录介质的便携型图像再生装置、护目镜型显示器、摄像机、便携式电话中所选出的电子设备。
全文摘要
在本发明中提供了一种能够对从液滴排出装置排出的液滴滴落至衬底后的位置控制进行改善的图案的制作方法。此外,提供一种能够对滴落后的液滴位置精度进行改善的液滴排出装置。进而,提供一种使用本发明的液滴排出装置的半导体装置的制造方法。本发明的特征在于对从排出部排出的液滴或滴落液滴的衬底照射激光,控制液滴的滴落位置。通过本发明,不使用光刻工序便能够形成图案。
文档编号H01L21/3205GK1781184SQ20048001113
公开日2006年5月31日 申请日期2004年4月15日 优先权日2003年4月25日
发明者中村理, 山崎舜平 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1