具有包含着元材料的介质基片的微带天线的结构的制作方法

文档序号:6844031阅读:192来源:国知局
专利名称:具有包含着元材料的介质基片的微带天线的结构的制作方法
背景技术
RF电路、传输线和天线单元通常是在专门设计的基片板上制造的。常规电路板基片通常通过诸如铸造或喷涂的加工形成,这通常产生均匀的基片物理性质,包括均匀的介电常数。
对于RF电路用途,通常重要的是对阻抗特性保持仔细的控制。如果电路不同部分的阻抗不匹配,会造成信号反射以及低效的功率传输。在这些电路中传输线和辐射体的电长度可以是关键设计因素。
影响电路性能的二个关键因素涉及介质基片材料的介电常数(有时称为相对介电常数或εr)以及损耗角正切(有时称为损耗因数或δ)。介电常数决定基片材料中的电波长,从而决定传输线以及设置在基片上的其它元件的电长度。损耗角正切决定信号经过基片材料时出现的信号损耗量。损耗趋于随频率的增大而增加。因此,低损耗材料对于增大的频率变得甚至更为重要,尤其在设计接收机前端和低噪声放大器电路时。
RF电路中使用的印制传输线、无源电路和辐射元件典型地在三种方式中的一种方式下形成。一种配置称为微带,其把信号线设置在板表面上并且提供通常称为地平面的第二导电层。第二种配置类型称为隐埋(buried)微带,除了用介质基片材料覆盖信号线外,它和前者类似。在称为微波带状线的第三种配置中,信号线夹在二个导电(接地)面之间。
通常,平行板传输线,例如微波带状线或微带线的特性阻抗近似等于 其中Ll是单位长度的电感而Cl是单元长度的电容。Ll和Cl的值通常取决于线路结构的物理几何条件和间距以及用来隔开传输线的介质材料的介电常数。
在常规RF设计中,基片材料选择成具有单个介电常数和相对磁导率值,该相对磁导率值约为1。一旦选择了基片材料,通常通过控制线路几何条件、隙缝以及线和隙缝的耦合特性来唯一设定线路的特征阻抗。
射频(RF)电路典型地包含在混合电路中,在后者中多个有源和无源电路元件安装在并且互相连接在电绝缘板基片,例如陶瓷基片的表面上。通常通过印制的金属导体,例如铜、金或钽,互连各种元件,这些金属导体充当感兴趣的频率范围内的传输线(例如微波带状线或微带或双线传输线)。
用于传输线、无源RF器件或辐射元的选定基片材料的介电常数决定用于该结构的给定频率上的RF能量的物理波长。设计微电子RF电路时遇到的一个问题是,选择一种合理地适用于要在介质板上形成的所有无源元件、辐射元件以及传输线电路的该介质板基片材料。
尤其,由于对它们要求独特的电特性或阻抗特性,某些电路元件的几何条件物理上可能是大的或小型化的。例如,许多电路元件或调谐电路可能要求具有四分之一波长的电长度。类似地,在许多情况中,格外高的或低的特征阻抗值所需的线宽对于给定基片的实际实现可能过窄或过宽。由于微带或微波带状线的物理尺寸相对于介质材料的介电常数成反比,所以通过选择基片板材料可以大大影响传输线或辐射器元件的尺寸。
但是,对某些构件的最优板基片材料设计选择可能和用于其它构件例如天线单元的最优板基片材料是不一致的。而且,某个电路构件的一些设计目标可能和其它构件的设计目标是不一致的。例如,可能希望减小天线单元的尺寸。这可以通过选择具有例如值为50到100的高介电常数的板材料实现。但是,使用高介电常数的介质通常会造成明显降低天线的辐射效率。
天线单元有时配置成微带隙缝天线(microstrip slot antenna)。微带隙缝天线是有用的天线,因为和其它天线相比它们通常需要较少的空间、较简单并且通常制造起来较便宜。另外,重要的是,微带隙缝天线和印制电路技术高度相容。
构建高效微带隙缝天线中的一个要素是使功率损耗最小,功率损耗是由其中包含介质损耗的几个因素造成的。介质损耗通常是由于束缚电荷的不良行为造成的,并且只要把介质材料置于时变电磁场中就会存在。常常称之为损耗角正切的介质损耗和电介质的导电率成正比。介质损耗通常随运行频率增加而增加。
特定微带隙缝天线的介电损耗程度主要由辐射器天线单元(例如隙缝)和馈线间的介电空间的介电常数决定。自由空间或者大多数用途下的空气具有约等于1的相对介电常数和相对磁导率。
相对介电常数接近1的介质材料看成是“良好的”介质材料,良好的介质材料在感兴趣的运行频率上呈现低的介质损耗。当采用具有基本和周围材料相等的相对介电常数的介质材料时,有效地消除由于阻抗不匹配造成的介质损耗。从而,一种保持微带隙缝天线系统中的高效率的方法涉及在辐射器天线隙缝和用来激励隙缝的微带馈线之间的介质空间中使用相对介电常数低的材料。
采用介电常数较低的材料还允许使用较宽的传输线,这进而减少导体损耗并且还改进微带隙缝天线的辐射效率。但是,使用介电常数低的介电材料会产生某些缺点,例如和在高介电常数基片上制造的隙缝天线相比在低介电常数基片上制造的隙缝天线的尺寸大。
通过为馈电选取具有单个均匀介电常数的特定介质材料来兼顾微带隙缝天线的效率。在允许较宽的馈线上低介电常数是有帮助的,这造成较低的电阻损耗,从而使介质感应线损耗最小并使隙缝辐射效率最小。但是,当设置在隙缝和馈线之间的接合区中时,由于通过隙缝的差的耦合特性,现有的介质材料造成天线辐射效率的降低。
通常使用调谐短截线来解调微带隙缝天线中的过电抗。但是,短截线的阻抗带宽通常小于辐射器的阻抗带宽以及隙缝的阻抗带宽。因此,尽管常规短截线通常可用于解调天线电路的过电抗,短截线的低阻抗带宽通常限制整个天电路的性能。

发明内容
提供一种隙缝馈电微带贴片天线,包括具有至少一条隙缝的导电地平面,并且包括一条用于对该隙缝或从该隙缝传送信号能量的馈线。该馈线包括一个超出该隙缝延伸的短截线。第一介质层设置在该馈线和该地平面之间。该第一介质层具有包含第一区上的第一相对介电常数的第一组介质特性,并且具有包括第二组介质特性的至少第二区。第二组介质特性提供比第一相对介电常数高的相对介电常数,其中,短截线设置在介电常数较高的第二区上。在第二介质层上设置至少一个贴片辐射器,该第二介质层包括提供其中包含第三相对介电常数的第三组介质特性的第三区,并且包括包含第四组介质特性的第四区,第四组介质特性包含比第三相对介电常数高的相对介电常数。最好把贴片设置在第四区上。
各个介质层可以包括具有多个孔隙的陶瓷材料,其中至少一部分的孔隙充填着磁性颗粒。磁性颗粒可以包括元材料(meta-material)。
设置在馈线和隙缝之间的第一接合区的固有阻抗可以和第四区匹配。第一接合区的固有阻抗还可以和短截线下面的第二区的固有阻抗匹配。第一接合区的固有阻抗可以和第二区以及第四区的固有阻抗匹配。
如文中使用那样,短语“固有阻抗匹配”指的是,在假定每个区的相对磁导率为1的前提下,与包括界面的各个区的实际介电常数给定情况下将得到的固有阻抗匹配相比改进的阻抗匹配。如前面指出那样,在本发明之前,尽管板基片提供对单个相对介电常数值的选择,但可用板基片的相对磁导率需接近1。
该天线可以包括通过第三介质层隔开的第一和第二贴片辐射器。第二贴片辐射器最好设置在具有磁性颗粒的第三介质层中的介质区上。
第一介质可以提供接近隙缝的四分之一波长匹配段,以把馈线匹配到隙缝中。该四分之一波匹配段可以包含磁性颗粒。
隙缝可以包括至少一个的交叉隙缝,并且馈线可以包括至少二条馈线,各馈线被调整相位以提供双极化发射图。
一种隙缝馈电微带天线包括包含至少一个隙缝的导电地平面,设置在该地平面上的第一介质层,以及至少一条设置在该第一介质材料上用于对该隙缝或从该隙缝传送信号能量的馈线。该馈线包括短截线部分,其中,第一介质层包含多个磁性颗粒,至少一部分的磁性颗粒设置在馈线和隙缝之间的第一接合区中。第一介质层提供第一区上的第一相对介电常数以及第二区上的第二相对介电常数,第二区具有比第一区高的相对介电常数,其中,至少部分短截线设置在第二区上。
第一介质层可以由包括具有多个孔隙的陶瓷材料,至少一些孔隙充填着磁性颗粒。磁性颗粒可以包含元材料。短截线下面的第二区最好包含磁性颗粒。


图1是依据本发明的一实施例的隙缝馈电微带天线的侧视图,该天线形成在包含高介电区和低介电区的介质上,其中,短截线设置在高介电区中。
图2是图1示出的微带天线的侧视图,其中,在短截线下面的介电区中添加磁性颗粒。
图3是依据本发明的另一实施例的隙缝馈电贴片天线的侧视图,其包括第一介质区和第二介质区,第一介质区包括设置在地平面和贴片之间的磁性颗粒,第二介质区设置在地平面和馈线之间并包括短截线下面的高介质区,该高介质区包含磁性颗粒。
图4是用来说明制造物理尺寸减小、辐射效率高的隙缝馈电微带天线的过程的流程图。
图5是依据本发明的一实施例的在包含磁性颗粒的天线介质上形成的隙缝馈电微带天线的侧视图,该天线提供从馈线到隙缝、从隙缝到环境以及从隙缝到短截线的阻抗匹配。
图6是依据本发明的一实施例的在包含磁性颗粒的天线介质上形成的隙缝馈电微带贴片天线的侧视图,该天线提供从馈线到隙缝、从隙缝到它的与贴片下面的天线介质的界面以及到短截线的阻抗匹配。
具体实施例方式
一般对RF设计选择低介电常数板材料,例如,可以从RogersMicrowave Products公司的先进电路材料分部(100S.Roosevelt Ave,Chandler,AZ 85226)买到诸如RT/duroid6002(介电常数2.94;损耗角正切0012)以及RT/duroid5880(介电常数2.2;损耗角正切.0007)的基于聚四氟乙烯(PTFE)的复合材料。这二种材料都是常用的板材料选择。上面的这些材料在板面积上提供均匀的厚度和物理特性并且提供具有伴随着低损耗角正切的相对低的介电常数的介质层。这二种材料的相对磁导率接近1。
现有技术天线设计采用几乎均匀的介质材料。均匀的介电特性需要折衷天线性能。出于损耗考虑以及天线辐射效率,对于传输线低介电常数基片是优选的,而为了使天线尺寸最小以及优化能量耦合,优选高介电常数基片。因此,常规隙缝馈电微带天线必然产生低效和折衷。
即使对天线和传输线使用分开的基片,每个基片的均匀介电特性通常仍折衷天线性能。例如,隙缝馈电天线中的带有低介电常数的基片降低馈线损耗,但是由于隙缝区的较高介电常数,造成从馈线通过隙缝的差的能量传输效率。
相对比而言,本发明通过允许使用带有可选择地控制的介电常数和磁导率特性的介质层或介质层部分来对电路设计者提供附加的设计灵活性,其中,该可选择地控制的介电常数和磁导率允许优化电路,从而改进天线的效率、功能和物理外形。
介质区可包含磁性颗粒,以在不止一个的分立基片区中产生相对磁导率。在工程应用中,常常相对地而不是绝对地表达磁导率。所涉及的材料的相对磁导率是材料磁导率和自由空间磁导率的比,即μr=μ/μ0。自由空间的磁导率用符号μ0表示并且具有1.257×10-6H/m的值。
磁性材料是相对磁导率μr大于1或者小于1的材料。通常把磁性材料分类成下面说明的三组。
反磁材料是相对磁导率小于1但典型地从0.99900到0.99999的材料。例如,铋、铅、锑、铜、锌、汞、金和银是周知的反磁材料。从而,当经受磁场时,和真空相比这些材料轻微减小磁通密度。
顺磁材料是相对磁导率大于1并且直到大约10的材料。顺磁材料的例子是铝、铂、锰和铬。在去掉外部磁场后顺磁材料通常失去它们的磁性。
铁磁材料是提供大于10的相对磁导率的材料。铁磁材料包括各种铁氧体、铁、钢、镍、钴以及商品合金例如磁钢和镁铝锰合金。铁氧体例如用陶瓷材料做成并且具有范围约为50到200的相对磁导率。
如文中使用那样,术语“磁性颗粒”指的是当和介质材料混合时造成该介质材料的相对磁导率μr大于1的材料。从而,铁磁和顺磁材料通常包含在该定义中,而反磁性颗粒通常不包含在其中。取决于期望的应用可以在大范围上提供相对磁导率μr,例如1.1、2、3、4、6、8、10、20、30、40、50、60、80、100或更高,或者为这些值之间的值。
可以通过在介质基片中包含元材料来实现介质基片的可调和可局部化的电、磁特性。术语“元材料”指的是在非常细小等级例如分子或纳米等级上混合二种或更多的不同材料形成的复合材料。
依据本发明,提出一种隙缝馈电微带天线设计,其相对现有技术隙缝馈电微带天线设计具有改进的效率和性能。这种改进是从包含短截线的改进造成的,其中,短截线改进馈线和隙缝之间的电磁能的耦合。设置在馈线和地平面之间的介质层提供具有第一介电常数的第一部分并且提供具有第二介电常数的至少一个第二部分。和第一介电常数相比第二介电常数较高。至少一部分的短截线设置在高介电常数的第二部分上。介质层的各个部分可以包括磁性颗粒,最好包括一个接近短截线的介质区以进一步提高隙缝天线的效率和总体性能。
参照图1,图1给出依据本发明的一实施例的隙缝馈电微带天线100的侧视图。天线100包括基片介质层105。基片层105包括第一介质区112、第二介质区113(短截线区)和第三介质区114(设置在馈线和隙缝之间的介质接合区)。第一介质区112具有相对磁导率μ1和相对介电常数(或介电常数)ε1,第二介质区113具有为μ2的相对磁导率和为ε2的相对介电常数,并且第三介质区114具有为μ3的相对磁导率和为ε3的相对介电常数。
包含隙缝106的地平面108设置在介质基片105上。天线100可以包括设置在地平面108上方的选用的介质盖(未示出)。
设置馈线117以对隙缝或从隙缝传送信号能量。馈线包括短截线区118。馈线117可以是微带线或其它适当的馈线配置并且可以经适当的连接器和界面用各种源驱动。
和介质区112中的相对介电常数相比,第二介质区113具有更高的相对介电常数。例如,介质区112中的相对介电常数可以为2到3,而介质区113中的相对介电常数可以至少为4。例如,介质区113的相对介电常数可以是4、6、8、10、20、30、40、50、60或更高,或者为这些值之间的值。
尽管地平面108示成具有单个隙缝106,但本发明也可和多隙缝结构相容。可以利用多隙缝结构产生双极化。另外,隙缝通常可以为在馈线117和隙缝160之间提供足够耦合的任何形状,例如矩形或环形。
第三介质区114最好也提供比介质区112的相对介电常数高的相对介电常数,以帮助在该区中集中电磁场。区114中的相对介电常数可以高于、低于或等于区113中的相对介电常数。在本发明的一优选实施例中,把区114的固有阻抗选择成和它的环境匹配。假定空气是该环境,该环境的行为象真空。在此情况下,μ2=ε2会使区114和环境实现阻抗匹配。
介质区113还可以明显影响在馈线117和隙线106之间辐射的电磁场。仔细选择介质区113的材料、尺寸、形状和位置可以造成馈线117和隙缝106之间的耦合改善,即使二者之间存在明显间隙。
至于介质区13的形状,可以把区113构建为具有三角或椭圆横截面的柱状。在另一实施例中,区113可以为圆柱形。
在本发明的一优选实施例中,把短截线区113的固有阻抗选择为和接合区114的固有阻抗相匹配。通过使介质接合区114的固有阻抗和短截线区113的固有阻抗匹配,提高天线100的辐射效率。假定把区114的固有阻抗选择成和空气匹配,可把μ3选择成等于ε3。使区113对区114实现固有阻抗区配还可以减小信号畸变和瞬变,由相关隙缝天线领域中存在的对短截线的阻抗不匹配造成的信号畸变和瞬变可造成严重问题。
在一优选实施例中,介质区113包含大量设置在其中的磁性颗粒以提供大于1的相对磁导率。图2示出天线200,除了在介质区113中设置大量磁性颗粒214外,天线200和图1中示出的天线100相同。磁性颗粒214可以是元材料颗粒,如后面更详细讨论那样,可以把它们嵌入到基片105,例如陶瓷基片中形成的孔隙中。磁性颗粒可以提供具有明显磁导率的介质基片区。如本文使用那样,明显磁导率指的是至少约为1.1的相对磁导率。常规基片材料具有约为1的相对磁导率。利用本文说明的方法,可以根据期望的应用在大范围内提供μr,例如1.1、2、3、4、6、8、10、20、30、40、50、60、80、100或更高,或者为这些值之间的值。
还可以利用本发明形成效率和性能改进的隙缝馈电微带贴片天线。图3示出贴片天线300,该贴片天线300至少包括贴片辐射器309和第二介质层305。除了把参考数字用300序列数字重新编号外,第二介质层305下面的结构和图1及图2的结构相同。
第二介质设置在地平面308和贴片辐射器309之间。第二介质层305包括第一介质区310和第二介质区311,第一介质区310最好具有比第二介质区311高的相对介电常数。区310最好还包含磁性颗粒314。包含磁性颗粒314允许区310利用等于区310中的相对介电常数的相对磁导率来实现对天线的环境的阻抗匹配,以和空气匹配。这样,通过区310(隙缝306和贴片309之间)中的固有阻抗和区314(馈线317和隙缝306之间)的固有阻抗的匹配,天线300提供改进的辐射效率。
例如,介质区311中的相对介电常数可以为2至3,而介质区310中的相对介电常数可以至少为4。例如,介质区310的相对介电常数可以为4、6、8、10、20、30、40、50、60或更高,或者为这些值之间的值。
天线300通过利用改进的短截线318提高从馈线317经隙缝306到贴片309的电磁能耦合以实现效率的改进。如前面讨论那样,通过使用接近其的高介电常数基片区313(它最好还包括可选用的磁性颗粒324)提供改进的短截线318。如前面指出那样,通过在接近短截线318的介质区313中采用比介质区312高的介电常数,进一步改进耦合效率。
可以如图4中所示那样准备具有用来提供局部化的和可选的磁、介电特性的元材料部分的介质基片板。在步骤410可准备该介质板材料。在步骤420,如后面说明那样,可以利用元材料不同地修改该介质板材料的至少一部分,以便减小物理尺寸并对天线和关联电路达到最佳的可能效率。该修改可包括在介质材料中形成孔隙并且在一些或者大致全部孔隙中填入磁颗料。最后,可以施加一层金属层以限定和天线单元件关联的导电迹线和表面区以及关联的馈电电路,例如贴片辐射器。
如本文定义那样,术语“元材料”指的是通过以非常细微的等级,例如埃等级或纳米等级混合或排列二种或更多的不同材料形成的复合材料。元材料允许调节复合物的由有效介电常数(或相对介电常数)以及有效相对磁导率定义的电磁特性。
现在略微详细地说明步骤410和420中的准备以及修改介质板材料的过程。但是,应理解,本文说明的方法仅仅是例子,从而不意味着本发明受此限制。
可以从商品材料制造商,例如DuPont和Ferro公司得到适当的介质基片毛材。可以把这种通常称为Green TapeTM的未处理材料从毛介质带切成定尺寸的部分,例如6英寸乘6英寸的部分。例如杜邦微电路材料公司提供的Green Tape(生带)材料系统,例如951低温Cofire介质带和Ferro电子材料ULF28-30超低激发COG介质剂型。可以使用这些基片材料以提供具有伴随着相对低的损耗角正切的相对中等的介电常数的介质层,以供一旦烧制后用于微波频率下的电路操作。
在利用多块介质基片材料形成微波电路的过程中,冲击穿过带的一层或多层的特征,诸如过孔、孔隙、孔或穴。可以利用机械手段(例如冲加工)或直接能量手段(例如激光打眼,光刻)限定孔隙,但是还可以利用任何其它适当方法限定孔隙。一些过孔可以穿过定尺寸基片的整个厚度,而一些孔隙可以只通过基片厚度方向上的不同部分。
接着对过孔填充金属或其它介质或磁材料,或者它们的混合物,这通常利用用来精确设置回填材料的模版。在常规工艺下可以把带的各个层堆叠到一起以生产完成的多层基片。替代地,可以把带的各个层堆叠到一起以生产通常称为“子堆”的未完成多层基片。
带孔隙区也可以保留孔隙。若用选定的材料回填,该选定的材料最好包括元材料。元材料成分的选择可以在从1到约2650的相对连续的范围上提供可调的有效介电常数。还可以从某些元材料得到可调的磁特性。例如,对于大多数实际RF应用,通过选择适当的材料通常相对有效磁导率范围可约从4到116。但是,相对有效磁导率可以低至约2或者达到数千。
可以不同地修改一块给定的介质基片。本文所使用的术语“不同地修改”指的是,修改(包括掺杂)介质基片层从而造成该基片的一部分相对于另一部分至少在介电和磁特性中之一上是不同的。不同修改的板基片最好包括一个或多个元材料包含区。例如,该修改可以是选择性的修改,其中修改某些介质层部分以产生第一组介电或磁特性,同时不同地修改或者不修改其它介质层部分以提供和第一组不同的介电和/或磁特性。可以按各种不同方式实现不同的修改。
依据一实施例,可以对介质层添加辅助介质层。可以利用技术上的周知技术,例如各种喷涂技术、旋涂技术、各种沉积技术或溅射,施加该辅助介质层。可以把该辅助介质层选择性地添加在局部化区域中,包括孔隙或孔的内部或者在整个已有介质层的上面。例如,可以利用辅助介质层提供有效介电常数提高的基片部分。作为辅助层添加的介电材料可包括各种聚合材料。
不同修改步骤还可以包括对介质层或辅助介质层局部地添加补充材料。材料的添加可以用于进一步控制介质层的有效介电常数或磁特性以实现给定的设计目标。
该补充材料可以包括多种金属和/或陶瓷颗粒。金属颗粒最好包括铁、钨、钴、钒、锰、某些稀土金属、镍或铌颗粒。这些颗粒最好是纳米尺寸颗粒,通常具有亚微米物理尺寸,以下称为纳颗粒。
颗粒,例如纳颗粒,可以最好是有机功能化的复合颗粒。例如,有机功能化的复合颗粒可以包括具有带着电绝缘涂层的金属芯的颗粒或者具有带有金属涂层的电绝缘芯的颗粒。
通常适用于控制本文所说明的各种应用中的介质层的磁特性的磁性元材料颗粒包括铁氧体有机陶瓷(FexCyHz)-(Ca/Sr/Ba陶瓷)。对于8-40GHz频率范围的应用这些颗粒工作良好。替代地或者补充地,对于12-40GHz的频率范围,铌有机陶瓷(NbCyHz)-(Ca/Sr/Ba陶瓷)是有用的。这些对高频指定的材料也可应用于低频应用。可从市场上得到这些和其它类型的复合颗粒。
通常,优选带涂层的颗粒供本发明使用,因为它们可以帮助和聚合物基质或和侧链部分结合。除了控制介质的磁特性之外,还可以利用添加的颗粒控制材料的有效介电常数。采用大约1到70%的复合颗粒填充率,能明显提高和能降低基片介质层和/或辅助介质层部分的介电常数。例如,可以利用对介质层添加有机功能化纳颗粒来提高修改后的介质层部分的介电常数。
可以通过各种技术施加颗粒,这些技术包括聚合混合、混合和搅拌下的填充。例如,通过在高达约70%的填充率下使用各种颗粒,可以把介电常数从等于2的值提高到10。用于此目的金属氧化物可包括氧化铝、氧化钙、氧化锰、氧化镍、氧化锆和氧化铌(II、IV和V)。还可以使用铌酸锂(LiNbO3)和锆酸盐,例如锆酸钙和锆酸锰。
可选的介电特征可被局部化至约10纳米的区域内或者可覆盖大的面积区,包括整个板的基片表面。可以利用诸如光刻、蚀刻以及沉积处理的常规技术用于局部化的介电和磁特性控制。
可以通过和其它材料混合或者可以包括密度变化的带孔隙区(它们通常引入空气)来准备材料,以产生从2到约2650的大致连续的有效介电常数,并且引入其它潜在期望的基片特性。例如,呈现低介电常数(<2至约4)的材料包括带有密度变化的带孔隙穴区的硅土。带有密度变化的带孔隙区的铝土可提供大约4到9的介电常数。硅土和铝土都不具有明显的磁导率。但是可以添加磁性颗粒,例如高达20%重量比,以赋予这些和其它材料明显的磁性。例如,可以利用有机功能性调节磁特性。添加磁材料影响介电常数通常造成介电常数的增加。
中等介电常数材料通常范围在从70到500(±10%)。如前面指出那样,这些材料可以和其它材料或者孔隙混合以提供期望的有效介电常数值。这些材料可以包括掺杂铁氧体的钛酸钙。掺杂金属可以包括锰、锶和铌。这些材料具有范围从45到600的磁导率。
对于高介电常数应用,可以使用掺杂铁氧体或铌的钙或钡的钛酸锆酸盐。这些材料具有约2200到2650的介电常数。这些材料的掺杂率通常从约1到10%。如对其它材料指出那样,这些材料可以和其它材料或者孔隙混合以产生期望的有效介质电常数值。
通常可以通过各种分子修改处理来修改这些材料。修改处理可以包括形成孔隙,接着填充诸如基于碳和氟的有机功能材料,例如聚四氟乙烯PTFE。
作为对有机功能合成的替代或补充,处理可以包括固体自由形式加工(SFF)以及光、紫外线、X线、电子束或离子束照射。还可以利用光、紫外线、X线、电子束或离子束辐射进行光刻。
可以对各基片层(各子堆)的不同区域施加不同的材料,包括元材料,从而各基片层(各子堆)的多个区域具有不同的介电和/或磁特性。可以连同一个或更多的补充处理步骤使用例如前面提到的回填材料,以便局部地或者在整个基片部分上得到期望的介电和/或磁特性。
通常接着对修改的基片层、子堆或完整的堆施加顶层导体印制。可以利用薄膜技术、厚膜技术、电镀技术或者任何其它适当的技术设置导体迹线。用来限定导体图案的处理包括但不限于标准光刻术和模版。
接着,通常得到基板以用于整理并且对齐多块修改后的板基片。为此,可以使用穿过每块基片板的对齐孔。
接着,利用从各个方向对材料加压的均衡压力,或者利用只从一个方向对材料加压的单轴压力,可以把多个基片层、一个或多个子堆或者层和子堆的组合叠压(例如机压)到一起。叠层基片接着如上面说明那样进一步处理或者放到炉中以加热到适于被处理的基片的温度(对于上面提到的材料大约850℃到900℃)。
接着,可以利用适当的、能按适于所使用基片材料的速率控制温升的炉子烧制多个陶瓷带状层以及基片的堆叠子堆。仔细为基片材料以及任何在其中回填的或者在其上沉积的材料选择处理条件,例如温升速率、最终温度、冷却分布以及任何必要的支持。烧制后,典型地利用声、光、扫描电子或X线显微镜对叠层基片板检查瑕疵。
接着,可以任选地把叠层陶瓷基片切割成所需的小带片以满足电路功能要求。在最后检查之后,可以接着把基片带片安装到检查装置上以评估它们的各种特性,从而确保介电、磁和/或电特性在规定的限制之内。
这样,可以提供带有局部可调的介电和磁特性的介质基片材料,以改进电路的密度和性能,包括构成微带天线,例如隙缝馈电微带贴片天线的电路的密度和性能。
例子现在给出几个依据本发明利用包含磁性颗粒的介质处理阻抗匹配的具体例子。展示从馈线到隙缝、从隙缝到短载线以及从隙缝到环境(例如空气)的阻抗匹配。
对于法向入射(θi=0°)平面波,二个不同介质之间的界面处的固有阻抗相等的必要条件是μnϵn=μmϵm.]]>使用该式以得到隙缝中的电介质和相邻的电介质,例如空气环境(例如上方为空气的隙缝天线)或者其它介质(例如贴片天线情况中的天线介质)之间的阻抗匹配。对环境的阻抗匹配和频率无关。在许多实际应用中,假定入射角为零通常是合理的近似。但是,当入射角明显大于零时,应和上式一起使用余弦项以便匹配二种介质的固有阻抗。
所考虑的材料全部假定是各向同性的。可以利用计算机程序计算这些参数。但是,因为本发明之前尚未使用过用来匹配二种介质之间的固有阻抗的用于微波电路的磁材料,所以目前不存在用来计算阻抗匹配所要求的材料参数的可靠软件。
为了示出涉及到的物理原理,简化给出的计算。可以采用更严格的方法例如有限元分析在精度提高的情况下对本文给出的问题建模。
例1上方为空气的隙缝参照图5,隙缝天线500示成为上方为空气(介质1)。天线500包括传输线505和地平面510,该地平面包含隙缝515。介电常数εr=7.8的介质530设置在传输线505和地平面510之间,并且包括区/介质5、区/介质4、区/介质3以及区/介质2。区/介质3具有用参照符号532指示的关联长度(L)。在区/介质5的下面设置传输线505的短截线区540。假定超出短截线540延伸的区525对分析的影响很小从而被忽略。
利用介质2和3的固有阻抗匹配条件确定介质2和3的相对磁导率值(μr2和μr3)。具体地,确定介质2的相对磁导率μr2以使介质2的固有阻抗和介质1(环境)的固有阻抗匹配。类似地,确定介质3的相对磁导率μr3以使介质2对介质4实现阻抗匹配。另外,确定介质3中的匹配段的长度L以匹配介质2和4的固有阻抗。长度L为选定运行频率下的波长的四分之一。
首先,利用下式阻抗匹配介质1和2以理论上消除它们界面处的反射系数μr1ϵr1=μr2ϵr2---(1)]]>
接着,按如下得出介质2的相对磁导率μr2=μr1ϵr2ϵr1=1·7.81μr2=7.8---(2)]]>这样,为使隙缝对环境(例如空气)匹配,介质2的相对磁导率μr2为7.8。
接着,可以使介质4对介质2实现阻抗匹配。利用区3中的匹配段532的长度(L)(其具有选定工作频率(假定为3GHz)下四分之一波长的电长度),介质3用于匹配介质2和4。这样,匹配段532充当四分之一波转换器。为使介质4对介质2匹配,要求四分之一段532具有固有阻抗η3=η2·η4---(3)]]>区2的固有阻抗为η2=μr2ϵr2η0---(4)]]>其中η0是自由空间的固有阻抗,其为η0=120πΩ≈377Ω (5)这样,介质2的固有阻抗η2变为η2=7.87.8·377Ω=377Ω---(6)]]>区4的固有阻抗是η4=μr4ϵr4η0=17.8·377Ω≈135Ω---(7)]]>把(7)和(6)代入(3)得出介质3的固有阻抗η3=377·135Ω=225.6Ω---(8)]]>接着按如下得出介质3的相对磁导率η3=225.6Ω=μr3ϵr3·η0=μr37.8·377]]>μr3=7.8·(225.6377)2=2.79---(9)]]>
3GHz下介质3中的导波波长为λ3=cf1ϵr3·μr3=3×1010cm/s3×109Hz·17.8·2.79=2.14cm---(10)]]>其中c是光速,f是运行频率。
由此,四分之一波匹配段532的长度(L)为L=λ34=2.144cm=0.536cm---(11)]]>注意,介质2和3之间的电抗必须为零或者非常小,以便利用位于介质3中的四分之一波转换器使介质2的阻抗和介质4的阻抗匹配。该事实在四分之一波转换器的理论中是周知的。
类似地,可使介质5对介质2实现阻抗匹配。如前面指出那样,通过在高介电常数介质/区5上设置短截线540并且使介质5对介质2阻抗匹配,具有高Q的改进的短截线540可以允许形成效率改进的隙缝天线。由于区2对空气阻抗匹配,区5应具有和区/介质5的介电常数值相等的相对磁导率值。例如,如果εr=20,则也要把μr置为20。
例2上方带有介质的隙缝,该介质的相对磁导率为1并且介电常数为10。
参照图6,图中示出在介电常数εr=10和相对磁导率μr=1的天线介质610上形成的隙缝馈电微带贴片天线600的侧视图。天线600包括微带贴片天线615和地平面620。地平面620包括含有隙缝625的切去区。馈线介质630设置在地平面620和微带馈线605之间。
馈线介质630包括区/介质5、区/介质4、区/介质3和区/介质2。区/介质3具有用参照数字632表示的关联长度L。传输线605的短截线区640设置在区/介质5上。超出短截线640延伸的区635假定为对本分析影响很小从而被忽略。
由于天线介质的相对磁导率等于1而介电常数为10,该天线介质明显对于相对磁导率和介电常数相等的空气不匹配,从而该天线介质应需要μr=10和εr=10。尽管未在该例中展示,但可以利用本发明实现这样的匹配。在本例中,为了介质2和4之间的以及介质1和2之间的最优阻抗匹配而计算介质2和3的相对磁导率。另外,接着确定介质3中的匹配段的长度,其具有选定运行频率下的四分之一波长的长度。在本例中,未知的仍是介质2的相对磁导率μr2,介质3的相对磁导率μr3以及L。首先,利用式μr1ϵr1=μr2ϵr2---(12)]]>介质2中的相对磁导率为μr2=μr1ϵr2ϵr1=1·7.810=0.78---(13)]]>为了匹配介质2和介质4,要求四分之一波段632的固有阻抗为η3=η2·η4---(14)]]>介质2的固有阻抗为η2=μr2ϵr2η0---(15)]]>其中η0是自由空间的固有阻抗,并为η0=120πΩ≈377Ω(16)此样,介质2的固有阻抗η2变为η2=0.787.8·377Ω=119.2Ω---(17)]]>介质4的固有阻抗是η4=μr4ϵr4η0=17.8·377Ω≈135Ω---(18)]]>把式(18)和(17)代入到(14)中得出介质3的固有阻抗η3=119.2·135Ω=126.8Ω---(19)]]>接着得出介质3的相对磁导率为η3=126.8Ω=μr3ϵr3·η0=μr37.8·377]]>μr3=7.8·(126.8377)2=0.8823---(20)]]>3GHz下介质3中的导波波长为
λ3=cf1ϵr3·μr3=3×1010cm/s3×109Hz·17.8·0.8823=3.81cm---(21)]]>其中c是光速而f是运行频率。由此,长度L为L=λ34=3.814cm=0.952cm---(22)]]>和例1样,可以通过介质2对介质5的固有阻抗匹配进一步改进天线的辐射效率。这可以通过设定介质/区5中的相对磁导率和介电常数值以提供对η2阻抗匹配的固有阻抗来实现。
由于此例中阻抗匹配所需的相对磁导率值包括明显小于1的值,这种匹配难以利用已有材料实现。从而,本例的具体实现将要求开发专门为本应用或类似的要求相对磁导率小于1的应用定制的新材料。
例3上方带有介质的隙缝,该介质相对磁导率为10,介电常数为20。
除了天线介质610的介电常数εr为20而不是1之外,该例类似例2,并具有图6中示出的结构。由于天线介质610的相对磁导率等于10并且和它的相对介电常数不同,天线介质610也不和空气匹配。和前一个例子一样,在本例中对介质2和3计算用于介质2和4之间的最优阻抗匹配以及介质1和2之间的最优阻抗匹配的磁导率。此外,接着确定介质3中的匹配段的长度,其具有选定运行频率下的四分之一波长的长度。如前面一样,确定介质2的相对磁导率μr2、介质3的μr3以及介质3中的长度L,以和相邻电介质阻抗匹配。
首先利用式μr1ϵr1=μr2ϵr2---(23)]]>得出介质2的相对磁导率为μr2=μr1ϵr2ϵr1=10·7.820=3.9---(24)]]>为了使介质2对介质4阻抗匹配,要求四分之一波长段的固有阻抗为η3=η2·η4---(25)]]>介质2的固有阻抗为
η2=μr2ϵr2η0---(26)]]>其中η0是自由空间的固有阻抗,其为η0=120πΩ≈377Ω (27)这样,介质2的固有阻抗变为η2=3.97.8·377Ω=266.58Ω---(28)]]>介质4的固有阻抗为η4=μr4ϵr4η0=17.8·377Ω≈135Ω---(29)]]>把式(29)和(28)代入(25)得出介质3的固有阻抗,其为η3=266.58·135Ω=189.7Ω---(30)]]>接着,得出介质3的相对磁导率η3=189.7Ω=μr3ϵr3·η0=μr37.8·377]]>μr3=7.8·(189.7377)2=1.975---(31)]]>3GHz下介质3中的导波波长为λ3=cf1ϵr3·μr3=3×1010cm/s3×109Hz·17.8·1.975=2.548cm---(32)]]>其中c是光速而f是运行频率。由此,得出长度632(L)为L=λ34=2.5484cm=0.637cm---(33)]]>和例1和2中一样,可以通过介质2对介质5的固有阻抗匹配来进一步改进天线的辐射效率。这可以通过设定介质/区5中的相对磁导率和介电常数值以提供对η2阻抗匹配的固有阻抗来实现。
比较例2和3,通过使用相对磁导率明显大于1的天线介质610便于介质1和2之间以及介质2和4之间、介质2和5之间的阻抗匹配,这是因为如本文说明那样,容易实现匹配各介质所需的介质2、3和5的磁导率。
权利要求
1.一种隙缝馈电微带贴片天线,包括导电地平面,所述地平面具有至少一个隙缝;用于对所述隙缝或从所述隙缝传送信号能量的馈线,所述馈线包含超出所述隙缝延伸的短截线;设置在所述馈线和所述地平面之间的第一介质层,所述第一介质层具有包含关于第一区的第一相对介电常数的第一组介质特性,并且所述第一介质层的至少一个第二区具有第二组介质特性,所述第二组介质特性提供比所述第一相对介电常数高的相对介电常数,其中,所述短截线设置在所述第二区上,以及至少一个贴片辐射器和第二介质层,所述第二介质层设置在所述地平面和所述贴片辐射器之间,其中,所述第二介质层包括提供包含第三相对介电常数的第三组介质特性的第三区,并且包括包含第四组介质特性的至少一个第四区,所述第四组介质特性包含比所述第三相对介电常数高的相对介电常数。
2.如权利要求1的天线,其中,所述第一和第二介质层中至少之一包括陶瓷材料,所述陶瓷材料具有多个孔隙,至少一部分的所述孔隙充填着磁性颗粒。
3.如权利要求2的天线,其中,所述磁性颗粒由包括元材料。
4.如权利要求1的天线,其中,所述至少一个第一贴片辐射器包括第一和第二贴片辐射器,所述第一和所述第二贴片辐射器由第三介质层隔开。
5.如权利要求1的天线,其中,所述第一介质提供接近所述隙缝的四分之一波长匹配段,以把所述馈线匹配到所述隙缝中。
6.如权利要求1的天线,其中,所述隙缝包括至少一个交叉隙缝,并且所述馈线包括至少二条馈线,所述馈线被调整相位以提供双极化发射图。
7.一种隙缝馈电微带天线,包括导电地平面,所述地平面具有至少一个隙缝;设置在所述地平面上的第一介质层,以及至少一条设置在所述第一介质材料上、用于对所述隙缝或从所述隙缝传送信号能量的馈线,所述馈线包括短截线部分,其中,所述第一介质层包含多个磁性颗粒,至少一部分所述磁性颗粒设置在所述馈线和所述隙缝之间的第一接合区中,所述第一介质层具有关于第一区的第一相对介电常数和关于第二区的第二相对介电常数,所述第二区具有比所述第一区高的相对介电常数,其中,至少一部分的所述短截线设置在所述第二区上。
8.如权利要求7的天线,其中,所述第一介质层包括陶瓷材料,所述陶瓷材料具有多个孔隙,至少一些所述孔隙充填着磁性颗粒。
9.如权利要求8的天线,其中,所述磁性颗粒包括元材料。
全文摘要
一种隙缝馈电微带贴片天线(300),包括一个导电地平面(308),该导电地平面(308)包含至少一个隙缝(306)。在地平面(308)和至少一条馈线(317)之间设置介质材料,其中至少一部分介质层(313)包含磁性颗粒(324)。馈线(317)和地平面(308)之间的介质层提供具有高相对介电常数(313)和低相对介电常数的(312)区。至少一部分短截线(318)设置在高相对介电常数区(313)上。
文档编号H01Q1/38GK1784810SQ200480012553
公开日2006年6月7日 申请日期2004年3月23日 优先权日2003年3月31日
发明者威廉姆·D·基伦, 兰迪·T·皮克, 赫里伯托·J·戴尔噶多 申请人:哈里公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1