带有铝电极和金属化电极的半导体器件的制作方法

文档序号:6855515阅读:167来源:国知局
专利名称:带有铝电极和金属化电极的半导体器件的制作方法
技术领域
本发明涉及一种带有铝电极和金属化电极的半导体器件。
背景技术
半导体器件具有半导体基片和形成在该半导体基片一个面上的铝电极。例如,在与美国专利No.6693350等对应的日本专利公开文本No.2002-110893以及与美国专利公开文本No.2003-0022464A1对应的日本专利公开文本No.2003-110064中公开了这种器件。散热器等被焊接在铝电极上。
在这种器件中,通过使用在日本专利公开文本No.S63-305532公开的凸块电极(bump electrode)方法,在布置在半导体基片一个面上的铝电极上形成保护膜。然后,在保护膜内形成开孔。在透过保护膜的开孔而暴露出来的铝电极的表面上形成用于焊接或用于接合线的金属化电极。
该金属化电极由化学镀Ni/Au镀膜制成或者是由通过物理气相沉积方法(即PVD方法)沉积的Ni/Au膜制成。该Ni/Au镀膜由在铝电极表面形成的镍镀膜以及该镍镀膜上的金镀膜构成。
这里,当该金属化电极是通过使用镀法(plating method)或类似方法而形成在铝电极上时,在形成金属化电极之前要用湿蚀刻法将铝电极表面上的氧化膜去除。这样就改善了金属化电极的沉积特性。
一般而言,在该半导体基片的一个面上形成有中间层绝缘膜。铝电极覆盖在该绝缘膜上。该铝电极具有与图形化绝缘膜的形状相对应的凸部和凹部。从而,金属化电极的表面也具有凹部和凸部。当在该金属化电极上形成焊料层时,焊接过程中的热量会形成焊料扩散层。该焊料扩散层是通过金属化电极和焊料层的互相扩散而形成的。
金属化电极中的颗粒尺寸越大,焊料层的扩散速度就越大。因此,金属化电极表面上的凹部和凸部最好是小的。当焊料扩散层的厚度大到使得该焊料扩散层接近铝电极时,该焊料层会从铝电极上脱落。
而且,当将接合线接合到金属化电极上时,接合线和金属化电极之间的接合强度变小。而且,当金属化电极上的凹部和凸部是大的时,金属化电极和中间层绝缘膜之间的距离就变小了。结果是,金属化电极会接触到该中间层绝缘膜,以致会出现诸如Vt故障的电气故障。
特别地,当将金属散热器焊接在金属化电极上时,金属散热器和金属化电极之间的接合强度的耐久性变短。这是因为焊料层60中的锡由于热过程而快速扩散到金属化电极内。
上述问题不仅是在金属化电极是由镀膜制成的情况下出现,而且也在金属化电极是由PVD膜制成的情况下出现。

发明内容
考虑到上述问题,本发明的目的是提供一种具有铝电极和金属化电极的半导体器件。
一种半导体器件包括半导体基片;布置在所述基片的表面上的铝电极;布置在铝电极上并且具有开孔的保护膜;和透过保护膜的开孔而布置在铝电极的表面上的金属化电极。所述铝电极的表面包括凹部。所述凹部具有开口侧和底部侧,底部侧比开口侧宽。
防止形成在铝电极上的金属化电极透入铝电极的凹部内,因此金属化电极的凹部和凸部就变小了。这样就改善了铝电极的接合性能。而且减少了器件的电气故障。
可选择地,所述凹部可以以这样的方式提供,即蚀刻铝电极的表面,以便将金属化电极层叠在铝电极的被蚀刻表面上,并且所述金属化电极是能在金属化电极的表面上进行焊接或线接合(wire bonding)的。
可选择地,所述凹部的底部侧以这样的方式提供,即蚀刻铝电极中的铝颗粒的内部。而且,所述凹部的开口侧以这样的方式提供,即蚀刻铝电极中的铝颗粒的颗粒边界。


参考附图,从下文的详细描述将会明显看出本发明的上述及其它目的、特征和优点。附图中图1是示出了本发明第一实施例的半导体器件的横截面图;图2A是示出了第一实施例的器件的发射极的局部放大横截面图;
图2B是示出了图2A所示器件中铝电极和金属化电极的交界面的局部放大横截面图;图3A~图3C是解释在第一实施例的器件中形成发射极和门极的方法的局部放大横截面图;图4的图示出了在第一实施例的器件中距离与焊接缺陷率之间的关系;图5的图示出了在第一实施例的器件中距离与Vt缺陷率之间的关系;图6是示出在本发明第二实施例的半导体器件中铝电极和金属化电极的层叠结构的的局部放大横截面图;图7A~图7C是作为第一实施例的比较来解释形成金属化电极的方法的局部放大横截面图。
具体实施例方式
(第一实施例)发明人已初步研究了金属化电极和焊料层之间的接合。图7A~图7C中示出了用Ni/Au镀法在铝电极上形成金属化电极的示例方法。中间层绝缘膜4形成在半导体基片1的一个面上。该绝缘膜4是图形化的并且在门极和发射极之间电绝缘。通过使用溅射法或气相沉积法将铝电极11沉积在基片1的该一个面上,以覆盖该绝缘膜4。
如图7A所示,该铝电极11具有与绝缘膜4相对应的凸部和凹部。然后,通过蚀刻该铝电极11的表面,将形成在铝电极11上的氧化膜去除。如图7B所示,金属化电极13形成在铝电极11上。该金属化电极13包括镍镀层13a和金镀层13b,它们以此顺序层叠在铝电极11上。
在去除了铝电极11上的氧化膜的情况下,当铝电极表面的蚀刻量变大时,则铝电极11表面上的凹部和凸部也变得更大了。这样就在金属化电极13的表面上形成了凹部和凸部。
如图7C所示,当在具有大的凹部和凸部的金属化电极13表面上形成焊料层60时,焊料扩散层60a的厚度也变得更大了。该焊料扩散层60a是通过焊接过程中的热量形成的。这种焊料扩散层60a是通过金属化电极13和焊料层60之间的互相扩散而形成的。当该金属化电极13是由Ni/Au镀层制成时,该焊料扩散层60a是由金属化电极13中的镍和焊料层60中的锡的混合物制成。
当金属化电极13的颗粒尺寸变得更大时,焊料层60的扩散速度也变得更大。因此,金属化电极13表面上的凹部和凸部最好是小的。当焊料扩散层60a的厚度变大到使得该焊料扩散层60a接近铝电极11时,该焊料层60会从铝电极11上脱落。
而且,当将接合线接合到具有大的凹部和凸部的金属化电极13上时,接合线和金属化电极13之间的接合强度变小。而且,当金属化电极13上的凹部和凸部是大的时,金属化电极13和中间层绝缘膜4之间的间距就变小了。结果是,金属化电极13会接触到该中间层绝缘膜4,以致会出现诸如Vt故障的的电气故障。
特别地,当将金属散热器焊接在金属化电极13上时,金属散热器和金属化电极13之间的接合强度的耐久性变短。这是因为焊料层60中的锡由于热过程而快速扩散到该金属化电极内。
考虑到上述因素,制造出了按照本发明第一实施例的半导体器件100,如图1所示。图2A示出了发射极2的周围,而图2B示出了铝电极11和金属化电极13之间的交界面。
该器件100包括半导体片10、散热器20、30、40和树脂模50。该片10包括IGBT(即绝缘门极双极性晶体管)。该片10通过焊料层60被散热器20、30、40夹住。树脂模50密封住该片10。这种结构被定义为双面焊接模结构。
该片10包括诸如硅基片的半导体基片1。基片1的厚度等于或小于250μm。该片10亦即基片1包括前表面1a和后表面1b。前表面1a是器件成形表面,而后表面1b与前表面1a相对。在图1中,前表面1a布置在片10的上侧,而后表面1b布置在片10的下侧。
发射极2和门极3形成在片10的前表面1a上,而集电极5形成在片10的后表面1b上。第一散热器20通过焊料层60接合至发射极2。第二散热器30通过焊料层60接合至第一散热器20。
接合线70连接至门极3,使得该门极3通过接合线70电连接至引线80。用于连接到外部电路的引线80布置在片10的周边上。
第三散热器40通过焊料层60接合到集电极5上。该焊料层60是由无铅焊料制成,诸如Sn-Ag-Cu焊料和Sn-Ni-Cu焊料。
散热器20、30、40是由具有良导热性的材料制成,例如铜。该接合线70是由铝或金制成。该接合线70通过传统的线接合法(wirebonding method)接合到门极3上。
图2A和2B中示出了发射极2的详细结构。门极3的详细结构差不多与发射极2相同。虽然发射极2是接合到焊料层60上,而门极3是接合到接合线70上。
如图2A所示,铝制的铝电极11形成在基片1的前表面1a上。该铝电极11是用诸如溅射法和气相沉积法的PVD方法形成的铝膜。铝电极11的厚度例如是1μm。特别地,该铝电极是由纯铝、Al-Si或Al-Si-Cu制成。
中间层绝缘膜4形成在半导体基片1的前表面1a上。该绝缘膜4是图形化的并且在门极和发射极之间电绝缘。该铝电极11布置在基片1的前表面1a上,以覆盖住该中间层绝缘膜4。
用湿蚀刻法蚀刻铝电极11的表面,以去除形成在铝电极11上的氧化膜。在这种蚀刻过程中,在铝电极11的表面上形成凹部11a,如图2B所示。
由于颗粒边界位于绝缘膜4之间,因此该凹部11a也形成在绝缘膜4之间。这是因为在沉积铝电极11的时候,容易从绝缘膜4的顶部形成并生长出颗粒来。特别地,颗粒容易从绝缘膜4的拐角处形成。
在蚀刻铝电极11的表面时,铝电极11中具有低的膜密度的部分比具有高的膜密度的部分更容易被蚀刻掉。因此,在蚀刻过程之后,该凹部11a容易形成在绝缘膜4之间的铝电极11的表面上。铝电极11的凹部11a具有这样的形状,即其底部侧比凹部11a的开口侧更宽。特别地,凹部的开口侧具有定义为W1的尺寸,而凹部11a的底部侧具有另一个定义为W2的尺寸。该尺寸W1小于尺寸W2。
该凹部11a的上述形状以这样的方式实现,即在凹部11a的底部上蚀刻铝电极11中铝颗粒的内部,该内部不是铝电极11中铝的颗粒边界,使得凹部11a的底部宽于凹部11a的开口。在这里,蚀刻铝电极11中铝颗粒的颗粒边界而形成凹部11a的开口。
用显微镜观察凹部11a的横截面。沿着在铝电极11的厚度方向上延伸的颗粒边界蚀刻该凹部11a的开口侧。在该边界的中间处,沿着横向方向也就是铝电极11的表面方向蚀刻该铝电极11,以便蚀刻的是颗粒内部而不是颗粒边界。这样,该凹部11a的底部就变得更宽了。
传统地,是沿着在铝电极的厚度方向上延伸的颗粒边界对铝电极进行蚀刻。所以,该凹部变得更深,以致于铝电极上的凹部和凸部变得更大。
然而,在本实施例中,是对该凹部11a的底部侧上的铝电极11中的颗粒内部进行蚀刻,所以该凹部11a是比较浅的。这样,铝电极11的凹部和凸部就变得更小了。通过控制蚀刻条件诸如蚀刻剂的组成和蚀刻温度来形成这种凹部11a。
在图2B中,铝电极11的凹部11a的底部与绝缘膜4的拐角4a之间的距离W3等于或大于0.5μm。优选地,该距离W3等于或大于0.9μm。
如图2A所示,电绝缘材料制成的保护膜12形成在铝电极11上。该保护膜12例如是由聚酰亚胺树脂制成。该保护膜12通过旋涂法形成。
在保护膜12上形成开孔12a,使得铝电极11的表面从保护膜12中暴露出来。该开孔例如是通过蚀刻过程连同光刻法形成的。透过开孔12a而暴露出来的铝电极11表面具有该凹部11a。该金属化电极13形成在铝电极11上。发射极2上的金属化电极13用于焊接,而门极3上的金属化电极用于线接合。
该金属化电极13用镀法形成,并且是由Ni/Au层叠镀膜、Cu镀膜或Ni-Fe合金镀膜等制成。在本实施例中,该金属化电极13是由化学镀Ni/Au镀膜制成,它包括镍镀层13a和金镀层13b。该镍镀层13a通过化学镀方法形成在铝电极11的表面上,而金镀层13b通过化学镀方法形成在该镍镀层13a上。因此,该金属化电极13是由层叠的膜形成的。相比于现有技术,该金属化电极13的凹部和凸部变得更小了。
该镍镀层13a的厚度在3μm至7μm的范围内。该金镀层13b的厚度在0.04μm至0.2μm的范围内。在本实施例中,该镍镀层13a的厚度为5μm,而该金镀层13b的厚度为0.1μm。
该金属化电极13用无铅焊料制成的焊料层60接合到第一金属散热器20上。这样,铝电极11通过金属化电极13接合到焊料层60。片10上的发射极2和门极3由铝电极11和金属化电极13的层叠膜制成。形成发射极2和门极3的方法如下所述。
首先,如图3A所示,铝电极11通过诸如溅射法和气相沉积法的PVD方法形成在基片1的前表面12a上。在这里,铝电极11的表面可以光滑地形成。通过控制沉积条件,可以光滑地形成铝电极11的表面。这样,在蚀刻铝电极11的表面之后,铝电极11表面的凹部和凸部变得更小了。相应地,布置在铝电极11上的金属化电极13的凹部和凸部也变得更小了。
然后,通过旋涂法或类似方法在铝电极11上形成保护膜12。通过光刻法或类似方法在保护膜12中形成开孔12a。用铝蚀刻剂通过湿蚀刻法对透过保护膜12的开孔12a而暴露出来的铝电极11的表面进行蚀刻。在这个蚀刻过程中,去除了铝电极11表面上的氧化膜。这样就形成了凹部11a,并且清洁了铝电极的表面。
接下来,如图3B所示,在带有凹部11a的铝电极11的表面上形成金属化电极13。该金属化电极13是通过化学镀方法由化学镀Ni/Au镀膜形成的。这样就形成了发射极2和门极3,其中每一个都包括铝电极11和金属化电极13。
接下来,如图3C所示,金属化电极13通过焊料层60接合到第一散热器20上。在焊接之后,焊料扩散层60a形成在焊料层60和金属化电极13之间。该金镀层13b基本上就消失了。该焊料扩散层是由Ni-Sn扩散层制成,该Ni-Sn扩散层由锡和镍形成。
在这里,通过溅射法或类似方法,将集电极4形成在基片1的几乎整个后表面1b上。用焊料层60将该集电极4接合到第三散热器40上。该集电极4例如是由Ti/Ni/Au膜制成。特别地,通过溅射法或类似方法,以Ti层、Ni层和Au层这样的顺序形成在基片1的后表面1b上。
该树脂模50成形在第二散热器30和第三散热器40之间,使得第二和第三散热器30、40之间的部件都被该树脂模50密封。引线80用树脂模50密封。特别地,引线80和接合线70之间的连接部使用树脂模50密封的。该树脂模50例如是由传统的成形树脂(molding resin)如环氧树脂制成,它适用于电子设备。该树脂模50是使用模具而通过传递模塑法等方法形成的。
这样就完成了器件100。在该器件100中,在片10中产生的热量通过具有良导热性的焊料层60被传输到散热器20、30、40,使得该热量被辐射到器件100的外部。这样,热量从片10的两个面1a、1b辐射出来。而且,每个散热器20、30、40都充当了连接至该片10的电通路。特别地,片10的发射极2通过第一和第二散热器20、30电连接至外部电路。片10的集电极4通过第三散热器40电连接至外部电路。
接下来,该器件100的装配方法如下文所述。准备好具有电极2、3、4的片100。然后,将焊料装在每个电极2~4上。通过焊料层60将第一和第三散热器20、40接合到片10上。用线接合方法将门极3和引线80通过接合线70电连接。然后,通过焊料层60将第二散热器30接合到第一散热器20的外部。然后,形成树脂模50,从而完成该器件100。
在该器件100中,形成在铝电极11表面上的凹部11a具有比凹部11a的底部侧狭窄的开口侧。相应地,金属化电极13不容易透入该凹部11a,所以金属化电极13的凹部和凸部就变小了。这样就改善了铝电极11的接合强度。而且,改善了铝电极11的电连接。
由于金属化电极13的凹部和凸部是小的,所以在金属化电极13上形成焊料层60时就限制了焊料扩散层60a的生长。这样就改善了铝电极11的接合性能。在这里,由于金属化电极13中的颗粒边界是小的,所以扩散速率也是小的;并因而,焊料扩散层60a就变薄了。这样就改善了发射极2和焊料层60之间的接合性能。而且,由于金属化电极13的凹部和凸部是小的,所以改善了门极3和接合线70之间的接合性能。
铝电极11的凹部11a的形状形成为这样,即对于那些不是颗粒边界而是处于凹部11a的底部侧上的铝电极中的铝颗粒的内部进行蚀刻。这样,凹部11a的底部侧就变得比凹部11a的开口侧宽。而且,凹部11a变得更浅了,也就是说凹部11a的深度变得更小了。这样,铝电极11的蚀刻量就可以最小化,使得铝电极的凹部和凸部变小。此外,当凹部11a是浅的时候,凹部11a的底部(对应于金属化电极13a的底部)与绝缘膜4之间的距离W3就变大了。这样就防止出现诸如Vt故障的电气故障。在这里,是刻蚀铝电极11中的铝颗粒边界而形成凹部11a的开口部的。
凹部11a的底部和绝缘膜4之间的距离W3优选等于或大于0.5μm。更优选地,该距离W3等于或大于0.9μm。其原因如下文所述。
图4示出了距离W3和和焊接缺陷率之间的关系。图5示出了距离W3与Vt缺陷率之间的关系。在这里,焊接缺陷率表示对于器件100,在将铝电极11与焊料层60焊接时,焊接热量将铝电极11从焊料层60分离的百分率。Vt缺陷率表示器件100具有反常Vt特性的百分率。
当距离W3等于或大于0.5μm时,焊接缺陷率变得很小。这样,在这种情况下,在焊接铝电极11时就限制了由焊料扩散层60a造成的接合故障。当距离W3等于或大于0.9μm时,Vt缺陷率变得很小。
焊料层60是由无铅焊料制成。该无铅焊料不包括铅。因此,使用无铅焊料有助于环保。但是,由于无铅焊料比传统的铅焊料更硬,因此施加到金属化电极13上的应力也变大了。而且,由于无铅焊料中的锡含量大,因此在焊接铝电极11时容易形成焊料扩散层60a。因此,当焊料层60时由无铅焊料制成时,在传统的半导体器件中,铝电极容易从金属化电极上脱落。另一方面,在按照该第一实施例的器件100中,改善了铝电极11和金属化电极13之间的接合强度,使得铝电极11不会从金属化电极13上脱落。
该金属化电极13通过焊料层60接合到第一散热器20。也改善了第一散热器20和金属化电极13之间的接合强度。
进一步,基片1的厚度等于或小于250μm。当基片1的厚度大时,在铝电极是被焊接的情况下,热应力也变得更大。为了控制焊料层60的扩散,将基片1的厚度设定为等于或小于250μm。
尽管器件100具有双面焊接模结构,但是器件100也可以是其它类型的器件,只要是该器件包括半导体基片1、布置在基片1上的铝电极11、布置在铝电极11上并且具有开孔12a的保护膜12、以及布置在透过开孔12a而暴露出来的铝电极表面上的金属化电极13。
(第二实施例)图6示出了按照本发明第二实施例的半导体器件。具体地,图6示出了铝电极11和金属化电极13的层叠结构。用诸如溅射法和气相沉积法的PVD方法形成金属化电极13。该金属化电极13的厚度例如包括0.2μm厚的钛层13c、0.5μm厚的镍层13d和0.1μm厚的金层13e。
该第二实施例具有与第一实施例相同的优点。具体地,布置在铝电极11上的金属化电极13的凹部和凸部更小,以便改善铝电极11的接合强度。而且减少了器件的电气故障。
虽然本发明是参考其优选实施例来描述的,但是应当理解,本发明不限于这些优选实施例和结构。本发明意欲覆盖各种变型和等价方案。此外,尽管这些各种组合和构造是优选的,但是包括更多、更少或仅为单个元件的其它组合和构造也在本发明的精神和范围内。
权利要求
1.一种半导体器件,包括半导体基片(1);布置在所述基片(1)的表面上的铝电极(11);布置在铝电极(11)上并且具有开孔(12a)的保护膜(12);和透过保护膜(12)的开孔(12a)而布置在铝电极(11)的表面上的金属化电极(13),其中所述铝电极(11)的表面包括凹部(11a),并且所述凹部(11a)具有开口侧和底部侧,底部侧比开口侧宽。
2.根据权利要求1所述的器件,其中所述凹部(11a)以这样的方式提供,即蚀刻铝电极(11)的表面,以便将金属化电极(13)层叠在铝电极(11)的被蚀刻表面上,并且所述金属化电极(13)是能在金属化电极(13)的表面上进行焊接或线接合的。
3.根据权利要求2所述的器件,其中所述凹部(11a)的底部侧以这样的方式提供,即蚀刻铝电极(11)中的铝颗粒的内部。
4.根据权利要求2所述的器件,其中所述凹部(11a)的开口侧以这样的方式提供,即蚀刻铝电极(11)中的铝颗粒的颗粒边界。
5.根据权利要求1~4中任一项所述的器件,还包括布置在基片(1)的表面上的中间层绝缘膜(4),其中所述中间层绝缘膜(4)具有预定的图案,所述铝电极(11)覆盖所述中间层绝缘膜(4),所述铝电极(11)的凹部(11a)的底部与中间层绝缘膜(4)之间的距离等于或大于0.5μm。
6.根据权利要求5所述的器件,其中所述凹部(11a)的底部与中间层绝缘膜(4)之间的距离等于或大于0.9μm。
7.根据权利要求1~4中任一项所述的器件,其中制造所述铝电极(11)的材料选自纯铝、Al-Si和Al-Si-Cu。
8.根据权利要求1~4中任一项所述的器件,其中所述金属化电极(13)包括镍镀层(13a)和金镀层(13b),所述镍镀层(13a)和金镀层(13b)以此顺序层叠在铝电极(11)的表面上。
9.根据权利要求8所述的器件,其中所述镍镀层(13a)和所述金镀层(13b)是通过化学镀方法提供的。
10.根据权利要求1~4中任一项所述的器件,其中所述金属化电极(13)是通过物理气相沉积方法提供的。
11.根据权利要求1~4中任一项所述的器件,其中所述金属化电极(13)能用无铅焊料进行焊接。
12.根据权利要求1~4中任一项所述的器件,其中所述金属化电极(13)通过焊料层(60)连接至金属散热器(20)。
13.根据权利要求1~4中任一项所述的器件,其中所述基片(1)具有等于或小于250μm的厚度。
全文摘要
一种半导体器件包括半导体基片(1);布置在所述基片(1)的表面上的铝电极(11);布置在铝电极(11)上并且具有开孔(12a)的保护膜(12);和透过保护膜(12)的开孔(12a)而布置在铝电极(11)的表面上的金属化电极(13)。所述铝电极(11)的表面包括凹部(11a)。所述凹部(11a)具有开口侧和底部侧,底部侧比开口侧宽。在这种器件中,金属化电极(13)的凹部和凸部变小了。
文档编号H01L21/28GK1763941SQ200510114140
公开日2006年4月26日 申请日期2005年10月18日 优先权日2004年10月18日
发明者真山惠次, 近藤市治, 粥川君治, 三浦昭二 申请人:株式会社电装
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1