包括铜铟镓硒的光伏器件的制作方法

文档序号:7210210阅读:202来源:国知局
专利名称:包括铜铟镓硒的光伏器件的制作方法
技术领域
本发明涉及CIGS光伏器件。
背景技术
随着近来对替代能源的关注,太阳能电池技术快速地发展。薄膜太阳能电池技术是对硅太阳能电池技术的有前途的替代。铜铟镓硒(CIGQ是商业化所青睐的公知的薄膜光伏吸收材料。众所周知,CIGS在点电池(dot-cell)水平具有优异的效率,并且几家公司已对CIGS进行了中试规模的生产,但当前工艺未达到令人满意的生产率。

发明内容
通常,制造光学器件基底的方法可以包括通过溅射在基底的表面上沉积包括镉、 铟和镓的层并且通过气相传输沉积在包括镉、铟和镓的层上沉积硒层。光学器件可以是薄膜光伏器件。包括镉、铟和镓的层的沉积可以发生在硒层的沉积之前。可以多次反复执行镉、铟和镓的溅射以及硒的沉积。光学器件基底可以包括基底;溅射的包括镉、铟和镓的层,与基底的表面接触; 硒层,沉积在所述镉、铟和镓的层上。在特定的情况下,基底可以是玻璃基底。所述光学器件基底可以用在光伏电池中。光伏电池还可以包括透明导电层,透明导电层可以是氧化铟锡。在附图和下面的描述中阐述了一个或多个实施例的详情。其他特征、目标和优点通过描述和附图以及通过权利要求将是清楚的。


图1是两阶段沉积系统的示意图。图2是两阶段沉积系统中的第二阶段的详细示意图。
具体实施例方式对于铜铟镓硒(GIGS)的沉积,有两种基本的方法以化学计量的形式(Cu(InGa) Se2)同时共沉积全部的元素,以及对金属合金膜(CuhCa+2Se)进行后西化。由于将元素蒸发规模化困难,所以在大量生产中共沉积主要存在控制问题并已证明极其昂贵。虽然实现小规模的研究和开发相当成功且相对容易,但由于在不同于实验室工艺的连续生产过程中面临着许多条件,所以规模扩大至商业可行水平证明相当具有挑战性。连续生产与实验室工艺的不同包括由移动基底的连续工艺导致的不同以及为了降低成本和提高生产量而执行的不同。可以使用包括溅射和电镀的一系列技术来沉积用于硒化的金属前驱体膜。近来在研究实验室中制备的效率高达破纪录的18. 8%的基于CIGS的装置是基于使用物理气相沉积(PVD)的多步工艺。PVD方法是用于理解膜生长和用于开发模型的有用工具,但是难以规模扩大。溅射技术适合于大面积沉积;然而,它们需要昂贵的真空设备和溅射靶材。电镀 (EP)和自动镀(AP)是得到低成本前驱体膜的可能合适的制备方法。然而,后硒化步骤非常长(据报导,对于一些步骤需要200小时的处理)。一直在开发快速热硒化工艺,但是仍未被证明适合于大规模工艺。反应溅射为共沉积提供了选择。在该工艺中,由传统的金属靶材(镉、铟和镓,有时添加一些硒)溅射金属,同时金属与硒蒸气反应。金属靶材可以是平面的或可旋转的。通常用于CIGS的反应溅射方法使用传统的诸如Veeco商业产品的蒸发器。该方法存在阻碍实施的严重缺点。在其他问题中最致命的两个问题是使用比蒸发器本身冷的狭窄出口使源本质上易于阻塞,以及对在整个宽基底具有均勻分配的大的源面积的需求使设计非常难于扩大(包括分配材料的加热管的复杂布置)。反应溅射铜、铟或镓和它们的组合可以与在第5,945,163和6,037,241号的共有美国专利中所描述的用于硒的传输的气相传输沉积(Vapor Transport Deposition, VTD) 结合。目前所实践的气相传输沉积是包括惰性载气的热升华工艺。VTD系统被证实是一种允许使用粉末进料器来控制材料的供给的生产工艺,并且在整个宽网(web)内产生高度均勻的材料流。VTD系统已广泛地用于生产中,并且已用于广泛地沉积高蒸气压材料。在使VTD技术适用于CIGS反应溅射应用的过程中,该技术使其自身具有潜在的应用。一种方法是使用顺序溅射和硒化方法,在顺序溅射和硒化方法中并不是使包括镉、铟和镓的厚(1微米)层与硒反应,而是在每种金属靶材之后顺序地进行硒化。由于在商业化的溅射沉积系统中通常有近10个金属溅射部分,所以这使得能够进行0. 1微米厚的镉、铟和镓的硒化,这样要更快(需要的时间随着厚度的平方增加,从而硒化快100倍)。该方法利用作为控制镓含量的溅射和硒化方法也解决了第二个主要问题(镓在每个硒化过程中易于偏析,但在VTD-反应溅射方法中通过将膜细化为更小的组分而可以控制最终分配)。参照图1,两阶段系统可以包括将包括镉、铟和镓的层沉积到玻璃基底110上的初始反应溅射沉积阶段100。基底110在传送机120上行进通过初始阶段100。接下来,后续气相传输沉积阶段130使用包括惰性载气的热升华工艺将硒层沉积在镉、铟和镓层110上。 基底110沿着传送机120连续通过后续阶段130。如上所述,图1中的两阶段溅射和硒化系统反复多次,例如,5次、10次、15次等。以这样的方式,可以控制组分分配并减少了总硒化时间。参照图2,示出了气相传输沉积硒阶段130的详细图解。在图2中,传送机120上运送的基底110通过气相传输沉积阶段130。对于气相传输沉积,载气通过由进料执行器控制的螺旋进料装置与半导体粉末结合。螺旋进料装置可以是提供载气和半导体粉末的良好分配的旋转螺杆。可以通过螺杆旋转的速率来精确地控制作为粉末输入的半导体材料的量。可以通过电加热器将载气和半导体粉末加热为热蒸气,热蒸气穿过热可透膜以沉积到玻璃基底上。陶瓷罩捕获热蒸气,强制蒸气通过沉积开口到达玻璃基底上。陶瓷罩可以与传送的玻璃基底隔开一定距离以有效地沉积,例如,隔开0. 5厘米至3. 0厘米范围内的距离。陶瓷罩也可以减少由热可透膜传递到玻璃基底的辐射热。更具体地讲,由于陶瓷罩外表面的温度低于热可透膜的温度,所以可以减少陶瓷罩辐射到玻璃基底的能量。普通光伏电池可以具有多层。所述多层可以包括作为透明导电层的底层、盖层、窗口层、吸收层和顶层。可以在生产线的不同的沉积台利用单独的沉积气体供给器和在每个台所需的真空密封沉积室来沉积每一层。可以通过滚动的传送机逐个沉积台地传送基底, 直到沉积了所有的期望层。可以将顶基底层置于顶层的顶部上以形成夹层结构并完成光伏电池。例如,在第5,248,349,5, 372,646,5, 470,397,5, 536,333,5, 945,163,6, 037,241 和6,444,043号美国专利中描述了在光伏器件制造中的半导体层的沉积,这些美国专利中每个美国专利的全部内容通过引用包含于此。沉积可以包括从源向基底传输蒸气,或者在封闭的系统中使固体升华。用于制造光伏电池的设备可以包括传送机,例如,具有辊的滚动传送机。可以使用其他类型的传送机。传送机将基底传输至一系列的一个或多个沉积台, 用于在基底的暴露表面上沉积多层的材料。在第11/692,667号美国临时申请中描述了传送机,该申请通过引用包含于此。可以将沉积室加热至达到不小于大约450°C并且不大于大约700°C的处理温度, 例如,该温度可以是 450°C -550°C >550°C -650°C >570°C -600°C >600°C _640°C 的范围,或者可以是大于450°C并小于大约700°C的任何其他范围。沉积室包括连接到沉积蒸气供给器的沉积分配器。分配器可以连接到多个蒸气供给器以沉积各个层,或者基底可以移动通过自身具有蒸气分配器和供给器的多个不同的沉积台。分配器可以是具有变化的喷嘴几何形状的喷嘴形式,以便于蒸气供给器的均勻分配。例如,窗口层和吸收层可以包括CIGS。顶层可以覆盖半导体层。例如,顶层可以包括诸如铝、钼、铬、钴、镍、钛、钨或它们的合金的金属。顶层也可以包括金属氧化物或金属氮化物或它们的混合物。光伏电池的底层可以是透明导电层。薄的盖层可以在透明导电层的顶部上,并且至少部分地覆盖透明导电层。接下来沉积的层是第一半导体层,第一半导体层可以用作窗口层,并且基于透明导电层和盖层的使用,第一半导体层可以更薄。接下来沉积的层是第二半导体层,第二半导体层用作吸收层。如果需要,则在整个制造工艺中可以在基底上沉积或另外布置诸如包括掺杂剂的层的其他层。透明导电层可以是诸如像氧化锡一样的金属氧化物的透明导电氧化物,可以用例如氟来掺杂透明导电氧化物。该层可以沉积在前接触件和第一半导体层之间,并且可以具有足以减小第一半导体层中的针孔的影响的高电阻率。第一半导体层中的针孔可以导致在第二半导体层和第一接触件之间形成分流,进而导致在针孔围绕的局部区域上的泄漏。该通路的电阻的小幅增加可以显著地减小受分流影响的区域。可以设置盖层以提供电阻这样的增加。盖层可以是由化学稳定性高的材料制成的非常薄的层。与具有相同厚度的相当厚度的半导体材料相比,盖层可以具有更高的透明度。 适于用作盖层的材料的示例包括二氧化硅、三氧化二铝、二氧化钛、三氧化二硼和其它相似的实体。盖层也可以用于使透明导电层与第一半导体层电隔离和化学隔离,防止在高温下发生的可以对性能和稳定性造成负面影响的反应。盖层也可以提供可以更适合于接受第一半导体层的沉积的导电表面。例如,盖层可以提供表面粗糙度减小的表面。第一半导体层可以用作用于第二半导体层的窗口层。第一半导体层可以比第二半导体层薄。由于较薄,所以第一半导体层可以允许波长较短的入射光更大量地透射到第二半导体层。第二半导体层可以沉积到第一半导体层上。盖层可以用于使透明导电层与第一半导体层电隔离和化学隔离,防止在高温下发生的可以对性能和稳定性造成负面影响的反应。透明导电层可以沉积在基底的上方。用于产生电能的系统可以包括在基底上的透明导电层、包括宽带隙半导体层的第一半导体层、第二半导体层、与第二半导体层接触的界面层。界面层可以在第二半导体层、 连接到透明导电层的第一电连接件和连接到背金属接触件的第二电连接件的界面区域中将第二半导体层的化学势维持在控制水平。界面层可以在第二半导体层和背金属接触件之间。用于产生电能的系统包括连接到透明导电层的第一电极和连接到背金属接触件的第二电极。第一电极可以对能量在IeV和3eV之间的光基本透明,第二电极可以主要对能量低于第二半导体的带隙的光透明。用于产生电能的系统可以包括串联设置的两个或更多个光伏器件。已描述了一些实施例。然而,将理解的是,在不脱离所要求保护的装置的精神和范围的情况下,可以做出各种修改。例如,半导体层可以包括各种其他材料,只要所述材料可以用于缓冲层和盖层。因此,其他实施例在权利要求的范围内。
权利要求
1.一种制造光伏器件的方法,所述方法包括以下步骤 在基底的第一表面上沉积包括铜、铟和镓的层; 在所述包括铜、铟和镓的层上沉积硒层。
2.如权利要求1所述的方法,所述方法还包括反复地执行沉积包括铜、铟和镓的层的步骤和沉积硒层的步骤。
3.如权利要求1所述的方法,其中,基底包含玻璃。
4.如权利要求1所述的方法,其中,通过溅射来沉积包括铜、铟和镓的层。
5.如权利要求1所述的方法,其中,通过气相传输沉积来沉积硒层。
6.如权利要求1所述的方法,其中,沉积包括铜、铟和镓的层的步骤发生在沉积硒层的步骤之前。
7.如权利要求1所述的方法,所述方法还包括沉积透明导电层的步骤。
8.如权利要求7所述的方法,其中,透明导电层是透明导电氧化物层。
9.如权利要求8所述的方法,其中,透明导电氧化物层是氧化铟锡。
10.一种层状结构,所述层状结构包括基底;溅射的包括铜、铟和镓的层,与基底的表面接触; 硒层,与所述包括铜、铟和镓的层接触。
11.如权利要求10所述的层状结构,其中,所述层状结构形成光伏器件。
12.如权利要求11所述的层状结构,其中,光伏器件是薄膜光伏器件。
13.如权利要求10所述的层状结构,所述层状结构还包括与所述包括铜、铟和镓的层及硒层接触的透明导电层。
14.如权利要求13所述的层状结构,其中,透明导电层是氧化锡。
15.一种用于产生太阳能的系统,所述系统包括 基底;透明导电层,沉积在基底上;溅射的包括铜、铟和镓的层,与透明导电层接触;硒层,与所述包括铜、铟和镓的层接触;背金属接触层,与所述包括铜、铟和镓的层以及硒层接触,其中,使所述溅射的包括铜、铟和镓的层以及硒层退火以形成包括铜、铟、镓和硒的层。
16.如权利要求15所述的系统,其中,所述系统形成光伏器件。
17.如权利要求16所述的系统,其中,光伏器件是薄膜光伏器件。
18.如权利要求15所述的系统,其中,透明导电层是氧化锡。
全文摘要
铜铟镓硒光伏电池可以包括具有透明导电氧化物层的基底。可以使用溅射和气相传输沉积来沉积铜铟镓硒。
文档编号H01L21/00GK102292817SQ200980155390
公开日2011年12月21日 申请日期2009年11月10日 优先权日2008年11月25日
发明者大卫·伊格尔沙姆 申请人:第一太阳能有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1