光学装置的制作方法

文档序号:6854996阅读:177来源:国知局
专利名称:光学装置的制作方法
技术领域
本发明涉及一种光学装置(optical device),特别是涉及一种具备形成发射光或接收光的光学元件(optical element)的光学元件芯片的光学装置。
背景技术
内藏于摄像机、数码相机、数码静物摄像机等CCD组件等的光学半导体装置是众所周知。
例如,日本特开2002-43554号公报中公开了以倒装芯片(flip-chip)结合技术所封装的CCD封装组件90等。这个CCD封装组件90,如图11所示,主要是在玻璃(透光性构件)92底面设置直接电路(装置衬底)94,图像捕获芯片(光学元件芯片)91与直接电路94通过倒装芯片的封装结合被结合。并且,直接电路94与电路板(布线衬底)96以锡球93通过电路结合而结合。其中并记载着通过采用倒装芯片的结合技术制造电路加以封装、或是以倒装芯片的结合技术来组合各种不同衬底制造薄型CCD图像捕获芯片的封装组件,能够使得电荷结合装置的图像捕获芯片的封装组件为薄。并且,也记载以此CCD封装组件90来进行图像处理的光,在图像捕获芯片91通过如图11所示的图像捕获轨迹p来接收光。

发明内容
-解决课题-这个CCD封装组件90,通过将图像捕获芯片91组装到电路板96,向图像捕获芯片91输入电压,以进行图像处理等。因此,必须使得图像捕获芯片91对电路板96为正确配置下,将图像捕获芯片91组装到电路板96。换句话说,必须在与图像捕获芯片91的输出入端子电性连接的锡球93、以及电路板96对应锡球93的连接端子相符合的情况下,将图像捕获芯片91组装到电路板96。若是在图像捕获芯片91对电路板96为错误配置下加以组装,例如图像捕获芯片91对电路板96偏离180度的配置情况下加以组装,可能造成电压无法输入到图像捕获芯片91,结果可能造成无法进行图像处理等。
进一步地,近年来对于摄像机、数码相机、数码静物摄像机等更加要求小型化,因此对于所装配的光学装置也要求小型化。
本发明是有鉴于上述问题所思考出来,目的在于提供能够进行位置的方向认识同时谋求小型化的光学装置。
-解决方法-本发明的第1光学装置,包括形成对表面实质垂直延伸并贯通的开口部的装置衬底,覆盖所述开口部第1开口的透光性构件,覆盖所述开口部第2开口并在与所述透光性构件相对的面形成发射光或接收光的光学元件的光学元件芯片,一部分埋入所述装置衬底内并具备与所述光学装置电性连接的第1端子部及与布线衬底电性连接的第2端子部的导电部,以及密封所述光学装置与所述第1端子部的电性连接部的密封剂;所述第1开口的开口轮廓形状对第1开口的大致中心点是非点对称。
这里,开口部是扩展到3次元的空间,第1开口及第2开口是在装置衬底表面扩展到2次元的缝隙。详细来说,第1开口是在由透光性构件覆盖的装置衬底的面的开口,第2开口是在由光学元件芯片覆盖的装置衬底的面的开口,开口部是以第1开口为其中一边底面、以第2开口为另外一个底面的柱状空间。
并且,第1开口的大致中心点与在第1开口的开口轮廓形状的重心差不多相同。并且,最好是,第1开口的大致中心点与装置衬底的中心点相同。
最好是,第1光学装置中,在所述第1开口的开口的非点对称轮廓形状,具有示出所述装置衬底的所述第2端子部的配置方向的机能。
这里,第2端子部的配置方向是按照含有端子机能的端子的配置所示出的方向。作为端子机能,可以举出将电压输入到光学装置的输入端子、将电压输出到布线衬底的输出端子、电源端子等等。并且,例如从左按照输入端子、输出端子、电源端子的顺序予以配置时,与从左按照电源端子、输出端子、输入端子的顺序予以配置时,第2端子部的配置将有所不同。同时,在第1开口的开口的非点对称轮廓形状具有示出第2端子部配置方向的机能,表示通过视觉辨认或测量能够大致决定第2端子部的配置方向。
第1光学装置的适当实施例中,在所述第1开口的开口轮廓形状,是将矩形的至少1个顶点予以直线状切除而构成。换句话说,这时的第1开口的开口轮廓形状是非点对称的多角形,该多角形的内角中至少2个内角是钝角、其他内角是直角。并且,这时,第1开口的大致中心点是所述矩形的中心点。
第1光学装置的其他适当的实施例是,所述第1开口的开口轮廓形状是将矩形的至少1个顶点予以曲线状切除而构成。换句话说,在这种情况下的第1开口的开口轮廓形状是,矩形的4个顶点中的至少1个顶点以圆弧状形成。并且,换句话说,也就是,在第1开口的开口轮廓形状是矩形的4个顶点中的至少1个顶点为圆角。并且,这个情况时,第1开口的大致中心点也是所述的矩形中心点。
并且,第1光学装置中,在所述第1开口的开口轮廓形状,也可以是在正多角形的轮廓的至少一部分形成面积缩小部,该面积缩小部是使第1开口的开口部面积小于正多角形的面积。这时,在所述的某个适当的实施例中,矩形的至少一个顶点被直线状切除而构成的部分是面积缩小部,在所述的其他适当的实施例,由矩形的至少一个顶点被曲线状切除而构成的是面积缩小部。同时,面积缩小部可以是在多角形的至少一边被形成为凹部,这一个凹部的形状并没有特别限定。并且,这时第1开口的大致中心点是所述的正多角形的中心点。
同时,在所述第1开口的开口轮廓形状,也可以是在正多角形的轮廓的至少一部分形成面积扩大部,该面积扩大部是使第1开口的开口部面积大于正多角形的面积。并且,最好是,面积扩大部是正多角形的轮廓的至少一部分与正多角形为一体而设的部分;这一个面积扩大部的形状并没有特别限定是圆形的一部分或多角形的一部分等。并且,这个情况下,第1开口的大致中心点是所述的正多角形中心点。
进一步地,在第1光学装置中,所述第1开口的开口轮廓形状,也可以是在圆形轮廓的至少一部分形成面积缩小部,该面积缩小部使该第1开口的该开口部面积小于圆形面积。并且,在第1光学装置中,所述第1开口的开口轮廓形状,也可以是在圆形轮廓的至少一部分形成面积扩大部,该面积扩大部使该第1开口的该开口部面积大于圆形面积。并且,面积缩小部及面积扩大部的具体例子等,最好是如上所述。并且,这时第1开口的大致中心点是所述的圆形中心点。
本发明的第2光学装置,包括形成对表面实质垂直延伸贯通的开口部的装置衬底,覆盖所述开口部的第1开口的透光性构件,覆盖所述开口部的第2开口并具备形成发射光或接收光的光学元件的光学元件形成面的光学元件芯片,一部分埋入到所述装置衬底内并具备与所述光学装置电性连接的第1端子部及与布线衬底电性连接的第2端子部的导电部,以及密封所述光学装置与所述第1端子部的电性连接部的密封剂;所述光学元件形成面与所述透光性构件相对,在与所述光学元件形成面相反面的光学元件芯片面形成方向指示用记号部,该方向指示用记号部用来表示所述第2端子部在所述装置衬底的配置方向。并且,最好是使用周知的标记方法对方向指示用记号部作标记。
并且,最好是,第2光学装置中,所述方向指示用记号部由至少1个文字或记号所构成。方向指示用记号部由至少1个文字或记号构成是指方向指示用记号部由1字以上的文字、1个以上的记号、或1字以上的文字与1个以上的记号所构成。
本发明的第3光学装置,包括形成对表面实质垂直延伸贯通的开口部的装置衬底,覆盖所述开口部的第1开口的透光性构件,覆盖所述开口部的第2开口并在与所述透光性构件相对的面形成发射光或接收光的光学元件的光学元件芯片,一部分埋入在所述装置衬底内并具备与所述光学装置电性连接的第1端子部及与布线衬底电性连接的第2端子部导电部,以及密封所述光学装置与所述第1端子部的电性连接部的密封剂;在所述装置衬底形成方向指示用贯通孔部,该方向指示用贯通孔部用来表示所述第2端子部在该装置衬底的配置方向。并且,最好是,第3光学装置中,所述方向指示用贯通孔部在所述装置衬底的位置,是在所述第2端子部的形成位置及所述密封剂设置的位置以外的位置。
并且,本发明的第1、第2及第3光学装置中,开口部对表面实质垂直延伸而形成,表示不仅是在数学上的严密定义下开口部垂直延伸形成,也包含着在数学严密定义下从垂直方向稍微偏离的方向。
并且,本发明第1、第2及第3光学装置的透光性构件的透光性是指通过70%左右以上的光,最好是通过80%以上的光,进一步地更好是通过90%以上的光。
并且,本发明的第1、第2及第3光学装置的光学装置,能够举出如CCD(电荷耦合器件charge-coupled device)等固态图像元件、或是多个受光元件离散性的配置者、或发光元件等。并且,光学装置为固态图像元件时,光学装置是固态图像装置。同时,光学元件是受光元件或发光元件时,光学装置为受光装置或发光装置。
-发明效果-本发明的光学装置能够使得光学装置具有位置方向认识和小型化。


图1是第1实施例的光学装置100的构造图。
图2是第1实施例的装置衬底10的构造图。
图3是第1实施例的光学装置100的制造工序剖面图。
图4是第1实施例的光学装置100的一部分制造工序的剖面图。
图5是第2实施例的装置衬底20的平面图。
图6是第3实施例的装置衬底30的平面图。
图7是第4实施例的光学装置400的构造图。
图8是第4实施例的光学元件芯片的性能检查图。
图9是第4实施例的光学装置400的制造工序剖面图。
图10是第5实施例的装置衬底50的平面图。
图11是现有例子的CCD封装·芯片90的剖面图。
符号说明2,22-开口部、3,23-第1开口、3a-顶点被直线状切除的部分、4-第2开口、5,35,45-光学元件芯片、5a-光学装置形成面、6-透光性构件、10,20,30,40,50-装置衬底、12a-内部端子部(第1端子部)、13-第2端子部、14-导电部、23a-顶点被曲线状切除的部分、35a,45a-方向指示用记号部、50b-方向指示用贯通孔部、100,400-光学装置具体实施方式
(第1个实施例)以下,参考附图详细说明本发明的实施例。并且,本发明并不受限于以下实施例。
第1实施例中,使用图1、图2、图3及图4示出光学装置100的构造及制造方法。图1是示出光学装置100的构造图,图2是示出装置衬底10的构造图,图3是示出光学装置100的制造工序剖面图,图4是示出光学装置100一部分的制造工序剖面图。并且,图1(b)是光学装置100的背面图,图1(a)是图1(b)中的IA-IA线的剖面图。图2(a)是图1(b)中的IA-I A线的剖面图,而图2(b)是装置衬底10的第1开口3这一面的平面图。
-光学装置100的构造-首先,说明光学装置100的构造。
如图1所示,本实施例的光学装置100包括形成对表面实质垂直延伸贯通的开口部2的装置衬底10,覆盖开口部2的第1开口3(如图2(a)所示)的透光性构件6,设置用来覆盖开口部2的第2开口4(如图2(a)所示)并在与透光性构件6的相对的面形成发射光或接收光的光学元件的光学元件芯片5,以及一部分埋入装置衬底10内的导电部14。这里,透光性构件6最好是由具有至少70%以上的透射率的玻璃等构成。
在光学元件芯片5,形成CCD等固态图像元件、分离性地设置的多个受光元件、或发光元件的其中之一的光学元件。并且,在形成光学元件的光学元件芯片面(光学元件形成面)5a与透光性构件6相对,所以光学元件只要是发射光的元件,从该光学元件发射的光将通过装置衬底10的开口部2而通过透光性构件6发射到光学装置100的外部。并且,光学元件若是受光元件,在光学元件所接收的光是通过透光性构件6被射入到光学装置100、并通过装置衬底10的开口部2、在光学元件来接收光。然后,使用所接收的光在光学元件来进行图像处理分析等。并且,在光学元件形成面5a外周部电性连接电极垫(electrode pad)5b,在电极垫5b表面电性连接凸部(凸状电极)8。
装置衬底10由环氧树脂等可塑性树脂或由陶瓷等构成。并且,在装置衬底10形成定位孔10a,该定位孔10a为用来决定成为光学装置100的X·Y方向的中心位置基准的2个位置,被利用在后述的光学装置100制造工序中装配光学元件芯片5时的基准位置、或被利用在对光学装置安装收纳透镜等光学系镜筒时作为镜筒的安装位置基准。这里,由于只要有两处以上的定位孔10a便能够得知光学装置100的中心位置,因此定位孔10a最好有2处以上。并且,如图2(a)所示,装置衬底10的开口部2是扩展到3次元的空间;详细来说,即是一个柱状空间,一边底面是由透光性构件6所覆盖的装置衬底面的开口的第1开口3,另一边底面是由光学元件芯片5所覆盖的装置衬底面的开口的第2开口4。并且,第1开口3的轮廓形状与第2开口4的轮廓形状相同,有关第1开口3的轮廓形状将于后述。
导电部14包括埋设在装置衬底10的布线部12,以及连接装置衬底10表面同时与布线衬底电性连接的第2端子部13…等。
布线部12由主要布线部与端子部构成,主要布线部与装置衬底10的表面略为平行而延伸,端子部是从主要布线部向着第2开口4这一面的装置衬底10的表面方向延伸而设。端子部由内部端子部(第1端子部)12a与外部端子部12b构成,按照这一顺序使其形成时远离开口部2。这些端子部的其中一个端子与主要布线部成为一体。并且,内部端子部12a的另一个端子与所述凸部8电性连接,外部端子部12b的另一个端子与第2端子部13…等电性连接。
在第2开口4的这一面的装置衬底外周设置多个第2端子部13,将这些第2端子部13以第2开口4的装置衬底表面的中心点为对称中心配置成点对称。并且,各个第2端子部13…具备各自不同的机能。例如,一部分的第2端子部是为了向光学元件输入电压的输入端子,同时另外一部分的第2端子部是为了将电压从光学元件输出到布线衬底的输出端子,同时另外一部分的第2端子部是电源端子等等。
将光学元件与内部端子部12a的电性连接部以第1密封树脂(密封剂)7加以密封。因此,光学元件芯片5与装置衬底10之间的空隙被第1密封树脂7所密封,通过上述,光学元件芯片5被固定在装置衬底10。并且,将透光性构件6与装置衬底10之间的空隙以第2密封树脂15加以密封,使得透光性构件6被固定在装置衬底10。同时,第1密封树脂7及第2密封树脂15是防止不必要的光与空气中的水分等侵入到光学装置100内部。因此,比起电性连接部等未被密封的光学装置,光学装置100的性能比较优良。
并且,作为本实施例的特征部分,装置衬底10的开口部2的形状如以下所示。第1开口3的开口轮廓形状对第1开口3的大致中心点3b是非点对称,具体来说,是将矩形的4个顶点的其中1个顶点予以切除。(以下,将顶点被切除而构成的这一个部分3a称为“非点对称部3a”)。换句话说,在第1开口3的开口轮廓形状,是非点对称的五角形;这一个五角形是5个内角的其中2个为内角钝角、其他3个内角为直角。并且,由于覆盖第1开口3的透光性构件6示出70%以上的透射率,通过从第1开口3这一面透视观察光学装置100,能够视觉辨认非点对称部3a。因此,例如在最靠近具有特定机能的第2端子部(1号引脚侧的第2端子部等)的第1开口3的轮廓部分形成非点对称部3a,则通过从第1开口3这一面来透视观察光学装置100,能够视觉辨认第2端子部的位置。因此,非点对称部3a具有示出装置衬底10的第2端子部13…配置方向的机能。因此,通过透视观察光学装置100,可以得知例如输入端子第2端子部的位置或输出端子第2端子部的位置等。
以下,说明使第1开口3的开口轮廓形状相对于第1开口3的大致中心点3b为非点对称的理由。
近几年来,由于对摄像机、数码相机、数码静物摄像机等要求小型化,也对这些机器装配的光学装置要求小型化。并且,如图1(a)所示,由于光学装置的大小以装置衬底大小来决定,因此通过缩小装置衬底的大小能够使光学装置小型化。
另一方面,将装置衬底过于缩小的话,在装置衬底表面所设的第2端子部的个数将变少。如前所述,由于各个第2端子部具备各自不同的机能,个数变少的话将无法发挥光学装置等所预期的机能。因此,最好是,装置衬底的大小是能够在装置衬底设置充分个数的第2端子部、并且能够使摄像机等小型化。
进一步地,最好是,通过观察光学装置能够得知第2端子部的配置方向。由于各个第2端子部的机能各自不同,只是将光学装置组装到布线衬底,将导致该光学装置具备的光学元件无法发射所要的光、或无法将接收的光予以图像处理等。为了回避这样的状态,最好是,通过观察光学装置能够视觉辨认具有特定机能的第2端子部的位置。作为视觉辨认具有特定机能的第2端子部位置的方法,能够考虑例如使用将具有特定机能的第2端子部附近的顶点予以直线状切除而构成的装置衬底、或在具有特定机能的第2端子部附近施加标记的装置衬底。然后,在由这类装置衬底构成的光学装置,可以在符合光学元件芯片的布线配置方向将这个光学装置组装到布线衬底。通过上述,可以避开前面所述不良状态。
但是,所述的2个装置衬底,有着以下所示问题。首先,在具有特定机能的第2端子部附近将顶点予以直线状切除而构成的装置衬底,为了使装置衬底成为这个形状,必须变更在顶点附近的第2端子部的位置。因此,将会限制在装置衬底的内部端子部的配置或第2端子部的配置。并且,在将具备这个装置衬底的光学装置组装到布线衬底而构成的光学设备装配镜筒等时,由于这个装置衬底的1个顶点被直线状切除,所以由于装置衬底的外形限制将难以施行而不适合。
并且,在靠近具有特定机能的第2端子部附近施加标记的装置衬底,由于必须有标记空间,将无法缩小装置衬底。因此无法使光学装置小型化。并且,通过在装置衬底表面形成凹凸而在装置衬底表面施加标记,则装置衬底表面将产生阶差。因此,具备这个装置衬底的光学装置的平坦度将恶化,在将这个光学装置组装到布线衬底而构成的光学设备装配镜筒等时,将对装配时倾斜度造成影响。
但是,由于本实施例的光学装置100的非点对称部3a是第1开口3的开口轮廓的一部分,因此不需要变更在装置衬底10的内部端子部12a的配置或第2端子部13的配置等。并且,由于几乎不需要用来形成非点对称部3a的空间,因此能够使装置衬底10小型化,而能够谋求光学装置100的小型化。进一步地,由于装置衬底10被形成为矩形形状同时没有表面阶差,因此在将光学装置100组装到布线衬底所构成的光学设备装配镜筒等时,将不会被装置衬底10的外形限制同时在装配时不会带来倾斜的影响。
并且,由于非点对称部3a具有示出装置衬底10的第2端子部13…配置方向的机能,因此通过透视观察光学装置100,能够得知例如作为输入端子的第2端子部的位置或作为输出端子的第2端子部的位置等。因此,从装置衬底10的第1开口3这一面来透视观察光学装置100将光学装置100组装到布线衬底,则能够使例如作为输入端子的第2端子部与对应该输入端子的布线衬底的连接端子一致下加以组装。因此,由于不会产生电压未输入到光学元件或输入过剩电压到光学元件,因此这个光学元件将能够发射预期的光或将接收的光予以图像处理。
-光学装置100的制造工序-首先,在图3(a)所示工序中,将形成布线图案的引线框架(leadframe)52安装在密封带21上。这时,构造上,引线框架52的大部分的下方设置通过半蚀刻或压印而形成的凹部,只有成为内部端子部12a与外部端子部12b的部分从凹部底面向下方突出。通过上述,形成了将引线框架52安装在密封带21上所构成的引线框架构件。并且,这个引线框架52,在后述工序中被切割成为布线部12。
其次,在图3(b)所示工序进行造模工序。这一工序的详细如图4(a)及图4(b)所示。本工序首先将所述引线框架装于模具31。这时的模具31,在图4(a)中虽然被示出成为一体,但是是由大体平板形的下方模具与覆盖下方模具的上方模具所构成。并且,上方模具包括了31a、31b、31c;31a是在其中一个表面形成的2个模穴(die cavity),31b是隔开各个模穴31a之间的分隔部,31c是在各个模穴设置的引脚构件。这里,分隔部31b是成为开口部2的部分,形状是柱状,该柱状的底面是将1个顶点直线状切除所形成的近似矩形。同时,引脚构件31c是分别成为定位孔10a的部分。并且,使引线框架52为上,将所述引线框架设置到下方模具的表面,使形成模穴31a的面朝下,而且,设置上方模具覆盖引线框架构件。通过上述,引线框架及下方模具盖住模穴31a。接着,如图4(b)所示,将环氧树脂等可塑性树脂填充到模穴31a。可塑性树脂固定后拆离模具,从引线框架剥离密封带21。通过上述,形成引线框架52被埋入造模11。这时,内部端子部12a与外部端子部12b露出于造模11的其中一个表面。并且,内部端子部12a等所露出的部分是所述内部端子部12a等的另一个端子部。
并且,附图中虽然省略,将内部端子部12a等的另一个端子部朝上,设置造模11。并且,以刀片(blade)切入造模11的相接的光学装置形成领域之间的边界部分,在切入部的中央部分予以切除,将造模11切割为各个光学装置。通过上述,形成由埋入布线部12构成的装置衬底10。
接着,如图3(c)所示工序中,在外部端子部12b的另一个端子部,设置多个第2端子部13…。这时,最好是以装置衬底10的大致中心点作为对称中心点,在点对称设置第2端子部13…。
其后,如图3(d)所示工序,使光学元件芯片5的光学元件形成面5a在下,装配光学元件芯片5来覆盖内部端子部12a等另一个端子部露出面的开口(第2开口)。这时,在内部端子部12a的另一个端子部表面设置凸部8,在凸部8上设置光学元件芯片5的电极垫5b,将凸部8与电极垫5b连接到倒装芯片。并且,设置光学元件芯片5时,若是以设于装置衬底10的定位孔10a为基准来进行光学元件芯片5的位置对准,则能够将光学元件芯片5在所要的方向设置于装置衬底10、即光学装置100上。
并且,如图3(e)所示工序,使用第1密封树脂7密封内部端子部12a、凸部8及电极垫5b。通过上述,以第1密封树脂7来密封光学元件与布线部12的电性连接部,即光学元件芯片5与开口部2的周边部的空隙。
并且,如图3(f)所示工序,使光学元件芯片5在下安装图3(e)所示工序中形成的造模,并安置透光性构件6来覆盖开口部2的未被覆盖的开口(第1开口)。并且,使用第2密封树脂15密封透光性构件6与开口部2的周边部的空隙。通过上述工序,能够制造本实施例的光学装置100。
使用第1开口的开口轮廓形状为相对于开口的大致中心点形成点对称的装置衬底制造光学装置时,在上述造模工序中使用的上方模具的分隔部的形状为柱状,该柱状的底面是矩形。另外,使用本实施例的装置衬底10制造光学装置时,在造模工序中使用的上方模具的分隔部31b的形状是柱状,该柱状的底面是由1个顶点被直线状切除而构成的近似矩形。也就是,若将上方模具的分隔部底面形状由矩形变更为1个顶点被直线状切除的近似矩形,则能够制造通过透视观察得知装置衬底10的第2端子部13…配置方向的光学装置100。
(第2实施例)在第2实施例中,使用图5示出装置衬底20的构造,图5是装置衬底20的第1开口这一面的平面图。
本实施例的光学装置,是将图1所示装置衬底10变更为以下所示装置衬底20的光学装置。由于光学装置的其他构造及制造方法与所述实施例1大体相同,这里省略说明。
在本实施例的装置衬底20与在所述实施例1的装置衬底10的不同点只在于第1开口的开口轮廓形状。本实施例的装置衬底20的第1开口23的开口轮廓形状,是将矩形的顶点予以曲线状切除(以下将矩形的顶点被曲线状切除所形成的部分23a称为“非点对称部23a”)而形成。换句话说,在第1开口23的开口轮廓形状,是矩形的4个顶点中的1个顶点被形成为圆弧形。换成其他说法即是在第1开口23的开口轮廓形状,是由4个顶点的其中1个顶点为圆形角的矩形所形成。并且,若是在最靠近具有特定机能的第2端子部的第1开口23的轮廓部分形成非点对称部23a,则通过从第1开口23这一面透视观察光学装置能够视觉辨认具有特定机能的第2端子部的位置。因而,非点对称部23a具备了显示装置衬底20的第2端子部的配置方向的机能。因此,本实施例的光学装置能够获得与所述实施例1的光学装置100大体相同的效果。
并且,在本实施例的光学装置制造方法的造模工序中使用的上方模具的分隔部形状是柱状,该柱状的底面是将1个顶点予以曲线状切除而构成的近似矩形。
(第3实施例)第3实施例中,使用图6示出装置衬底30的构造,图6是光学装置的背面图。
本实施例的光学装置是将图1所示光学元件芯片5及装置衬底10分别变更为光学元件芯片35及装置衬底30的光学装置。并且,光学元件的其他构造及制造方法与所述实施例1大体相同,因此这里省略说明。
本实施例的装置衬底30中,第1开口的开口轮廓形状是矩形。因此,即使透视观察装置衬底30,也无法视觉辨认装置衬底30的第2端子部13…的配置方向。但是,由于光学元件芯片35具备以下所示特征,因此能够视觉辨认装置衬底30的第2端子部13…的配置方向。以下说明本实施例的光学元件芯片35。
光学元件芯片35,如图6所示,在光学元件芯片35背面(矩形)的1个顶点附近形成圆形的方向指示用记号部35a,其用来表示装置衬底30的第2端子部的配置方向。例如,将方向指示用记号部35a设在具有特定机能的第2端子部附近的光学元件芯片35的背面。因此,通过从光学装置背面能够视觉辨认具有特定机能的第2端子部。因此,本实施例的光学装置能够获得与所述实施例1所记载的光学装置100大体相同的效果。
并且,方向指示用记号部35a最好是使用周知的标记方法,形状并不限定圆形也可以是多角形等。
并且,本实施例的光学装置制造方法的造模工序所使用的上方模具的分隔部的形状是柱状,该柱状的底面是矩形。
(第4实施例)第4实施例中使用图7、图8及图9来说明光学装置400的构造、检查光学元件芯片性能的方法、以及光学装置400的制造方法。图7是示出本实施例光学装置400的构造图,图8是示出从光学衬底到光学元件芯片的制造方法流程图,图9是示出光学装置400的制造工序流程图。同时,图7(b)是光学装置400的背面图,图7(a)是图7(b)的VIIA-VIIA线的剖面图。
本实施例的光学装置400,如图7所示,是将图1所示的光学元件芯片5及光学装置10分别变更成以下所示光学元件芯片45及光学装置40的光学装置。并且,光学装置400的其他构造及制造方法与所述实施例1的光学装置100的构造大体相同,这里省略说明。
在本实施例的装置衬底40与所述实施例3的装置衬底30大体相同。因此,即使透视观察装置衬底40,也无法视觉辨认装置衬底40的第2端子部13…的配置方向。可是,由于光学元件芯片45具备如下所示特征,因此能够视觉辨认装置衬底40的第2端子部13…的配置方向。以下说明本实施例的光学元件芯片45。
光学元件芯片45,如图7(b)所示,在光学元件芯片45背面形成由“A”构成的方向指示用记号部45a。这个方向指示用记号部45a,与所述实施例3的方向指示用记号部35a相同,是用来示出装置衬底40的第2端子部13…的配置方向。例如,在形成方向指示用记号部45a时,使具有特定机能的第2端子部的位置在左边。因此,能够通过观察光学装置400的背面视觉辨认具有特定机能的第2端子部,而本实施例的光学装置400能够获得与所述实施例1的光学装置100大体相同的效果。
并且,与所述实施例3相同的,最好是使用周知的标记方法来标记方向指示用记号部45a。同时,本实施例的光学装置制造方法的造模工序中使用的上方模具的分隔部形状是柱状,该柱状的底面是矩形。
进一步地,若是在晶片状态下的各个光学元件芯片背面形成方向指示用记号部45a,除了能辨识光学装置400的方向之外,也能够获得如下效果。
通常光学元件芯片是将多个光学元件芯片排列形成的衬底(光学衬底、晶片)分别切割为光学元件芯片来制造,而在将晶片切割前对各个光学元件芯片分别进行电性检查。并且,只使用在这个检查中被判断是无缺陷的光学元件芯片来制造光学装置等、并制造摄像机等最终产品。其后对最终产品进行光学检查,只有在光学检查被判断合格的最终产品才会流通到市场。
进行这一个光学检查的最终产品,只包括在电性检查中被判断为无缺陷的光学元件芯片。但是,由于无法在晶片状态下检查各个光学元件芯片的光学性能,因此即使使用在电性检查中被判断是无缺陷的光学元件芯片所制造的最终产品,这些最终产品中还是会出现在这个光学检查中被判断不合格者。而被判断不合格的最终产品还是不能流通到市场。因此,不合格的最终产品的制造成本及制造时间等将成为白费。
产生这样的不良状况是由于无法将光学检查的结果反馈到光学装置等制造工序。
大多数的情况是,在叠层工序或蚀刻工序等多次重复制造晶片,而在这些一连串的制造工序中使用装置来进行。并且,由于一次制造出多个光学元件芯片,多数的情况是在1台制造装置具备了多个具有相同机能的构件;并且多数的情况是,在各晶片的位置相同的光学元件芯片的各自的光学性能也大体相同。因此,切割后若能了解各个光学元件芯片在晶片的位置,则能够将光学检查的结果反馈到光学装置等制造工序。注意到这一点,本案发明人发明了一种方法用以追踪重复发生图案缺陷的晶片面内位置的依赖性、对设备差异的依赖性、或条件的差异等。以下使用图8来说明该方法。以下,“测试用”是指使光学检查结果反馈到光学装置等制造工序。并且,能够将通过所有性能检查工序被判断为无缺陷的测试用最终产品流通到市场。并且,并非只对“测试用最终产品”进行后述的光学检查,对于“最终产品”也进行这个光学检查。
首先,晶片制造工序S401中,使用相同方法及相同制造装置来制造多张晶片,在表面形成光学元件芯片来构成。这时,将其中一张用来调查光学元件芯片的光学性能。接着进入研磨工序S402。以下所示工序中,未特别说明时,最好是,对本工序所制造的所有晶片进行作业。
在研磨工序S402中,研磨与形成光学元件芯片的相反面的晶片面(晶片背面)。接着,进入电性检查工序S403。
电性检查工序S403中,对于在晶片形成的各个光学元件芯片分别进行电性检查。具体来说,首先,对各个光学元件芯片输入检查用的波形信号,并检测各个光学元件芯片对该输入波形的输出波形。接着,比较检测出的输出波形与对输入波形的理想输出波形。通过这个波形的比较,若是两个输出波形大体相同时则判断光学元件芯片无缺陷,若是两个输出波形不同则判断光学元件芯片是不良品。并且,对于在这个波形比较中被判断是不良品的光学元件芯片,在光学元件芯片的表面记载是不良品。然后,进入标记工序S404。
标记工序S404中,在各个光学元件芯片背面上标记记号,该记号表示各个光学元件芯片在晶片中的位置。这时,最好是使用周知的标记方法。并且,最好是以光学元件芯片背面的中心点为对称中心根据非点对称进行标记。接着,进入切割工序S405。
在切割工序S405中切割晶片。通过上述,能够从1张晶片制造出多数的光学元件芯片。并且,在检查工序S403中表面被标记为不良品的光学元件芯片,在这项工序之后,将受到废弃处分。接着,进入产品制造工序S406。
产品制造工序S406中,制造用来调查光学元件芯片的光学性能的测试用光学装置、测试用光学设备、测试用最终产品。具体来说,首先,使用切割测试用晶片所制造出来的测试用光学元件芯片,按照图9所示方法制造测试用光学装置。这里,图9所示方法与所述实施例1记载的制造方法(图3)大体相同,但是在造模工序中使用剖面形状为矩形的上方模具、以及使用在背面施加记号的光学元件芯片45这一点不同。其后,将测试用光学装置组装到布线衬底制造测试用光学设备。接着,在测试用光学设备装配镜筒,制造摄像机等测试用最终产品。接着,进入光学检查工序S407。
光学检查工序S407中,对测试用最终产品进行光学检查。具体来说,通过电气特性检查与图像视觉辨认检查来判定有无缺陷。接着,进入分析工序S408。
在分析工序S408中,调查各个光学元件芯片的光学性能与各个光学元件芯片在晶片的位置的关系。从光学检查工序S407的检查结果可以得知光学元件芯片的光学性能。具体来说,在光学检查工序S407中,可以推测被判断合格的测试用最终产品所装配的光学元件芯片的光学性能优良,被判断不合格的测试用最终产品所装配的光学元件芯片的光学性能不佳。而且,若观察测试用光学装置背面能够得知各个光学元件芯片在晶片的位置。如上所述,即使是不同的晶片这项关系也是相同,因此利用这项关系,能够推测使用在晶片的哪一个位置的光学元件芯片来制造光学装置等可以制造具有优良光学性能的制品。因此,若是使用这项方法来制造光学产品,可以解决所述的不良状况。
从上述来看,最好是,本实施例的光学元件芯片的性能检查方法如以下的构成。
首先,第1构成包括在表面形成包含用来调查各个光学元件芯片的光学性能的测试用晶片的多个光学元件芯片的晶片制造工序,研磨与晶片表面相反面的晶片面(晶片背面)的研磨工序,对各个光学元件芯片进行电性检查的电性检查工序,在各个光学元件芯片的背面施加记号的标记工序、该记号用来表示各个光学元件芯片在晶片的位置,在标记工序后将晶片切割的切割工序,使用切割测试用晶片获得的测试用光学元件芯片制造测试用光学装置的工序,将测试用光学装置组装到布线衬底制造测试用光学设备的工序,在测试用光学设备装配镜筒等光学构件制造测试用最终产品的工序,对测试用最终产品进行光学检查的光学检查工序,根据光学检查结果调查各个测试用光学元件芯片在测试用晶片的位置与各个测试用光学元件芯片的光学性能之间关系的分析工序,以及分析工序后根据光学元件芯片在测试用晶片的的位置与该光学元件芯片的光学性能的关系、从切割测试用晶片以外的晶片所获得的光学元件芯片中仅选出具有优于一定光学性能的光学元件芯片制造光学装置的工序。
换句话说,第1构成首先使用从测试用晶片切割出来的测试用光学元件芯片来制造测试用最终产品,对该测试用最终产品进行光学检查。接着,从光学检查的结果,找出各个光学元件芯片在晶片的位置与该光学元件芯片的光学性能的关系。接着,根据该关系使用从其他晶片切割出来且被预测光学性能是优良的光学元件芯片,制造光学性能优良的产品。
并且,光学元件芯片的性能检查方法,也可以是如下所示构造。
第2构成包括制造测试用晶片的工序,该测试用晶片在表面形成多个光学元件芯片,是用来调查各个光学元件芯片的光学性能;研磨与表面相反面的测试用晶片(测试用晶片背面)的研磨工序;对各个光学元件芯片进行电性检查的电性检查工序;在各个光学元件芯片的背面施加记号的标记工序,该记号表示各个光学元件芯片在测试用晶片的位置;经标记工序后切割测试用晶片的切割工序;使用切割所获得的测试用光学元件芯片制造测试用光学装置的工序;将测试用光学装置组装到布线衬底制造测试用光学设备的工序;对测试用光学设备进行光学检查的光学检查工序;分析工序,根据该光学检查的结果调查各个测试用光学元件芯片在测试用晶片的位置与各个测试用光学元件芯片的光学性能的关系;分析工序后,根据光学元件芯片在测试用晶片的位置与该光学元件芯片的光学性能的关系,对制造光学元件芯片的设备的缺陷部进行修缮的工序;使用该设备制造晶片的工序;以及,使用从该晶片切割的光学元件芯片制造光学产品的工序。
第2构成与第1构成不同,包括用来修缮制造光学元件芯片设备的工序。并且,由于具备这项工序,使用第2构成制造晶片比使用第1构成制造晶片,能够制造多数光学性能优良的光学元件芯片。由于第2构成的最终产品成品率高于第1构成,因此比较好的是使用第2构成。
同时,在标记工序中施加的记号,最好是由非点对称记号、非点对称文字或是记号与文字的混合等构成。通过上述,不但能够尽量解消所述不良状况,由于能够得知具备光学元件芯片45而构成的光学装置400的第2端子部13…的配置方向,因此是较好的构成。
并且,在本实施例的方向指示用记号部45a,可以是“A”以外的英文字母,也可以是假名、汉字、数字等,也可以由多个文字来构成。同时,例如,也可以是混合英文字母与假名。同时,其中如果方向指示用记号部45a由多个文字与记号等组成的状况下,即使是其中1字或1个记号本身为点对称,作为方向指示用记号部整体对于光学元件芯片45的大致中心为非点对称就可以。
同时,本实施例的光学元件芯片的性能检查方法中,首先进行检查工序S402,其后按照研磨工序S401、标记工序S403、切割工序S404、选辨工序S405的顺序进行就可以。同时,也可以将有无缺陷的检查结果标记在光学元件芯片45的背面。
并且,在所述光学元件芯片的性能检查方法中被判断是光学性能良好的光学元件芯片,不仅作为如图7所示光学装置400、也可以作为形成在CCD·CMOS(complementary metal-oxide semiconductor)等影像传感器中所装配的固态图像元件的光学元件芯片来使用、或作为形成在激光等装配的受光元件的光学元件芯片来使用。
(第5实施例)第5实施例中,使用图10表示装置衬底50的构造,图10是装置衬底50的背面图。
本实施例的光学装置,是将图1所示装置衬底10变更为以下所示装置衬底50的光学装置。光学装置的其他构造及制造方法与所述实施例1大体相同,因此这里省略说明。
本实施例的装置衬底50,在第1开口的开口轮廓形状是矩形。因此,即使透视观察装置衬底50,也无法视觉辨认装置衬底50的第2端子部13…的配置方向。可是,由于装置衬底50具备以下所示特征,因此能够视觉辨认装置衬底50的第2端子部13…的配置方向。以下说明本实施例的装置衬底50。
在装置衬底50形成所述实施例1记载的定位孔50a与方向指示用贯通孔部50b,方向指示用贯通孔部50b是用来表示装置衬底的第2端子部的配置方向。并且,例如在具有特定机能的第2端子部附近的装置衬底形成方向指示用贯通孔部50b。因此,通过对光学装置的视觉辨认能够视觉辨认出具有特定机能的第2端子部。因此,本实施例的光学装置具有与所述实施例1所记载的光学装置100大体相同的效果。
并且,方向指示用贯通孔部50b在装置衬底的形成位置最好是在第2端子部13…的形成位置及第1密封树脂7的设置位置的以外的位置。
同时,本实施例的光学装置制造方法的造模工序中使用3个引脚构件。并且,这项工序中使用的上方模具的分隔部形状是底面为矩形的柱状。
(其他实施例)关于所述的实施例1到5,本发明可以如下构成。
在本发明的光学装置,可以具备非点对称部3a、23a、方向指示用记号部35a、45a以及方向指示用贯通孔部50b,也可以具备非点对称部3a、23a及方向指示用记号部35a、45a,同时,也可以具备非点对称部3a、23a与方向指示用贯通孔部50b。
并且,可以在装置衬底10外周部设置定位用阶差部来取代装置衬底10所设的定位孔10a。这个定位用阶差部与定位孔10a具有大体相同的机能。
并且,第2端子部13也可以以第2开口4这一面的装置衬底表面的中心点为对称中心配置成非点对称。
并且,光学装置100的制造工序中,也可以在如图3(f)所示、将光学元件芯片5安装到装置衬底10后再切割成各个光学装置,或是如图3(g)所示、将透光性构件6安装到装置衬底10后再切割成各个光学装置。
并且,光学装置100制造工序中的模造工序,是在密封带21上面载置引线框架52的状态下进行,但是密封带21的使用并非绝对必须。使用密封带21的情况下,由于能够在上方模具与下方模具使引线框架52上下面钳住贴紧,因此能够使得模具与引线框架的上下面贴紧的状态稳定。换句话说,能够使得模具面与引线框架的上下面密接来填充可塑性树脂。结果,除了能够有效抑制成型时产生的树脂外露,同时,由于能够获得内侧端子部12a、外侧端子部12b的另一个端子部露出在装置衬底10的构造,因此能够使得将光学装置100焊接到布线衬底变得容易等,使得组装简单化、迅速化。
关于所述实施例1及2,本发明还可以是如下构成。
在第1开口的开口轮廓形状,例如也可以在正多角形轮廓的至少一部分形成面积缩小部,该面积缩小部是使第1开口的开口部面积缩小而小于正多角形的面积。并且,其轮廓形状也可以在正多角形轮廓的至少一部分形成面积扩大部,该面积扩大部是使第1开口的开口部面积扩大而大于正多角形的面积。并且,其轮廓形状也可以在圆形轮廓的至少一部分形成面积缩小部,该面积缩小部是使第1开口的开口部面积缩小而小于圆形的面积。同时,其轮廓形状也可以在圆形轮廓的至少一部分形成面积扩大部,该面积扩大部是使第1开口的开口部面积扩大而大于正多角形的面积。
-产业上利用的可能性-如上说明,本发明对于以下光学装置非常有用也就是,具备形成发射光或接收光的光学元件的光学元件芯片的光学装置及具备了该光学装置的光学设备等。
权利要求
1.一种光学装置,其特征在于包括形成有对表面实质垂直延伸且贯通的开口部的装置衬底,覆盖所述开口部的第1开口的透光性构件,覆盖所述开口部的第2开口并在与所述透光性构件相对的面形成发射光或接收光的光学元件的光学元件芯片,一部分被埋入所述装置衬底内并具备与所述光学元件电性连接的第1端子部及与布线衬底电性连接的第2端子部的导电部,以及密封所述光学元件及所述第1端子部的电性连接部的密封剂;所述第1开口的开口轮廓形状对该第1开口的大致中心点是非点对称。
2.根据权利要求1所述的光学装置,其特征在于所述第1开口的开口非点对称轮廓形状具有表示所述装置衬底的所述第2端子部的配置方向的功能。
3.根据权利要求1所述的光学装置,其特征在于所述第1开口的开口轮廓形状是将矩形的至少1个顶点直线状地切除而构成。
4.根据权利要求1所述的光学装置,其特征在于所述第1开口的开口轮廓形状是将矩形的至少1个顶点曲线状地切除而构成。
5.一种光学装置,其特征在于包括形成有对表面实质垂直延伸且贯通的开口部的装置衬底,覆盖所述开口部的第1开口的透光性构件,覆盖所述开口部的第2开口并具备形成发射光或接收光的光学元件的光学元件形成面的光学元件芯片,一部分被埋入所述装置衬底内并具备与所述光学元件电性连接的第1端子部及与布线衬底电性连接的第2端子部的导电部,以及密封所述光学元件与所述第1端子部的电性连接部的密封剂;所述光学元件形成面与所述透光性构件相对,在与所述光学元件形成面的相反面的光学元件芯片面形成方向指示用记号部、该方向指示用记号部用来表示所述装置衬底的所述第2端子部的配置方向。
6.根据权利要求5所述的光学装置,其特征在于所述方向指示用记号部是由至少1个文字或记号所构成。
7.一种光学装置,其特征在于包括形成对表面实质垂直延伸且贯通的开口部的装置衬底,覆盖所述开口部的第1开口的透光性构件,覆盖所述开口部的第2开口并在与所述透光性构件相对的面形成发射光或接收光的光学元件的光学元件芯片,一部分被埋入所述装置衬底内并具备与所述光学元件电性连接的第1端子部及与布线衬底电性连接的第2端子部的导电部,以及密封所述光学元件与所述第1端子部的电性连接部的密封剂;在所述装置衬底形成方向指示用贯通孔部,该方向指示用贯通孔部用来表示该装置衬底的所述第2端子部的配置方向。
全文摘要
本发明的光学装置100,包括形成实质垂直延伸贯通的开口部2的装置衬底10,覆盖开口部2的第1开口3的透光性构件6,覆盖开口部2的第2开口4并在与透光性构件6相对的面形成发射光或接收光的光学元件的光学元件芯片5,一部分埋入衬底10并具备与光学装置电性连接的第1端子部12a及与布线衬底电性连接的第2端子部13的导电部14,以及密封光学装置与第1端子部12a的电性连接部的密封剂7。并且,第1开口3的开口轮廓形状对第1开口3的大致中心点3b是非点对称。
文档编号H01L33/00GK1779983SQ200510108590
公开日2006年5月31日 申请日期2005年10月10日 优先权日2004年11月22日
发明者南尾匡纪, 藤井荣造, 福田敏行 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1