光刻装置、湿浸式投影装置和器件制造方法

文档序号:6873251阅读:247来源:国知局
专利名称:光刻装置、湿浸式投影装置和器件制造方法
技术领域
本发明涉及一种光刻装置、湿浸式投影装置和一种制造器件的方法。
背景技术
光刻装置是将期望的图案应用于基底上通常是基底靶部上的一种装置。光刻装置可以用于例如集成电路(IC)的制造。在这种情况下,构图装置或者可称为掩模或中间掩模版,它可用于产生形成在IC的一个单独层上的电路图案。该图案可以被转移到基底(例如硅晶片)的靶部上(例如包括部分,一个或者多个管芯)。通常这种图案的转移是通过成像在涂敷于基底的辐射敏感材料(抗蚀剂)层上。一般地,单一的基底将包含相继构图的相邻靶部的网格。已知的光刻装置包括所谓的步进器,它通过将整个图案一次曝光到靶部上而辐射每一靶部,已知的光刻装置还包括所谓的扫描器,它通过在辐射光束下沿给定的方向(“扫描”方向)扫描所述图案,并同时沿与该方向平行或者反平行的方向同步扫描基底来辐射每一靶部。还可以通过将图案压印到基底上把图案从构图装置传送到基底上。
已经有人提议将光刻投影装置中的基底浸入具有相对较高折射率的液体中,如水,从而填充投影系统的最后一个元件与基底之间的空间。由于曝光辐射在该液体中具有更短的波长,从而能够对更小的特征进行成像。(液体的作用也可以认为是增加了系统的有效NA(数值孔径)和增加了焦深。)也有人提议其它浸液,包括其中悬浮有固体微粒(如石英)的水。
但是,将基底或基底和基底台浸在液体浴槽(例如参见U.S.专利No.4,509,852,在此将该文献全文引入作为参考)中意味着在扫描曝光过程中必须加速大量的液体。这需要附加的或功率更大的电机,并且液体中的紊流可能导致不期望和不可预料的结果。
提出的一种用于液体供给系统的技术方案是使用限制系统仅在基底的局部区域上以及投影系统的最后一个元件和基底(通常该基底具有比投影系统的最后一个元件更大的表面区域)之间提供液体。在WO99/49504中公开了一种已经提出的用于该方案的方式,在此将该文献全文引入作为参考。如图2和3所示,通过至少一个入口IN将液体提供到基底上,例如沿基底相对于最后一个元件的移动方向提供,并且在经过投影系统之后通过至少一个出口OUT去除液体。也就是说,当沿-X方向在该元件下方扫描基底时,在元件的+X方向提供液体,并在-X方向接收。图2示出了示意性的布置,其中通过入口IN提供液体,和通过与低压源相连接的出OUT在元件的另一侧接收。在图2的说明中,沿基底相对于最后一个元件的移动方向提供液体,尽管可以不必这样。围绕最后一个元件定位的入口和出口的各种定向和数量都是可能的,图3示出了一个实例,其中在围绕最后一个元件以规则图案提供了四组入口以及位于另一侧的出口。
已经提出的另一种技术方案是具有密封元件的液体供给系统,该密封元件沿投影系统的最后一个元件和基底台之间的空间的边界的至少一部分延伸。图4示出了一种技术方案。该密封元件在XY平面中基本上相对于投影系统静止,但是在Z方向(光轴方向)可以有一些相对移动。在密封元件和基底表面之间形成密封。在某些实施例中,该密封是非接触密封,如气密封。欧洲专利No.03252955.4公开了这样一种具有气密封的系统,在此将该文献全文引入作为参考。
在如图5所示的另一种技术方案中,容器10在投影系统的成像区域周围形成对基底的非接触式密封,使得液体被限定成填充基底表面和投影系统的最后一个元件之间的空间。该容器由定位在投影系统PS的最后一个元件的下方并围绕其的密封元件12形成。使液体流入投影系统下面的空间并进入到密封元件12中。该密封元件12稍微延伸高于投影系统的最后一个元件,液面升高超过该最后一个元件,从而提供了一个液体缓冲器。密封元件12具有一内周边,其在上端部例如非常接近投影系统或其最后一个元件的形状,例如可以是圆形。在底部,该内周边非常接近成像区域的形状,例如是矩形,当然也可以不必这样。
液体由密封元件12的底部和基底W的表面之间的气封16限定在容器中。该气封可由气体形成,所述气体例如是空气、人工气体、在一些情况下是N2或惰性气体,其可通过入口15在压力下提供到密封元件12和基底之间的间隙,然后从第一出口14抽出。如此布置作用在气体入口15上的过压力、作用在第一出口14上的真空水平以及间隙的几何尺寸,使得存在向内限定液体的高速气流。
在欧洲专利申请No.03257072.3中,公开了一种双台或二台湿浸式光刻装置的思想。这种装置具有两个支撑基底的台。不使用浸液在第一位置用一个台进行水准测量,而在提供了浸液的第二位置使用一个台进行曝光。可替换地,该装置仅有一个台。
根据现有技术的情况,可以利用气体轴承相对基底导向液体供给系统。该气体轴承用于液体供给系统相对基底的导向,和在基底表面和液体供给系统或至少是液体容器之间提供一间距。
现有技术中另一种已知的是使用致动装置代替使用气体轴承导向来定位液体供给系统。该致动装置通常由控制装置驱动,该控制装置用于液体供给系统的定位。在操作中,如此定位基底使得其表面保持在光刻装置投影系统的焦平面中。因此,根据现有技术的情况,使液体供给相对焦平面定位在某一高度,以便在液体供给系统(或者至少其中的液体容器)和焦平面之间留出预定的间隙。当如此定位基底使得其表面尽可能地与焦平面重合时,将在基底表面和液体供给系统或至少其中的液体容器之间产生一间距,该间距大体上等于焦平面和液体供给系统(或其液体容器)之间的间隙。
由于基底的不平整,会产生与如上所述的液体供给系统的定位相关联的问题。根据现有技术的情况,为了解决基底的不平整,基底台和其定位系统构造成使基底台倾斜,以便在某一时刻保持待辐射的基底部分局部地处于焦点处,从而尽可能局部地与投影系统的焦平面重合。但是液体供给系统的尺寸明显地大于利用投影系统辐射的基底靶部。因此,液体供给系统的边缘和基底表面之间的间距可能会明显地变化,在实际实施中观察到的是30微米数量级的变化。这种在液体供给系统和基底表面之间的间距变化可能导致液体供给系统与基底发生碰撞,或者导致因间距过大而使浸液泄露。
除了上面的不利影响,在基底边缘还会产生另一个问题。在现有技术实施的通常情况中,当基底定位在基底台上时,其被包括传感器、封闭盘等等的结构围绕。如上所述,液体供给系统的尺寸可以明显地大于基底靶部的尺寸,该基底靶部将在某一时刻被辐射。这样,当在基底边缘附近的一部分基底被辐射时,液体供给系统将部分地与围绕基底的结构重叠,所述基底定位在基底台上。这样基底厚度的容差可能在围绕结构和基底表面之间导致高度差,从而在围绕结构和液体供给系统之间形成间距,所述间距可能大于或小于待辐射的基底靶部和液体供给系统之间的间距。与如上所述的间距偏差类似,这在间距过小的情况下可能导致碰撞,或者在间距过大的情况下可能导致浸液泄露。

发明内容
期望的是提供用于液体供给系统的改进定位。
根据本发明的一个方面,提供一种光刻投影装置,包括配置成保持基底的基底台,配置成将带图案的辐射光束投影到基底靶部的投影系统,构造成在基底和投影系统的下游端之间提供流体的流体供给系统,和控制该流体供给系统的位置的位置控制装置,将基底的位置量提供给该位置控制装置,其中该位置控制装置布置成通过在基底的位置量上增加位置偏差来确定流体供给系统的期望位置,然后根据该期望位置定位该流体供给系统。
根据本发明的一个方面,提供一种将光束投影到基底上的湿浸式投影装置,包括配置成保持基底的基底台,配置成将带图案的辐射光束投影到基底靶部的投影系统,构造成在基底和投影系统的下游端之间提供流体的流体供给系统,和控制该流体供给系统的位置的位置控制装置,将基底的位置量提供给该位置控制装置,其中该位置控制装置布置成通过在基底的位置量上增加位置偏差来确定流体供给系统的期望位置,然后根据该期望位置定位该流体供给系统。
根据本发明的另一个方面,提供一种器件制造方法,包括使用投影系统将带图案的辐射光束投影到基底靶部,使用流体供给系统在基底和投影系统的下游端之间提供流体,和控制该流体供给系统的位置,其中该方法还包括获得基底的位置量,通过在基底的位置量上增加位置偏差来确定流体供给系统的期望位置,然后根据该期望位置定位该流体供给系统。


现在仅仅通过实例的方式,参考随附的示意图描述本发明的各个实施例,附图中相应的参考标记表示相应的部件,其中图1示出了根据本发明的一个实施例的光刻装置;
图2和3示出了一种在现有技术的光刻投影装置中使用的液体供给系统;图4示出了另一种在现有技术的光刻投影装置中使用的液体供给系统;图5示出了另一种在现有技术的光刻投影装置中使用的液体供给系统;图6示出了根据本发明的光刻装置的基底台和液体供给系统;图7示出了根据本发明的基底台和液体供给系统以及定位该液体供给系统的控制装置的示意图;图8A-F示出了根据本发明的光刻装置、方法和投影装置的实施例的流程图;图9A-D示出了根据图8A-D的流程图的实例。
具体实施例方式
图1示意性地表示了根据本发明的一个实施例的光刻装置。该装置包括照明系统(照明器)IL,其配置成调节辐射光束B(例如UV辐射或DUV辐射);支撑结构(例如掩模台)MT,其配置成支撑构图装置(例如掩模)MA,并与配置成依照某些参数将该构图装置精确定位的第一定位装置PM连接;基底台(例如晶片台)WT,其配置成保持基底(例如涂敷抗蚀剂的晶片)W,并与配置成依照某些参数将基底精确定位的第二定位装置PW连接;以及投影系统(例如折射投影透镜系统)PS,其配置成利用构图装置MA将赋予给辐射光束B的图案投影到基底W的靶部C(例如包括一个或多个管芯)上。
照明系统可以包括各种类型的光学装置,例如包括用于引导、整形或者控制辐射的折射光学装置、反射光学装置、磁性光学装置、电磁光学装置、静电光学装置或其它类型的光学装置,或者其任意组合。
支撑结构支撑即承受了构图装置的重量。它以一种方式保持构图装置,该方式取决于构图装置的定向、光刻装置的设计以及其它条件,例如构图装置是否保持在真空环境中。支撑结构可以使用机械、真空、静电或其它夹紧技术来保持构图装置。支撑结构可以是框架或者工作台,例如所述结构根据需要可以是固定的或者是可移动的。支撑结构可以确保构图装置例如相对于投影系统位于期望的位置。这里任何术语“中间掩模版”或者“掩模”的使用可以认为与更普通的术语“构图装置”同义。
这里使用的术语“构图装置”应广义地解释为能够给辐射光束在其截面赋予图案从而在基底的靶部中形成图案的任何装置。应该注意,赋予给辐射光束的图案可以不与基底靶部中的期望图案精确重合,例如如果该图案包括相移特征或所谓的辅助特征。一般地,赋予给辐射光束的图案与在靶部中形成的器件如集成电路的特殊功能层相对应。
构图装置可以是透射的或者反射的。构图装置的实例包括掩模,可编程反射镜阵列,以及可编程LCD板。掩模在光刻中是公知的,它包括如二进制型、交替相移型、和衰减相移型的掩模类型,以及各种混合掩模类型。可编程反射镜阵列的一个实例采用微小反射镜的矩阵排列,每个反射镜能够独立地倾斜,从而沿不同的方向反射入射的辐射光束。倾斜的反射镜可以在由反射镜矩阵反射的辐射光束中赋予图案。
这里使用的术语“投影系统”应广义地解释为包含各种类型的投影系统,包括折射光学系统,反射光学系统、反折射光学系统、磁性光学系统、电磁光学系统和静电光学系统,或其任何组合,如适合于所用的曝光辐射,或者适合于其他方面,如浸液的使用或真空的使用。这里任何术语“投影透镜”的使用可以认为与更普通的术语“投影系统”同义。
如这里所指出的,该装置是透射型(例如采用透射掩模)。或者,该装置可以是反射型(例如采用上面提到的可编程反射镜阵列,或采用反射掩模)。
光刻装置可以具有两个(双台)或者多个基底台(和/或两个或者多个掩模台)。在这种“多台式”装置中,可以并行使用这些附加台,或者可以在一个或者多个台上进行准备步骤,而一个或者多个其它台用于曝光。
参考图1,照明器IL接收来自辐射源SO的辐射光束。辐射源和光刻装置可以是独立的机构,例如当辐射源是受激准分子激光器时。在这种情况下,不认为辐射源构成了光刻装置的一部分,辐射光束借助于光束输送系统BD从源SO传输到照明器IL,所述光束输送系统包括例如合适的定向反射镜和/或扩束器。在其它情况下,辐射源可以是光刻装置的组成部分,例如当源是汞灯时。源SO和照明器IL,如果需要连同光束输送系统BD一起可以称作辐射系统。
照明器IL可以包括调节装置AD(未示出),用于调节辐射光束的角强度分布。一般地,至少可以调节在照明器光瞳平面上强度分布的外和/或内径向范围(通常分别称为σ-外和σ-内)。此外,照明器IL可以包括各种其它装置,如积分器IN和聚光器CO。照明器可以用于调节辐射光束,从而该光束在其横截面上具有期望的均匀度和强度分布。
辐射光束B入射到保持在支撑结构(如掩模台MT)上的构图装置(如掩模MA)上,并由构图装置进行构图。横向穿过掩模MA后,辐射光束B通过投影系统PS,该投影系统将光束聚焦在基底W的靶部C上。在第二定位装置PW和位置传感器IF(例如干涉测量器件、线性编码器或电容传感器)的辅助下,可以精确地移动基底台WT,从而在辐射光束B的光路中定位不同的靶部C。类似地,例如在从掩模库中机械取出掩模MA后或在扫描期间,可以使用第一定位装置PM和另一个位置传感器(图1中未明确示出)来使掩模MA相对于辐射光束B的光路精确定位。一般地,借助于长行程模块(粗略定位)和短行程模块(精确定位),可以实现掩模台MT的移动,其中长行程模块和短行程模块构成第一定位装置PW的一部分。在步进器(与扫描装置相对)的情况下,掩模台MT可以只与短行程致动装置连接,或者固定。可以使用掩模对准标记M1、M2和基底对准标记P1、P2对准掩模MA与基底W。尽管如所示出的基底对准标记占据了指定的靶部,它们也可以设置在各个靶部(这些标记是公知的划线对准标记)之间的空间中。类似地,在其中在掩膜MA上提供了超过一个管芯的情况下,可以在各个管芯之间设置掩膜对准标记。
所示的装置可以按照下面模式中的至少一种使用1.在步进模式中,掩模台MT和基底台WT基本保持不动,而赋予辐射光束的整个图案被一次投影到靶部C上(即单次静态曝光)。然后沿X和/或Y方向移动基底台WT,使得可以曝光不同的靶部C。在步进模式中,曝光场的最大尺寸限制了在单次静态曝光中成像的靶部C的尺寸。
2.在扫描模式中,当赋予辐射光束的图案被投影到靶部C时,同步扫描掩模台MT和基底台WT(即单次动态曝光)。基底台WT相对于掩模台MT的速度和方向通过投影系统PS的放大(缩小)和图像反转特性来确定。在扫描模式中,曝光场的最大尺寸限制了在单次动态曝光中靶部的宽度(沿非扫描方向),而扫描移动的长度确定了靶部的高度(沿扫描方向)。
3.在其他模式中,当赋予辐射光束的图案被投影到靶部C上时,掩模台MT基本保持不动,支撑可编程构图装置,同时移动或扫描基底台WT。在该模式中,一般采用脉冲辐射源,并且在每次移动基底台WT之后,或者在扫描期间两个相继的辐射脉冲之间根据需要更新可编程构图装置。这种操作模式可以容易地应用于采用可编程构图装置的无掩模光刻中,所述可编程构图装置例如是上面提到的可编程反射镜阵列型。
还可以采用上述使用模式的组合和/或变化,或者采用完全不同的使用模式。
图6示出了根据本发明的部分光刻装置的细节视图。特别地,图6示意性地示出了部分投影系统PS、计量学框架MF(其用作机械参考系)、表示为LS的液体供给系统、由基底台WT保持的基底W和表示为WS-SS的晶片台短行程机构。基底W的围绕结构由覆盖板CP形成,该覆盖板覆盖了基底W和其他围绕元件如TIS(影像传输传感器)传感器、封闭盘CD等等之间的间隙。如此定位基底W使得通过投影系统PS照明其表面的靶部TP。液体供给系统LS可在投影系统PS(更精确的是投影系统PS的最后一个投影透镜)和部分基底W的表面之间提供浸液。应该注意的是,图6没有按比例绘制,其仅仅提供了示意性的表示。因此,各个元件之间的距离以及其比例可能与实际不对应。此外,应该注意的是,尽管在上面的描述中已经提到液体供给系统LS,通常这种液体供给系统可以提供任何类型的流体,包括液体和气体,因此液体供给系统用更普遍的术语来说也可以认为是流体供给系统。因此,除了在该文献中所提到的浸液,可以应用包括液体和气体的任何合适的流体。
如上所述,如此定位基底台WT以便定位基底W的靶部TP,使得靶部尽可能地与投影系统的焦平面重合。根据本发明的实施例,如图6所示,使液体供给系统相对投影系统倾斜,以便随着基底台WT和基底W倾斜。在有利的实施例中,当使液体供给系统LS倾斜以便跟随基底台WT倾斜时,基底W的表面和液体供给系统LS之间的间隙能够充分地保持不变,从而避免在液体供给系统一侧间距过大而导致泄漏,并且同时避免在液体供给系统另一侧间距过小,和导致的液体供给系统和基底之间的碰撞。根据本发明,除了倾斜之外或者代替倾斜,可以应用定位液体供给系统的其他或另外的标准。下面将描述其实例。
现在参考图7描述根据本发明的光刻装置的操作。
图7示意性地示出了投影系统PS、液体供给系统LS、基底W和基底台WT,它们与参考图6示出和描述的相同。利用位置控制回路控制基底台WT的位置,更加精确地在一些实施例中控制基底台短行程WS-SS相对例如计量学框架MF或投影系统PS的位置,所述位置控制回路包括用于感测基底台WT的位置的位置传感器PS和驱动致动装置(未示出)以定位基底的基底台位置控制装置CONw。在该实施例中控制装置CONw和位置传感器PS形成封闭回路的控制回路。提供位置设定点SETw给控制回路,从而提供设定点即基底台WT的期望位置。在一个有利的实施例中,通过确定基底W的水平高度(高度)图可以确定位置设定点,从而在基底的多个位置处测量基底W的高度。然后可以使用该高度图确定用于定位基底W的合适设定点,以便能够匹配基底靶部的位置,该位置将和投影系统PS的焦平面一起尽可能好地被照射。基底W的这种定位包括在垂直方向例如Z方向(如图7所指示的)的平移,和/或包括在与该垂直方向垂直的平面中基底w.r.t.的倾斜,这样w.r.t.有利地处在大体上平行于投影系统和/或围绕垂直于投影系统光轴的轴的平面内。图7还示出了控制液体供给系统的位置的位置控制装置。在该实施例中,位置控制装置包括确定液体供给系统的位置的位置传感器PSL和驱动致动装置(未示出)以定位液体供给系统的控制装置CONL。在根据本发明的位置控制装置的有利实施例中所包括的位置传感器PSL和控制装置CONL在该实施例中形成封闭回路的控制回路。根据本发明,通过在基底的位置量上增加偏差来确定设定点,也就是液体供给系统的期望位置。图7中用PO示意性地表示该位置偏差。将位置偏差增加到位置量PQ上,该位置量由用于为基底台产生设定点SETW的设定点发生装置提供。位置量包括基底或基底台的倾斜,该倾斜例如是相对投影系统的焦平面。上面已经描述了这种倾斜的优点。此外,基底台的位置量PQ包括基底台在垂直于投影系统的焦平面的方向也就是在Z方向上的位置。这对于一些测量和/或照射可能是有用的,其中在操作中沿与所述轴至少部分重合的方向移动基底台,例如使基底表面在用于某些测量的焦点之外,并避免液体供给系统LS和基底W之间的间隙过大或过小。偏差包括位移(例如在大体上垂直于投影系统的焦平面的方向),但是也可以包括任何倾斜。在偏差包括例如位移的情况下,基底的位置量包括位置和倾斜,从而可以根据本发明的一个方面定位液体供给系统,使得其例如在垂直方向(例如Z方向)相对基底偏置,同时跟随基底倾斜,从而获得参考图6所描述的有利效果。还应该注意,该偏差取决于一些参数如扫描速度或扫描方向。作为实例,位置偏差例如可以包括根据扫描方向和/或速度在Z方向的倾斜或偏差。这种偏差通过补偿因扫描处理导致流体边界的变形来帮助控制流体。
在一个实施例中,位置偏差包括在扫描基底期间大体上不变的偏差值,从而用于液体供给系统LS准确地跟随基底W表面,同时防止对位置相关的偏差等等的复杂计算。该大体上不变的偏差值包括在Z方向上大体上不变的偏差值,有利地是在垂直于投影系统的焦平面的方向上,从而确保液体供给系统和基底之间不变的预定间隙。该有利的实施例有利地组合了包括旋转位置的位置量,从而用于Z方向上的偏差,也就是在Z方向上的间隙,同时由液体供给系统跟随基底台倾斜;因此不仅把不变的差值平均在面对液体供给系统的部分基底表面上,而且尽可能地消除了在液体供给系统的边缘处的间隙差。换句话说,位置量包括围绕垂直于Z轴的X轴和Y轴的旋转位置;同时使Z轴本身保持固定。这样,面对液体供给系统的部分基底表面和液体供给系统之间的间距在Z方向保持不变,液体供给系统随着基底台倾斜。通过这种方式,在晶片上局部倾斜的变化不会导致液体供给系统边缘处的间距变化。在液体供给系统和基底之间的相关Z间距保持不变,液体供给系统跟随的仅仅是基底的(平均)综合Rx/Ry倾斜。与小的狭缝有关、但高频的基底形貌不被液体供给系统跟随,因为这会导致液体供给系统产生大的间距变化(ca.100×100),该液体供给系统具有比狭缝更大的尺寸(ca.20×32mm)。
在一个有利的实施例中,其中投影偏差包括在扫描基底期间大体上不变的偏差值,还可能的是通过在标称偏差值上增加至少部分基底的厚度参数,为基底确定大体上不变的偏差值。通过这种方式,当位置量还包括基底台在Z方向的位置时提供一补偿,因为在这种情况下对基底台来说,较厚的基底将导致较低的设定点,从而在液体供给系统和基底台之间形成更小的间隙。为了补偿这种作用,将至少部分基底的厚度参数增加到标称偏差值上,从而在较厚基底的情况下例如增大了在Z方向的偏差,而在较薄基底的情况下减小了偏差。对于厚基底和薄基底来说,该有利的实施例都会在液体供给系统和基底之间形成同样的间隙。在实际的实施例中,基底的厚度参数包括例如基底最大厚度和最小厚度的平均值。
位置控制装置可以布置成在扫描基底期间使流体供给系统保持在固定位置。在该有利的实施例中,基底的位置量包括基底台在垂直于投影系统的焦平面的方向也就是在Z方向上的平均位置。一个优点是在扫描期间液体供给系统不会相对投影系统移动。因此,不会将因液体供给系统的移动而产生的扰动力传递给投影系统,以及传递给与投影系统连接的任何参考系,如计量学框架。这样,可以避免因这种扰动力产生的任何位置误差和投影误差。另一个优点是在扫描期间由于液体供给系统的移动,没有或者仅有有限的力作用在计量学框架MF上。在实际的实施例中,定位液体供给系统的一个或多个致动装置可对计量学框架MF作用,从而当移动液体供给系统或者致动致动装置时,产生对计量学框架MF的反作用力。
在另一个有利的实施例中,位置控制装置配置成确定液体供给系统的下缘和基底表面之间的瞬间间距。此外,在该实施例中,位置控制装置配置成当该间距达到预定的期望间距范围的极值时临时调节偏差。该期望间距范围设定成使得确保一最小间距,该最小间距可在液体供给系统和基底之间提供最小安全间距,同时确保一最大间距,该最大间距不超过一间距(也就是液体供给系统和基底之间的间隙),如果超过该间距,将潜在地导致诸如泄漏等的问题。在一个实施例中,可以使用任何间距测量设备确定该瞬间间距,由基底或基底台的位置和液体供给系统的位置之间的差值可以确定该瞬间间距。通过这种方式,可以实施一简单的位置控制装置,因为在该实施例中仅要求位置控制装置在间距达到预定的期望范围的极值时调节偏差。
在另一个有利的实施例中,位置控制装置配置成确定液体供给系统和基底之间的间距,并在该间距超过预定的安全间距范围时发出警报信息。该警报信息包括任何类型的信息,包括计算机网络中的数字代码以及任何类型的光学或声学警报或任何其他指示。这样,当超过预定的安全间距范围时产生一安全信息。
参考图8和9描述另一组实施例。在这些实施例中,位置量包括基底高度的高度函数。该高度函数由包括基底上各个位置的相应高度的表格组成,或者高度函数包括数学函数。术语高度应理解为当基底在大体上平行于上面提到的Z轴的方向上定位在基底台上时其表面水平高度。在实际的实施例中,无论如何已经对每个基底确定了高度函数,因为需要确定用于定位基底靶部的基底台的最佳位置,使得其与投影系统的焦平面尽可能地重合。下面,将论述包括在这组实施例中的一些有利实施例。
如图8A所示,在一个实施例中,位置控制装置在步骤800中配置成利用高度函数确定在被液体供给系统覆盖的部分基底表面上的最合适平面。然后,在步骤801中,通过在最合适平面的高度上增加预定的高度确定液体供给系统的期望位置。该预定高度包括任何偏差,有利地它包括在基底表面完全为平坦的情况下对应于最佳高度的高度偏差,该最佳高度的范围是30-150微米。通过这种方式,液体供给系统和基底之间的间隙可以尽可能地保持处于该最佳值不变。图9A中还用图形的方式示出了该实施例,其中LS表示液体供给系统,W表示基底表面,WBF表示用于该基底表面的最合适平面。
应该注意,在参考图8A-8F中任何一幅图描述的实施例中,在本文献中描述的任何其他实施例也是这样,术语高度或高度差应理解为在大体上垂直于投影系统的焦平面的轴上的位置或位置差。此外,应该注意,不仅可以确定和使用最合适平面的高度,而且可以确定和使用最合适平面的局部倾斜。这不仅可应用于图8A的实施例,而且可应用于其他实施例,特别地但不限于图8B-8F的实施例。
在一个实施例中,位置控制装置配置成在步骤810中利用高度函数确定在被液体供给系统覆盖的部分基底表面上的一个平面,所述平面使高度函数的最小值保持为正。然后在步骤811中,通过在使高度函数的最小值保持为正的所述平面上增加预定高度来确定液体供给系统的期望位置。从而执行一计算,其与上面参考图8A描述的实施例的计算类似,但是替代最合适平面的是,计算使高度函数的最小值保持为正的平面,因此得到至少保持最小间隙的位置,也就是液体供给系统和基底表面之间的最小间距。图9B中用图形的方式示出了该实施例,其中WPOS表示计算为高度函数的最小值是正的平面。
在如图8C所示的实施例中,位置控制装置配置成在步骤820中利用高度函数对部分基底表面上的高度求和,所述部分基底表面被液体供给系统覆盖;在步骤821中将求和的高度除以部分基底表面的表面积,以获得除得的求和高度,所述部分基底表面被液体供给系统覆盖;然后在步骤822中通过在除得的求和高度上增加预定高度来确定液体供给系统的期望位置。因此,可以得到不变的量。作为对高度求和的可替换方案,也可以进行积分。利用该实施例,可以确定液体供给系统的位置和定向,其使液体供给系统和基底之间的间隙中的液体量大体上保持不变。在另一个实施例中,如参考图8D所描述的,位置控制装置配置成在步骤830中利用高度函数确定在部分基底表面上的平均高度,所述部分基底表面被液体供给系统覆盖;然后在步骤831中通过在平均高度上增加预定高度来确定液体供给系统的期望位置。因此,可以获得最小常态挤压(normal squeezing),从而使包含在间隙中的量保持不变,同时忽略倾斜。图8D也示出了该实施例。
在一个如图8E所示的实施例中,位置控制装置配置成在步骤840中确定在被液体供给系统覆盖的部分基底表面上的扰动力函数,该扰动力函数表示根据基底和液体供给系统之间的间距在基底和液体供给系统之间的力;在步骤841中利用高度函数对被液体供给系统覆盖的部分基底表面上的扰动力函数积分;然后在步骤842中确定液体供给系统的期望位置为这样一个位置,在该位置在被液体供给系统覆盖的部分基底表面上被积分的扰动力函数是常量,例如在基底相对液体供给系统的水平移动的应用中。利用该实施例,可以获得基底台扰动力最小的基底。本发明人想到在基底或基底台和液体供给系统之间的力在很大程度上非线性地取决于这些装置之间的间距,也就是取决于间隙。因此,在如本实施例中所应用的计算中,应考虑这些非线性特性。
在另一个实施例中,如图8F所示,位置控制装置配置成在步骤850中确定在被液体供给系统覆盖的部分基底表面上的扰动力函数,该扰动力函数表示取决于基底和流体供给系统之间的间距的基底和流体供给系统之间的力;在步骤851中从扰动力函数确定位置相关的高度偏差;在步骤852中利用高度函数确定在被流体供给系统覆盖的部分基底表面上的最合适平面;然后在步骤853中通过在最合适平面的高度上增加位置相关的高度偏差来确定液体供给系统的期望位置。在该实施例中,可以获得最小加速力。对于跟随不平坦基底台或不平坦高度轮廓的液体供给系统,需要作用在液体供给系统上的力使其加速。在该实施例中,减小了致动力,因为单一值矢量可以用于液体供给系统的位置或位置图。从而需要该液体供给系统跟随基底和/或基底台的移动。
在参考8A-8F所描述的实施例中,对多个基底的位置计算相对投影系统的期望位置,从而得到多个位置,所述位置能以表格、函数、水平图等等的形式表示。可以对离散的基底台位置等级计算期望位置,但是也可以用连续的函数来表示。在参考图8A-8F描述的实施例中的期望位置包括液体供给系统的位置和/或倾斜。
在该实施例中,术语位置控制装置表示包括例如微型电子计算机、微处理器的任何类型的控制装置或具有合适软件指令的任何其他类型的数字处理设备。此外,位置控制装置包括专用硬件如执行所述功能的专用电子设备。
此外,在该文献中,术语基底的位置量包括任何与位置有关的量,包括例如基底和/或基底台的一部分、速度和加速度、基底和/或基底台的倾斜、角速度或角加速度。该位置量可以是相对任何合适的参考系,如投影系统、投影系统的焦平面、计量学框架或投影系统中任何其他固定或可动的参考系。该参考系可以是可感知的(即包括物理结构)或包括任何数学或光学参考系,如焦平面。
同样,液体供给系统的期望位置包括相对任何参考系的位置和/或相对任何参考系的倾斜。
可以在基底曝光开始之前完全或部分地确定期望位置,但是也可以部分地或完全地“在进行中”即在基底台的曝光和/或移动期间确定。
尽管在本申请中可以具体参考使用该光刻装置制造IC,但是应该理解这里描述的光刻装置可能具有其它应用,例如,它可用于制造集成光学系统、用于磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头等等。本领域的技术人员将理解,在这种可替换的用途范围中,这里任何术语“晶片”或者“管芯”的使用应认为分别可以与更普通的术语“基底”或“靶部”同义。在曝光之前或之后,可以在例如光刻胶涂布-显影装置(通常将抗蚀剂层应用于基底并将已曝光的抗蚀剂显影的一种工具)、计量工具和/或检验工具中对这里提到的基底进行处理。在可应用的地方,这里的公开可应用于这种和其他基底处理工具。另外,例如为了形成多层IC,可以对基底进行多次处理,因此这里所用的术语基底也可以指已经包含多个已处理的层的基底。
这里使用的术语“辐射”和“光束”包含所有类型的电磁辐射,包括紫外(UV)辐射(例如具有大约365,248,193,157或者126nm的波长)。
在本申请中术语“透镜”可以表示任何一个各种类型的光学装置或其组合,包括折射和反射光学装置。
尽管上面已经描述了本发明的具体实施例,但是应该理解可以不同于所描述的实施本发明。例如,本发明可以采取计算机程序的形式,该计算机程序包含一个或多个序列的描述了上面所公开的方法的机器可读指令,或者包含其中存储有这种计算机程序的数据存储介质(例如半导体存储器、磁盘或光盘)。
本发明可以应用于任何湿浸式光刻装置,特别地但不唯一的,可以应用于上面提到的那些类型的光刻装置。
上面的描述是为了说明,而不是限制。因此,对本领域技术人员来说显而易见的是,在不脱离下面描述的权利要求书的范围的条件下,可以对所描述的发明进行各种修改。
权利要求
1.一种光刻装置,包括配置成保持基底的基底台;配置成将带图案的辐射光束投影到基底靶部的投影系统;构造成在基底和投影系统之间提供流体的流体供给系统;和位置控制装置,用于控制该流体供给系统的位置,和接收作为输入的基底的位置量,其中该位置控制装置进一步配置成通过在基底的位置量上增加位置偏差来确定流体供给系统的期望位置;以及根据该期望位置定位该流体供给系统。
2.如权利要求1所述的光刻装置,其中基底的位置量包括与基底台相对投影系统的焦平面的倾斜相关的量。
3.如权利要求1所述的光刻装置,其中基底的位置量包括基底台在垂直于投影系统的焦平面的方向上的位置。
4.如权利要求1所述的光刻装置,其中位置偏差包括在扫描基底期间大体上不变的偏差值。
5.如权利要求4所述的光刻装置,其中大体上不变的偏差值包括在垂直于投影系统的焦平面的方向上大体上不变的偏差值。
6.如权利要求4所述的光刻装置,其中通过在标称偏差值上增加至少部分基底的厚度参数,确定基底的大体上不变的偏差值。
7.如权利要求6所述的光刻装置,其中基底的厚度参数包括基底的最大厚度和最小厚度的平均值。
8.如权利要求1所述的光刻装置,其中位置控制装置配置成在扫描基底期间使流体供给系统保持在固定位置,基底的位置量包括基底台在垂直于投影系统的焦平面的方向上的平均位置。
9.如权利要求1所述的光刻装置,其中位置控制装置进一步配置成确定流体供给系统和基底之间的瞬间间距,并且当该间距达到预定的期望间距范围的极值时临时调节偏差。
10.如权利要求1所述的光刻装置,其中位置控制装置进一步配置成确定流体供给系统和基底之间的间距,并且当该间距超过预定的安全间距范围时发出警报信息。
11.如权利要求1所述的光刻装置,其中基底位置量包括基底高度的高度函数。
12.如权利要求11所述的光刻装置,其中位置控制装置配置成利用所述高度函数确定在部分基底表面上的最合适平面,所述部分基底表面被流体供给系统覆盖;以及通过在该最合适平面的高度上增加预定高度来确定流体供给系统的期望位置。
13.如权利要求11所述的光刻装置,其中位置控制装置配置成利用所述高度函数确定在被流体供给系统覆盖的部分基底表面上的这样一个平面,所述平面使高度函数的最小值保持为正;以及通过在使高度函数的最小值保持为正的所述平面上增加预定高度来确定流体供给系统的期望位置。
14.如权利要求11所述的光刻装置,其中位置控制装置配置成利用所述高度函数对被流体供给系统覆盖的部分基底表面上的高度求和;将求和的高度除以被流体供给系统覆盖的部分基底表面的表面积,以获得除得的求和高度;以及通过在除得的求和高度上增加预定高度来确定流体供给系统的期望位置。
15.如权利要求11所述的光刻装置,其中位置控制装置配置成利用高度函数确定被流体供给系统覆盖的部分基底表面上的平均高度;以及通过在平均高度上增加预定高度来确定流体供给系统的期望位置。
16.如权利要求11所述的光刻装置,其中位置控制装置配置成确定在被流体供给系统覆盖的部分基底表面上的扰动力函数,该扰动力函数表示取决于基底和流体供给系统之间间距的基底和流体供给系统之间的力;利用所述高度函数对被流体供给系统覆盖的部分基底表面上的扰动力函数积分;以及将流体供给系统的期望位置确定为这样一个位置,在该位置在被流体供给系统覆盖的部分基底表面上被积分的扰动力函数是常量。
17.如权利要求11所述的光刻装置,其中位置控制装置配置成确定在被流体供给系统覆盖的部分基底表面上的扰动力函数,该扰动力函数表示取决于基底和流体供给系统之间间距的基底和流体供给系统之间的力;由扰动力函数确定位置相关的高度偏差;利用所述高度函数确定在被流体供给系统覆盖的部分基底表面上的最合适平面;以及通过在最合适平面的高度上增加位置相关的高度偏差来确定流体供给系统的期望位置。
18.一种将光束投影到基底上的湿浸式投影装置,包括配置成保持基底的基底台;配置成将辐射光束投影到基底靶部的投影系统;构造成在基底和投影系统之间提供流体的流体供给系统;和控制该流体供给系统的位置的位置控制装置,将基底的位置量提供给该位置控制装置,其中该位置控制装置配置成通过在基底的位置量上增加位置偏差来确定流体供给系统的期望位置;以及根据该期望位置定位该流体供给系统。
19.一种器件制造方法,包括使用投影系统将带图案的辐射光束投影到基底靶部;使用流体供给系统在基底和投影系统之间提供流体;和控制该流体供给系统的位置,该控制包括获得基底的位置量,通过在基底的位置量上增加位置偏差来确定流体供给系统的期望位置;以及根据该期望位置定位该流体供给系统。
全文摘要
一种光刻装置,其包括保持基底的基底台和将带图案的辐射光束投影到基底靶部的投影系统。该光刻装置还包括流体供给系统,用于在基底和投影系统的最后一个透镜元件之间提供流体,和位置控制装置,用于控制该流体供给系统的位置。该位置控制装置配置成在被提供基底的位置量时,通过在基底的位置量上增加位置偏差来确定流体供给系统的期望位置,然后根据该期望位置定位流体供给系统。该位置量包括基底台的位置和/或旋转位置和/或基底高度的高度函数。
文档编号H01L21/027GK1841208SQ20061007153
公开日2006年10月4日 申请日期2006年3月28日 优先权日2005年3月28日
发明者J·-G·C·范德图恩, H·布特勒, H·H·M·科西, E·H·J·德拉贾, N·坦卡特, F·范德穆伦, M·J·H·弗兰坎, M·侯克斯, A·H·阿伦德斯, M·库帕卢斯 申请人:Asml荷兰有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1