表面处理的氮化铝挡板的制作方法

文档序号:7208073阅读:377来源:国知局
专利名称:表面处理的氮化铝挡板的制作方法
技术领域
本发明的实施例大体上关于半导体处理设备,更具体地,关于用来处理半导体基 材的氮化铝挡板。
背景技术
在某些高密度等离子体化学气相沉积(HDP-CVD)处理腔室中,挡板在基材处理期 间可用于气体的注入与分配。用于HDP-CVD腔室的挡板典型地由氧化铝(Al2O3)构成。不 过,随着使用高射频功率HDP-CVD处理来存取较小的装置节点,升高的温度导致氧化铝和 处理气体反应,此类处理气体的例子为可用作HDP-CVD腔室的清洁气体的三氟化氮(NF3)。 因此,由于除其它因素外的改善的导热性,氮化铝(AlN)挡板已取代氧化铝挡板。不幸的是,虽然氮化铝挡板具有某些有利的性质,其它问题却仍存在。举例来说, 氮化铝挡板通常以包括金属氧化物粘结剂的烧结处理制造。金属氧化物粘结剂有助于烧结 的氮化铝的高导热性。不过,在基材处理之前的挡板时效处理期间,这些在烧结后存在于挡 板表面上的粘结剂不合意地干涉到氧化硅(SiO2)层的粘着。举例来说,时效处理可防止基 材受到挡板材料的污染,并可在处理或清洁期间保护挡板免受反应气体影响。不过,不良粘 着的氧化硅时效处理层可从挡板表面剥落,从而污染欲处理的基材,且亦可在基材处理或 腔室清洁期间使挡板处于易受所供应的反应气体损坏的状态。虽然此问题可通过不使用金 属氧化物粘结剂来排除,但这一类方法将不合意地降低挡板的导热性。因此,在此技术中需要改善的氮化铝挡板及其制造方法。

发明内容
本文提供关于氮化铝挡板的方法与设备。在某些实施例中,用在半导体处理腔室 中的挡板可包括主体,其包含氮化铝和金属氧化物粘结剂,其中在所述主体的表面上的氮 化铝与所述金属氧化物粘合剂的比率大于或等于所述主体内部的比率。在某些实施例中, 所述主体可具有中心杆和耦合至所述中心杆的下部并从此处向外径向延伸的外部环形物。在某些实施例中,处理半导体基材的设备可包括处理腔室,其具有内容积和配置 在其顶板中的第一气体入口 ;及挡板,其耦合至所述第一气体入口并装配为弓I导第一处理 气体从所述第一气体入口流到所述内容积,所述挡板包括主体,其包含氮化铝和金属氧化 物粘结剂,其中在所述主体的表面上的氮化铝与所述金属氧化物粘结剂的比率大于或等于 所述主体内部的比率。在某些实施例中,用在半导体处理腔室中的挡板可通过一理形成,所述处理包括 烧结铝、氮和金属氧化物粘结剂,以形成所述挡板的主体,所述主体具有过量的金属氧化物 粘结剂配置在其表面上;及从所述表面移除大量的所述过量金属氧化物粘结剂。在本发明的某些方面中,提供用在半导体处理腔室中的挡板的制造方法。在某些 实施例中,用在半导体处理腔室中的挡板的制造方法可包括烧结铝、氮和金属氧化物粘结 剂,以形成所述挡板的主体,所述主体具有过量的金属氧化物粘结剂配置在其表面上;及从所述主体表面移除大量的所述过量金属氧化物粘结剂。在本发明的某些方面中,提供处理半导体基材的方法。在某些实施例中,处理半 导体基材的方法可包括以下步骤将基材放置在处理腔室中的基材支撑上,所述处理腔室 具有内容积和第一气体入口,第一气体入口相对所述支撑基座配置在所述处理腔室的顶板 中;使第一处理气体流过耦合至所述第一气体入口的挡板并进入所述内容积,所述挡板包 含氮化铝主体,其具有金属氧化物粘结剂,其中在所述主体的表面上的氮化铝与所述金属 氧化物粘结剂的比率大于或等于所述主体内部的比率;及以用所述第一处理气体处理所述 基材。本发明的其它及进一步的实施例在下文叙述。


参照某些示出于附图中的实施例来提供于上文简要总结的本发明的更具体叙述, 以详细了解本发明的上述的特征结构。不过,须注意附图仅示出此发明的典型实施例,且因 此不应视为对本发明范围的限制,因为本发明可容许其它等效实施例。图1示出根据本发明的某些实施例所用的示意处理腔室的示意图。图2A-B示出根据本发明的某些实施例的挡板的示意图。图3示出根据本发明的某些实施例的挡板制造方法的流程图。图4示出根据本发明的某些实施例的基材处理方法的流程图。图5A-B分别示出在不同放大率下的常用挡板的表面的视图。为了帮助了解,已尽可能地使用相同附图标记来标明各图中共用的相同组件。图 式未依比例绘制,并可为清楚起见而加以简化。在无需进一步详述的情况下,可预期一实施 例中的组件及特征结构能有利地并入其它实施例中。
具体实施例本文提供使用改善的氮化铝挡板处理半导体基材的方法与设备。在某些实施例 中,用在半导体处理腔室中的挡板包括主体,其包含氮化铝和金属氧化物粘结剂。在该主体 表面上的氮化铝与金属氧化物的比率大于该主体内部的比率。金属氧化物在该主体表面上 的缩减量帮助改善氧化硅时效处理层粘着至挡板表面,其可进一步防止在处理期间基材受 到可以其它方式从氮化铝挡板剥落的粒子的污染,并可进一步保护挡板免于受到反应处理 气体的损坏。在某些实施例中,提供制造氮化铝挡板的方法。该制造方法可有利地帮助制 造氮化铝挡板,其在该主体表面上所具有的氮化铝与金属氧化物的比率大于该主体内部的 比率。本发明的氮化铝挡板可用在适当的处理腔室中,例如,适于执行高密度等离子体 化学气相沉积(HDP-CVD)的。该处理腔室可配置为单一腔室,或可替代地集成为群集工具 的一部分。两个这类的适当系统为 300mmHDP-CVD ULTIMA X 和 CENTURA ULTIMA HDP-CVD, 两者皆可由应用材料公司购得。可预期HDP-CVD腔室仅为在其中可使用氮化铝挡板的示例 腔室。具有一或多个气体入口且适于容纳氮化铝挡板的任何适当腔室可从本发明的实施例 受惠。图1示出根据本发明的某些实施例的具有挡板200的示例HDP-CVD腔室100的示 意图。HDP-CVD腔室100可用于例如硅(Si)基材、砷化镓(GaAs)基材等基材的温度控制处理,同时产生并维持在其中处理基材的等离子体环境。等离子体在基材处理期间产生在邻 近基材处,且基材温度使用不同技术控制,例如,通过供应传热流体至基材的背表面。HDP-CVD腔室100包括处理腔室110,其具有含有基材支撑102的内容积101,以 及具有配置在其中的挡板200。处理腔室100可进一步包括真空系统112、源等离子体系统 114、偏压等离子体系统116、气体输送系统118和远程等离子体清洁系统(未显示)。基材支撑102可配置在处理腔室110中,以支撑处理期间放置在其上的基材106。 基材支撑102可包括不同部件,例如,静电吸盘108,其夹钳基材106至基材支撑102 ;或其 它部件,如更详细于下文叙述者。当基材106配置在其上时,处理套组(未显示)可选择性 地用来覆盖至少一部分未受基材106覆盖的基材支撑102。处理套组可装配为在处理期间 提供基材106的表面降低的污染,并在腔室清洁处理期间减少清洁时间。处理腔室110的上部可包括圆顶121,其可以例如氧化铝或氮化铝之类的介电材 料制成。圆顶121定义等离子体处理区域120的上边界。等离子体处理区域120在底部由 基材106和基材支撑102定界。加热板122和冷板124装于圆顶121之上并热耦合至圆顶121。加热板122和冷 板1 允许将圆顶温度控制在约摄氏100至200度的范围间的约摄氏+/-10度内。这允许 针对不同处理最佳化圆顶温度。举例来说,可需要维持圆顶为用于清洁或蚀刻处理比用于 沉积处理更高的温度。准确控制圆顶温度亦减少处理腔室中的小片或粒子数,并改善介于 沉积层和基材之间的粘着。圆顶121可包括顶部喷嘴150和配置在其中且通过此处的顶部排气孔152,其可用 于引入气体至处理腔室110,如进一步在下文关于气体输送系统118所讨论的。顶部喷嘴 150在气体入口(例如,下文关于图2A所讨论的气体入口 208)处耦合至挡板200,且顶部 排气孔152对处理腔室110开启,并朝向挡板200的背侧(例如,下文关于图2A所讨论的 背侧203),如下文关于图1和图2A至B所讨论的。参照图2A至B,挡板200通常包括主体202,其具有用于在处理腔室内部依所需 引导处理气体的形状。举例来说,挡板200可配置在气体入口(例如,图1示出的顶部喷 嘴150)和基材支撑(例如,图1示出的基材支撑102)之间,并可包括背侧203,其与圆顶 121 (在图1中示出)分开且相对;及前侧201,其配置为相对基材106和基材支撑102(在 图1中示出),以依所需来引导处理气体。挡板200通常包含氮化铝和金属氧化物粘结剂。 挡板200在主体202的表面上所具有的氮化铝与金属氧化物的比率大于主体202内部的氮 化铝与金属氧化物的比率。下文关于图3所讨论的制造氮化铝挡板的方法包括金属氧化物粘结剂与氮化铝 对金属氧化物的比率的讨论,图3示出流程图,其说明根据本发明的某些实施例的制造氮 化铝挡板的方法300。方法300始于310,其中挡板200 (或主体20 可从铝、氮和金属氧化物粘结剂烧 结而得。一般而言,烧结处理包括在压力下以低于熔点的温度加热粉末,直到粉末粘着在一 起形成固体物(例如,主体20 。在某些实施例中,可烧结氮化铝粉末和金属氧化物粉末, 以形成主体202。金属氧化物粘结剂可用来帮助氮化铝粒子的粘着,并用来改善挡板200的导热 性。在某些实施例中,金属氧化物粘结剂包括氧化钇或氧化铒两者中至少一个。金属氧化物粘结剂可添加至氮化铝粉末然后烧结,或替代地,氮化铝粉末可包含足量的金属氧化物 杂质,以致在烧结前不需要额外的金属氧化物粘结剂。在某些实施例中,介于约0. 1至约10 重量百分比的金属氧化物可存在于挡板200中。本发明者已观察到常用氮化铝挡板的数个问题。举例来说,本发明者已观察到不 均勻的涂层,例如,氧化硅风干处理层,倾向于在常用的氮化铝挡板的表面上发展。这类不 均勻的涂层可导致涂层剥落(举例来说,由于涂层的不均勻堆积或由于金属氧化物在挡板 表面上的松散晶粒),以及后续可能的基材污染、挡板暴露至有害的处理气体等。研究此问 题,本发明者已观察到使用常用的烧结技术,烧结处理导致挡板在其表面上被配置过量金 属氧化物。举例来说,图5A示出以100倍放大率观看的氮化铝挡板的实际表面的示意图, 其清楚显示存在于氮化铝502的表面上的过量金属氧化物504的区域。所看到的过量金属 氧化物504的区域为发白或浅色区域,其位于更暗的氮化铝502顶上。图5B示出以500倍 放大率观看的氮化铝挡板的实际表面的示意图,其清楚显示存在于氮化铝502的表面上的 过量金属氧化物504的区域。如同在图5B的更为放大的图中更清楚看到的,过量金属氧化 物504的晶粒结构和氮化铝502的晶粒结构非常不同。此外,和在氮化铝502内部更均勻 地配置或集成的相比,可看到过量金属氧化物504在氮化铝502顶上的区域或“岛”中形成。 配置在表面上的过量金属氧化物可比通常遍及主体的以更大的量存在,这是因为金属氧化 物粘结剂在烧结处理期间挤出或迁移之故。本发明者相信在常用挡板中所观察到的问题可 至少部分归因于过量金属氧化物存在于氮化铝挡板表面上。因此,本发明者相信排除或减少挡板表面上的过量金属氧化物可提供优于常用氮 化铝挡板的优点。因此,在某些实施例中,挡板200在主体202的表面上可具有氮化铝与金 属氧化物的比率大于或等于主体202内部的比率。在某些实施例中,挡板200在主体202 的表面上可具有本质上无过量的金属氧化物。回到图3,在320,将大量(例如,大多数)的过量金属氧化物粘结剂从挡板200(例 如,主体20 的表面移除。在某些实施例中,举例来说,大量的过量金属氧化物粘结剂可在 大量去除步骤中通过喷砂、喷粒、湿性擦蚀、机械研磨、机械拋光等的至少一个,从挡板200 或主体202的表面移除(如图3的322所示)。在某些实施例中,表面清洁或处理步骤可 包括以腐蚀酸清洁(如图3的3 所示)。适当的腐蚀酸可包括硝酸(HNO3)、盐酸(HCl)、 硅烷(SiH4)等。腐蚀酸可在去离子(DI)水中稀释至适当强度。腐蚀酸和去离子水的清洁 溶液可依所需为弱或侵蚀性,以提供最终的金属氧化物移除及/或挡板的氮化铝表面的处 理。氮化铝的表面清洁和处理不仅可帮助移除挡板表面上或接近此处的任何过量的金属氧 化物,亦可蚀刻或以其它方式修改氮化铝挡板表面,以促进形成在其上的层(例如,氧化硅 风干处理层)的更大粘着。从挡板200 (或主体20 的表面移除过量的金属氧化物粘结剂帮助提供挡板,其 在主体表面上所具有的氮化铝与金属氧化物的比率大于或等于主体内部的比率(例如,该 表面为绝大多数与主体中的为氮化铝以及金属氧化物粘结剂的汞齐类似)。举例来说,和 图5A至B所示的常用挡板表面的视图相比,以相同放大率观察挡板200的表面,显示在挡 板200的表面上没有视觉上可侦测的金属氧化物。一旦完成从挡板200的表面移除大量的过量金属氧化物,方法300大体上终止,且 挡板200可进一步依需要处理或安装至处理腔室中,如上文关于图1所讨论般。
回到图2,在某些实施例中,挡板200可具有中心杆204和外部环形物206,尽管在 其它腔室或应用中可使用其它几何形状。中心杆204包括气体入口 208,其配置在中心杆 204的上部,并用于将中心杆204耦合至顶部喷嘴150,如上文关于图1所叙述般。中心杆 204可进一步包括多个气体出口 210,其配置在中心杆204的下部,并经由槽道209流体耦 合至气体入口 208。多个气体出口 210帮助气体从顶部喷嘴150经由气体入口 208流到挡 板200的前侧201。如图2A所示出,相对挡板200的前侧201上的外部环形物206的表面,中心杆204 的下部在前侧201上可具有凸起表面。在某些实施例中,凸起表面可用于引导来自每一气 体出口 210的气流,以致离开每一气体出口 210的气体以相对挡板200的中心轴(或相对 配置在该处下方的基材的中心轴)的角度流动。不过,中心杆204的下部在挡板200的前 侧201上可替代地具有齐平、凹陷或其它的表面几何形状。此外,多个气体出口 210的一或 多个可定向为平行、垂直或介于其间的任何适当角度,以帮助气体流动至基材106的表面。参照图2B,在某些实施例中,多个气体入口 208在挡板200的前侧201上可以环形 图案均勻地隔开。或者,多个气体出口 210可以帮助气体流至基材106的表面所需要的任 何适当图案隔开,如此则其组态不受限于均勻或圆形地隔开。回到图2A,在某些实施例中,外部环形物206可包括多个配置穿过其中的孔212。 多个孔212可帮助气体从背侧203流到挡板200的前侧201。进一步而言,外部环形物206 可另外或在缺少多个孔212的情况下通过围绕外部环形物206边缘的气流帮助气体从背侧 203流到前侧201。举例来说,如图1所示,经由顶部排气孔152供应给挡板200的背侧203 的气体可部分转向围绕外部环形物206,并可部分流过形成在外部环形物206中的多个孔 212,以在处理腔室内部提供所需的气体分配。参照图2B,举例来说,多个孔212可以环形图案均勻安排。在某些实施例中,如所 示出,每一孔212可配置在每一气体出口 210之间。或者,每一孔212可对准每一气体出口 210或以任何适当安排相对每一气体出口 210定向,以帮助处理气体在处理腔室内部流动。回到图1,处理腔室110的下部可包括主体构件126,其连接处理腔室110至真空 系统112。基材支撑102可装配在主体构件126中。在基材支撑102内部或之上提供静电 吸盘108或其它机构,以将基材106固定至基材支撑102。基材106可通过机器人叶片(未 显示)通过处理腔室110内侧的插入/移除开口 1 移送进出处理腔室110。气动致动器 (未显示)升起与降下举升销板(未显示),举升销板升起与降下举升销(未显示),举升销 升起与降下基材106。一旦移送至处理腔室110中,基材106配置在升起的举升销上,然后 降下至基材支撑102的表面上。真空系统112包括节流阀主体130,其容纳多叶片的节流阀132,并附接至闸阀134 与涡轮分子泵136。节流阀主体130可给气流提供最小阻碍,并允许对称的抽泵。闸阀134 可隔离涡轮分子泵136与节流阀主体130,并进一步在节流阀132完全开启时,通过限制排 气流量能力来控制处理腔室110的压力。节流阀132、闸阀134和涡轮分子泵136的安排允 许准确并稳定地将处理腔室110的压力控制在从约1至lOOmTorr。源等离子体系统114包括顶部线圈138和侧线圈140,其装配在圆顶121上。对称 的接地屏蔽(未显示)减少顶部线圈138和侧线圈140之间的电耦合。顶部线圈138由顶 部射频源产生器137提供动力,而侧线圈140由侧射频源产生器141提供动力,其允许每一线圈操作的独立的功率位准和频率。此双线圈系统允许控制处理腔室110中的径向离子密 度,从而改善等离子体均勻性。侧线圈140和顶部线圈138电感耦合能量至处理腔室110 中。顶部射频源产生器137可以额定的2MHz提供上达8000W的射频功率,且侧射频源产生 器141可以额定的2MHz提供上达8000W的射频功率。顶部射频产生器137和侧射频产生 器141的操作频率可从额定操作频率偏移(例如,分别至1. 7-1. 9MHz以及1. 9-2. IMHz),以 改善等离子体产生效率。在某些实施例中,射频产生器137和141包括数字控制的合成器,并操作在从约 1. 7至约2. IMHz的频率范围间。如在此技术中具有一般技能者所了解,产生器137和141 各自包括射频控制电路(未显示),其量测从处理腔室110和线圈138与140反射回到产 生器的功率,并调整操作频率,以获得最低反射功率。射频产生器137和141典型设计为以 具有50欧姆的特性阻抗的负载操作。射频功率可从负载反射,负载具有与产生器不同的特 性阻抗。这可减少转移至负载的功率。此外,从负载反射回到产生器的功率可超载并损坏 产生器。因为取决于除其它因素外的等离子体离子的密度,等离子体阻抗的范围可从小于 5欧姆至超过900欧姆,且因为反射功率可为频率的函数,根据反射功率调整产生器频率增 加了从射频产生器转移到等离子体的功率并保护产生器。另一种降低反射功率以及改善效 率的方式为使用匹配网络。匹配网络139和142分别将射频产生器137和141的输出阻抗与线圈138和140 匹配。射频控制电路可通过改变匹配网络139和142内部的电容值来调谐匹配网络139和 142,以在负载改变时匹配产生器与负载。当从负载反射回到产生器的功率超过某一限值 时,射频控制电路可调谐匹配网络。一种提供固定匹配并有效禁止射频控制电路调谐匹配 网络的方式是将反射功率限值设定为高出任何反射功率的期望值。这可通过使匹配网络保 持固定在其最新近状态,以在某些条件下帮助稳定等离子体。偏压等离子体系统116包括射频偏压产生器144和偏压匹配网络146。偏压等离 子体系统116可将静电吸盘108电容耦合至主体构件126,其作用如互补电极。偏压等离 子体系统116用于增强源等离子体系统114所产生的等离子体种类至基材106的表面的传 输。在某些实施例中,射频偏压产生器144可以13. 56MHz提供高达10000W的射频功率。其它测量亦可帮助稳定等离子体。举例来说,射频控制电路可用于决定输送至负 载(等离子体)的功率,并可增加或减少产生器的输出功率,以在层沉积期间保持输送功率 本质上固定。气体输送系统118可包括多个气源(未显示)。在某些实施例中,气源可包括硅 烷、分子氧、氦、氩等。气体输送系统118经由气体输送线119(仅显示某些)从数个源提供 气体给处理腔室110,以用于处理基材106。气体透过气体环148、顶部喷嘴150和顶部排气 孔152引入处理腔室110。气源可经由流量控制器(未显示)与气体输送线119提供给气 体环148、顶部喷嘴150和顶部排气孔152。气体输送线119可具有流量控制器(未显示), 以控制处理气体的流速。顶部喷嘴150和顶部排气孔152允许独立控制顶部气流和侧气流, 其改善薄膜均勻性并允许微调沉积层和掺杂参数。顶部排气孔152为环绕顶部喷嘴150的 环形开口,气体可经此从气体输送系统118流入处理腔室110。气体经由流量控制器和气体输送线119从气体输送系统118的一或多个气源提供 给气体环148。气体环148具有多个气体喷嘴153和154 (仅显示两个),其提供基材106上方的均勻气流。喷嘴长度和喷嘴角度可通过改变气体环148来改变。这允许针对处理 腔室110内部的特定处理来调适均勻性轮廓和气体使用效率。在某些实施例中,气体喷嘴 154(仅显示一个)与第二气体喷嘴153共面,且比气体喷嘴153短。在本发明的某些实施例中,可使用可燃、有毒或腐蚀气体。在这些实例中,可能需 要在沉积后排除余留在气体输送线119中的气体。这可进一步使用一或多个三向阀(未显 示)来完成,以隔离处理腔室110和一或多个气体输送管线119,并使一或多个气体输送线 119排气至真空前级(未显示)。三向阀在实行上可放置为尽可能接近处理腔室110,以最 小化未排气的气体输送线的容积(介于三向阀和处理腔室之间)。此外,双向(开-关)阀 (未显示)可放置在质量流量控制器(MFC)和处理腔室110之间或在气源和MFC之间。HDP-CVD腔室100可进一步包括远程清洁射等离子体源(未显示),其用于提供清 洁气体给处理腔室110的顶部喷嘴150。在某些实施例中,清洁气体(如果有使用)可在其 它位置进入处理腔室110。系统控制器160调节以等离子体为基础的基材处理系统100的操作,并包括处理 器162和内存164。典型地,处理器162为单板计算机(SBC)的一部分,单板计算机包括模 拟和数字输入/输出板、接口板与步进马达控制器板。以等离子体为基础的基材处理系统 100的不同部件符合Versa Modular European(VME)标准,其定义板、卡片机架和连接器类 型与尺寸。VME标准进一步将总线结构定义为具有16位的数据总线和M位的地址总线。 处理器162执行系统控制软件,其可为储存在内存164中的计算机程序。可使用任何类型 的内存164,例如,硬盘、软盘、插卡框架或其组合。系统控制软件包括指令组,其指定时序、 气体混合、处理腔室压力、处理腔室温度、微波功率位准、基座位置和特定处理的其它参数。在操作中,设备100可用于有利地以减少的粒子污染发生率和延长的挡板寿命来 处理基材106。举例来说,根据此处提供的教导使用挡板处理基材的方法在下文关于图4讨 论。图4为流程图,其说明根据本发明的某些实施例的基材处理方法400。图4的方法400 进一步参照图1和图2A至B叙述。方法400始于410,其中根据此处所揭示的教导,可提供基材给具有挡板配置在其 中的处理腔室。举例来说,基材106可放置在位于挡板200下方的处理腔室110的基材支 撑102上。在某些实施例中,处理腔室和挡板可在处理基材前进行时效处理,以帮助均勻处 理基材,并在处理期间保护腔室部件免受处理环境影响。举例来说,在412,可提供具有挡 板(例如,挡板200)配置在其中的处理腔室(例如,处理腔室110)。在414,时效处理层, 例如,氧化硅(SiO2),可形成在挡板200上(例如,在挡板200的表面上)。时效处理层可 以任何适当方法形成。不过,由于在其表面上减少金属氧化物的存在,及/或由于氮化铝的 表面处理,更均勻的时效处理层可形成在挡板200上。接下来,在420,处理气体可流过挡板200进入处理腔室110。举例来说,一或多个 处理气体可从气体输送系统118至少通过挡板200提供给等离子体处理区域120 (举例来 说,经由图2A至B所示的入口 208、槽道209和出口 210)。一或多个处理气体可替代或组 合地经由顶部排气孔152供应给等离子体处理区域120,以经由外部环形物206的边缘及/ 或通过孔212从背侧203流到前侧201。一或多个处理气体可在等离子体处理区域120中 混合,并可通过施加射频功率至配置在基材支撑102、顶部线圈138或侧线圈140中之一或 多个电极而点燃成为等离子体。
在430,层(未显示)可沉积在基材106上。由于配置在挡板200上的更均勻的 时效处理层和时效处理层对此的改善的粘着,沉积在基材106上的层可有利地减少粒子缺 陷。一旦完成在基材106上沉积层,方法400大体上终止。额外的基材处理可发在相同或 不同的处理腔室中,以完成基材106上的结构制造。虽然已在示例处理腔室中示意地示出 特定处理,其它处理亦可有利地在根据本教导(teaching)的具有挡板配置在其中的类似 或不同的处理腔室中执行。举例来说,在例如无等离子体辅助CVD处理、原子层沉积(ALD) 处理、或其它利用时效处理层保护挡板表面的情况下,挡板200可用于在不形成等离子体 的情况下使一或多个处理气体流动。亦预期挡板200可用在其它处理中,例如,蚀刻等,其 可如此处所述般有利地使用挡板。因此,已在此处提供关于改善的氮化铝挡板的方法与设备。改善的氮化铝挡板在 氮化铝挡板的表面上有利地具有减少的金属氧化物含量。改善的挡板可有利地帮助在氮化 铝挡板的表面上形成更均勻的氧化硅时效处理层,并可进一步有利地促进时效处理层至挡 板表面的更佳粘着,从而在欲处理的基材表面上改善处理均勻性并降低粒子缺陷。由于时 效处理层的更均勻的覆盖,改善的氮化铝挡板可进一步具有较长的寿命期。虽然以上内容已直指本发明的数个实施例,但可在不偏离本发明基本范围的情况 下设计本发明的其它及进一步实施例。
权利要求
1.一种用在半导体处理腔室中的挡板,包含主体,包含氮化铝和金属氧化物粘结剂,其中,在所述主体的表面上的氮化铝与所述金 属氧化物粘结剂的比率大于或等于所述主体内部的所述比率。
2.根据权利要求1所述的挡板,其中,所述金属氧化物粘结剂包含氧化钇或氧化铒的 至少一个。
3.根据权利要求1所述的挡板,其中所述主体进一步包含中心杆;及外部环形物,耦合至所述中心杆的下部,并从此处向外径向延伸。
4.根据权利要求1所述的挡板,进一步包含气体入口,配置在所述中心杆的上部中;及多个气体出口,配置在所述中心杆的下部中,并流体耦合至所述气体入口。
5.根据权利要求1所述的挡板,进一步包含多个孔,配置通过所述外部环形物,以帮助处理气体从所述挡板的背侧流到所述挡板 的前侧。
6.一种用于处理半导体基材的设备,包含处理腔室,具有内容积和配置在其顶板中的第一气体入口 ;及如之前任一项权利要求所限定挡板,耦合至所述第一气体入口,并装配为引导第一处 理气体从所述第一气体入口流到所述内容积。
7.—种制造用在半导体处理腔室中的挡板的方法,包含烧结铝、氮和金属氧化物粘结剂,以形成所述挡板的主体,所述主体具有配置在其表面 上的过量的金属氧化物粘结剂;及从所述表面移除大量的所述过量金属氧化物粘结剂。
8.根据权利要求7所述的方法,其中移除大量的所述过量金属氧化物粘结剂的步骤进 一步包含以下步骤从所述表面移除大量的所述过量金属氧化物粘结剂,以致在所述主体的所述表面上的 氮化铝与所述金属氧化物粘结剂的比率大于或等于所述主体内部的所述比率。
9.根据权利要求7所述的方法,其中移除大量的所述过量金属氧化物粘结剂的步骤进 一步包含以下步骤通过喷砂、喷粒、湿性擦蚀、机械研磨或机械拋光所述主体的所述表面的至少一种方法 来移除大量的所述过量金属氧化物粘结剂。
10.根据权利要求9所述的方法,其中移除大量的所述过量金属氧化物粘结剂的步骤 进一步包含以下步骤在移除大量的所述金属氧化物粘结剂之后,将所述挡板的所述表面暴露至包含腐蚀酸 的溶液。
11.根据权利要求7所述的方法,其中所述金属氧化物粘结剂包含氧化钇或氧化铒的 至少一个。
12.由权利要求7-11描述的方法所形成的用在半导体处理腔室中的挡板。
13.—种处理半导体基材的方法,包含以下步骤将基材放置在处理腔室中的基材支撑上,所述处理腔室具有内容积和相对所述支撑基座配置在所述处理腔室的顶板中的第一气体入口;使第一处理气体流过耦合至所述第一气体入口的挡板并进入所述内容积,所述挡板如 权利要求1-5中任一项所限定;及以所述第一处理气体处理所述基材。
14.根据权利要求13所述的方法,进一步包含在处理所述基材之前,在所述挡板的所述表面上沉积时效处理层。
15.根据权利要求13所述的方法,进一步包含由于所述第一和所述第二处理气体的所述流动而在所述基材表面上沉积材料层。
全文摘要
本文提供关于氮化铝挡板的方法与设备。在某些实施例中,一用在半导体处理腔室中的挡板可包括主体,其包含氮化铝和金属氧化物粘结剂,其中在主体表面上的氮化铝与金属氧化物粘合剂的比率大于或等于主体内部的比率。在某些实施例中,主体可具有中心杆和外部环形物,其耦合至中心杆下部并从此处向外径向延伸。在某些实施例中,挡板的制造方法可包含烧结铝、氮和金属氧化物粘结剂,以形成挡板的主体,主体具有过量的金属氧化物粘结剂配置在其表面上;及从主体表面移除大量的过量金属氧化物粘结剂。
文档编号H01L21/00GK102132382SQ200980132709
公开日2011年7月20日 申请日期2009年8月20日 优先权日2008年8月20日
发明者德米特里·鲁博弥尔斯克, 穆罕默德·M·拉希德 申请人:应用材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1