用于具有可变复阻抗的连接体的接收电路的制作方法

文档序号:6944577阅读:246来源:国知局
专利名称:用于具有可变复阻抗的连接体的接收电路的制作方法
技术领域
本发明涉及一种电路,用于减轻由半导体管芯上的连接体与一个或多个微弹簧 (microspring)或各向异性薄膜组件间连接体之间的可变复阻抗引起的信号失真。
背景技术
随着集成电路(IC)技术持续地缩小到更小的关键尺寸,现有的芯片间连接愈发 难以提供诸如高带宽、低功率、可靠性以及低成本等适当的通信特性。已经提出了若干技术 来解决这个问题。这些提出的技术包括邻域通信或PxC(例如,利用电容性芯片间接触), 芯片间微弹簧(利用导电性芯片间接触),各向异性薄膜(例如,其中各向异性薄膜包括弹 性体)以及PxC与微弹簧的结合(利用电容性芯片间接触)。然而,所提出的技术常常引起 附加的封装与可靠性挑战。基于电容性芯片间接触的PxC提供密集的芯片间连接,相邻焊盘之间节距为 lO-lOOym量级。然而,PxC通常需要相同量级的机械对准。在使用低成本芯片封装存在震 动和热应力的情况下,难以维持这样的对准。而且,芯片间接触的电容可能较小,这对使用 PxC来耦合高电容功率提出了挑战。微弹簧可以在各种面制造,包括印刷电路板(PCB),有机或陶瓷IC封装或在IC 本身的表面上。可以通过超过高性能IC上输入/输出(I/O)信号的密度的芯片间连接的 面密度来制造微弹簧,并且微弹簧可以在不使用焊接的情况下提供电接触。而且,微弹簧可 以被设计为具有比单独使用PxC更高的顺应性(compliance),这提高了对机械移动和失准 的容差。然而,微弹簧通常要求进行并且保持与IC上连接体的导电性接触。为了获得该导 电性接触,微弹簧通常具有锐利尖端,其可以在刮片工艺期间刮过IC上的连接体之上的任 何氧化物或钝化层,这增加了微弹簧的制造成本。而且,导电性接触常常是通过增加微弹簧 与芯片封装中IC上的连接体之间的力来实现的,这也增加了成本。此外,锐利尖端和较大 的力可能产生杂质(例如碎片),其可能随着时间而降低接触的导电性,从而降低可靠性和 限制匹配循环的数目。可以通过将导电元件引入绝缘弹性膜中使得该导电元件大体上沿薄膜表面的法 向排列,来制造各向异性导电薄膜。然后,通过将各向异性薄膜与芯片焊盘抵靠放置并且挤 压它,导电元件可以进行导电性接触,而非导电性薄膜在相邻的芯片焊盘之间保持隔离。与 微弹簧不同,通过各向异性薄膜的传导通常包括芯片焊盘与其在该各向异性薄膜中的邻近 导电元件之间的传导,以及各向异性薄膜中彼此邻近的各个导电元件之间的传导。与微弹 簧类似,由于导电元件可能无法与彼此以及与芯片焊盘进行充分接触,各向异性薄膜常常 受制于可靠性问题。虽然可以通过增加挤压力来提高可靠性,但是芯片封装通常必须提供 和保持这种较大的力。一般而言,芯片封装中较大的力会以其他方式降低芯片封装的可靠 性并且增加封装成本。为了克服该刮片和可靠性的问题,已经提出了将PxC与微弹簧或各项异性薄膜相 结合的芯片间连接。然而,该方法引入了其他挑战。例如,PxC中使用的电容性(或电感性)信号传送技术不能容许导电性芯片间接触。因此,IC上的连接体之上的氧化层需要足够厚 和坚硬,以防止可能导致导电性接触的破裂。这种较厚的氧化层降低了电容性耦合在芯片 之间的能量,这使得接收电信号更加困难。此外,它限制了可以通过电容性耦合的微弹簧或 各向异性薄膜来向IC提供的功率量。因此,需要一种用于获得芯片间连接并避免上述问题的技术。

发明内容
本发明的一个实施方式提供了一种半导体管芯,其包括接收连接体,所述接收连 接体邻近该半导体管芯的表面或者在该表面之上。该接收连接体在机械耦合且电耦合至一 个或多个第一组件间连接体,从而定义了接收连接体与一个或多个第一组件间连接体之间 的接收可变复阻抗。注意,该接收可变阻抗对应于与第一电容器并联的第一电阻器。而且, 该半导体管芯包括电耦合至接收连接体的接收电路,其接收电信号。该接收电路减轻了与 接收可变复阻抗相关联的信号失真。在一些实施方式中,接收电路可以自适应地配置用于减轻所接收电信号的信号失 真。因此,该接收电路的配置可以至少部分地基于接收可变复阻抗来直接或者间接地选择。 例如,可以通过将接收电路中的RC电路的时间常量调节为约等于第一电阻器的电阻与第 一电容器的电容的乘积,来配置该接收电路。而且,该半导体管芯可以包括控制逻辑电路, 其表征接收可变复阻抗,并且选择该接收电路的配置。注意,取决于接收连接体与一个或多个组件间连接体之间的电接触,第一电阻器 的电阻可以在0. 001-100GQ之间。为了处理这种可变性,该半导体管芯可以包括内部阻抗,其串联电耦合在接收连 接体与接收电路之间,其中该内部阻抗的阻抗在与接收的电信号相关联的频率范围上管控 接收可变复阻抗。注意,该内部阻抗可以包括电感器和/或第二电容器。例如,第二电容器 的电容可以明显小于第一电容器的电容。而且,第二电容器的电容可以由半导体管芯中的 介电层来限定。在某些实施方式中,接收的电信号包括在基频大于零的载波上调制的信号。而且, 接收的电信号可以包括数据和/或功率信号。对于功率信号,接收电路可以包括整流器电 路,用以根据接收的电信号来恢复DC-功率信号。注意,该半导体管芯可以包括与接收连接体邻近或相邻的一个或多个静电放电保 护连接体。此外,该半导体管芯可以包括与该接收电路并联地电耦合至接收连接体的静电 放电保护组件,和/或与第二电容器邻接或相邻的边缘场屏蔽体。在某些实施方式中,该半导体管芯包括与该半导体管芯的表面邻近或者在该表面 之上的发射连接体。该发射连接体机械耦合且电耦合至一个或多个第二组件间连接体,由 此定义该发射连接体与该一个或多个第二组件间连接体之间的发射可变复阻抗。注意,该 发射可变复阻抗对应于与第二电容器并联的第二电阻器。而且,该半导体管芯可以包括电 耦合至发射连接体的发射电路,其发射另一电信号。在某些实施方式中,该一个或多个第一组件间连接体包括微弹簧或各向异性薄膜。另一个实施方式提供了一种系统,其包括半导体管芯、另一半导体管芯,以及机械耦合和电耦合至该半导体管芯与该另一半导体管芯的互连组件。该互连组件包括一个或多 个第一组件间连接体和/或一个或多个第二组件间连接体。另一个实施方式提供了一种用于传送电信号的方法,其可以由半导体管芯(或半 导体管芯上的一个或多个电路)来执行。在操作期间,该半导体管芯从接收连接体接收电 信号,该接收连接体机械耦合且电耦合至一个或多个组件间连接体。注意,在接收连接体与 一个或多个组件间连接体之间存在接收可变复阻抗,并且该接收可变复阻抗对应于与第一 电容器并联的第一电阻器。然后,该半导体管芯至少部分地基于接收的电信号来表征接收 可变复阻抗。接下来,该半导体管芯至少部分地基于接收可变复阻抗的表征来配置接收电 路,以减轻与接收可变复阻抗相关联的信号失真。


图1A是示出现有的具有微弹簧的芯片间连接技术的框图。图1B是示出现有的具有各向异性薄膜的芯片间连接技术的框图。图2A是示出根据本发明一个实施方式的芯片间连接技术的框图。图2B是示出根据本发明一个实施方式的芯片间连接技术的框图。图3A是示出根据本发明一个实施方式的芯片间连接技术的框图。图3B是示出根据本发明一个实施方式的芯片间连接技术的框图。图4是示出根据本发明一个实施方式的芯片间连接技术的框图。图5示出了根据本发明一个实施方式的与芯片间连接相关联的可变复阻抗的等 效电路。图6A是示出根据本发明一个实施方式的发射电路的框图。图6B是示出根据本发明一个实施方式的电信号的时序图。图7是示出根据本发明一个实施方式的接收电路的框图。图8是示出根据本发明一个实施方式的接收电路的框图。图9A是示出根据本发明一个实施方式的功率信号的时序图。图9B是示出根据本发明一个实施方式的功率电路的框图。图10是示出根据本发明一个实施方式的具有使用微弹簧耦合的芯片的系统的框 图。图11是示出根据本发明一个实施方式的具有使用微弹簧耦合的芯片的系统的框 图。图12是示出根据本发明一个实施方式的具有使用微弹簧耦合的芯片的系统的框 图。图13是示出根据本发明一个实施方式的用于传送电信号的过程的流程图。注意,贯穿附图,类似的标号表示相应的部分。
具体实施例方式给出下文描述是为了使本领域任何技术人员可以实施和使用本发明,并且该描述 是在特定的应用及其需求的上下文中提供的。所公开的实施方式的各种修改对本领域技术 人员来说是显而易见的,并且在不脱离本发明的精神和范围的情况下,在此限定的一般性原则可以适用于其他实施方式和应用。因此,无意将本发明限于所示的实施方式,而是按照符合在此公开的原则和特征的最宽泛的范围。描述了用于与具有可变复阻抗(其可以是导电性的、电容性的或两个皆有)的芯 片间连接结合使用的电路、包括该电路的系统以及一种通信技术的实施方式。该芯片间连 接可以形成于芯片的表面之上或者邻近芯片表面的微弹簧或各向异性薄膜与金属连接体 之间。而且,该电路可以减轻与可变复阻抗相关联的信号失真。例如,该电路可以包括内部 阻抗,其与金属连接体串联电耦合,并且具有在操作频率的范围内管控可变复阻抗的阻抗。 单独地或附加地,该电路可以适于修正信号失真。通过容许芯片间连接的该可变复阻抗(并且特别地,复阻抗可以是导电性和/或 电容性复阻抗),该通信技术可以降低或消除对金属连接体上的氧化或钝化层的需要和对 其的敏感性,这可以提高通过芯片间连接在微弹簧或各向异性薄膜接触与金属连接体之间 传送的信号能量。此外,该通信技术可以允许降低微弹簧尖端锋锐度或者各向异性薄膜导 电性;减小接触力;消除刮片过程;提高芯片间连接的可靠性;降低对微弹簧或各向异性薄 膜接触与金属连接体之间的失准的敏感性;较小的静电放电(ESD)保护组件(其占据了有 价值的芯片面积;降低了最大操作频率并耗费功率);和/或降低微弹簧或各向异性薄膜与 系统封装的制造和装配成本。现在描述芯片间连接技术的实施方式。图1给出了示出现有的芯片间连接技术 100的框图,其中微弹簧114-1与PxC结合使用。在该芯片间连接技术中,微弹簧114-1降 低了使用PxC来进行通信的远处信号连接体与焊盘(例如,金属焊盘112-1)之间的电容。 注意,由于PxC收发器118不能容许任意大小的导电性接触或耦合,所以IC或芯片110-1 的表面可以涂有钝化层116-1 (例如玻璃层),以防止微弹簧与金属焊盘112-1电接触。而 且,钝化层116-1、微弹簧114-1和金属焊盘112-1可以具有相当小的电容。例如,如果微 弹簧114-1的尖端具有约15 X 15 μ m2的面积㈧,并且钝化层116-1具有大约1 μ m的厚度 (d)和介电常数、为7. 5,则其到金属焊盘112-1的电容(Cpad)为 其中ε Q为自由空间的电容率(8. 85pF/m)。使用此示例中的值,Cpad为15fF。给定此电容,现在考虑通过穿过一个金属焊盘的方波功率信号可以传送多大功 率。假设以500MHz振荡的3. 3V功率信号,并且在每个周期期间传送电容器中所存储的全 部能量(这在一定程度上是乐观假定),则平均功率(Poweravg)为Poweravg = Cpad · (Vswing)2 · T0.5,其中Ta5为半个周期。在使用15fF的Cpad和0. Ins的T0.5的情况下,Poweravg 为 0. 16mW。而且,在高频5Gbps数据信号下看到的接触的串联阻抗的大小由 给出,其中f为5Gbps的一半或者说2. 5GHz。因此,R为4. 3ΚΩ。虽然可以利用这么大的电阻来传送电信号,但是如果阻抗更低,那么传送将会更加容易。类似地,虽然可以通过 钝化层116-1来传输一些功率,但是为了提供甚至1W的功率,将需要超过10,000个微弹簧。图1B给出了示出现有的芯片间连接技术150的框图,其中通过各向异性薄 膜160而不是一个或多个微弹簧来进行各向异性薄膜接触。示例性的各向异性薄膜 包 括 PariPoser Material (来 自 PariconTechnologies, Inc. , of Fall River, Massachusetts),以及多个受到专利保护的薄膜,包括美国专利5,624,268,名称为 "Electrical ConductorUsing Anisotropic Conductive Films (使用各向异性导电薄膜的 电导体)”;以及美国专利 4,778,950,名称为 ‘‘Anisotropic Elastomericlnterconnecting System(各向异性弹性体互连系统)”。图1B示出了 PariPoser型各向异性导电弹性体薄 膜的截面。在各向异性薄膜160中,小导电球悬浮在硅橡胶中,使得这些球大体上排列成列 (例如,列162)并且提供沿各向异性薄膜表面的法向而非切向的传导。类似于图1A,金属 焊盘112-1可以具有钝化层,例如保护层116-1,以保护防止任意的复合导电性接触。因此, 现有的芯片间连接技术150可能受制于可比相当大的限制,包括通过该接触的有限功率或 信号能量传送。在下面的讨论中,作为本说明书中的实施方式的示范,使用微弹簧和微弹簧接触。 然而,应当理解,这些实施方式可以应用于各向异性薄膜和各向异性薄膜接触。图2A给出了示出用于接收电路210的芯片间连接技术200的框图,并且图2B给 出了示出用于发射电路260的芯片间连接技术250的框图。在图2A和图2B中,一个或多 个微弹簧(例如微弹簧114-1)分别与芯片110的表面之上或与之邻近的金属焊盘112-1 以及相关联的接收电路210或发射电路260相接触,其中接收电路210和发射电路260分 别用以接收或发射导电性或电容性耦合的数据或功率信号。注意,微弹簧114-1耦合至金 属焊盘112-1,其中金属焊盘112-1通过芯片110的钝化层116-2中的切口暴露于空气。而 且,芯片110-2包括ESD组件212-1 (例如,接地二极管),并且芯片110-3可以包括可选的 ESD组件212-2 (因为发射电路260对于ESD可以不太不敏感)。如果暴露于空气中的金属焊盘112-1上的氧化物的厚度(d)为2到3iim(例如, 空气中的纯铝上的自限氧化物生长),则耦合电容器的平均电流和等效阻抗分别提高和降 低了 500-333倍。使用来自前面计算的值,Poweravg为54mW并且R为13Q。因此,可以仅 使用约40个微弹簧来提供1W的功率(例如,20个用以产生功率供应电流,以及20个用以 吸纳功率供应电流)。由于可以在芯片上构图成千上万的微弹簧,因此可以提供数百瓦的功 率。注意,对于功率传送而言,与ESD组件212相关联的大寄生电容是可接受的(通 常,对于键合焊盘而言是2-8pF)。然而,对于信号传送而言,该ESD组件电容不可接受地衰 减高频信息或者可能引入符号间干扰。图3A给出了示出用于接收电路的芯片间连接技术的框图。在图3A中,导电性或 电容性耦合的金属焊盘112-1通过电容器312-1与接收电路210电容性隔离。更一般地, 芯片110-4包括诸如电感器和/或电容器的内部阻抗,其串联电耦合在金属焊盘112-1和 接收电路210之间。注意,电容器312-1的电容可以对应于芯片110-4上沉积的层的厚度 和介电常数。
在该实施方式中,用来保护该电容性耦合的接收电路210的ESD组件310_1可以显著地减少。因此,ESD组件310-1可以添加较小的寄生负载,通常低到2fF,这是因为可以 通过附近的暴露于空气的ESD保护器焊盘来保护金属焊盘112-1不受ESD的侵入(如下面 进一步参考附图4所述)。芯片间连接技术300还可以提供相对于现有芯片间连接技术100 (图1A)的显著 优点。在现有的芯片间连接技术100(图1A)中,金属焊盘112-1通常仅通过小于金属焊盘 112-1的寄生电容的一半而电容性地耦合至微弹簧114-1。该有限的电容进一步减小了电 信号。与此相反,在图3A中,金属焊盘112-1与接收电路210的输入之间的电容器312-1 可以被设计为具有相对于该寄生电容而言非常高的耦合比。由于不同的ESD敏感性,以及对包括图3A中接收电路210的芯片上的电容性耦合 的使用,具有发射电路的相应芯片不需要包括例如电容器312-1等电容器。然而,在某些 实施方式中,具有发射电路的相应芯片包括这样的电容器。这在图3B中示出,其给出了用 于具有可选电容器312-2的发射电路的芯片间连接350的框图。在某些实施方式中,芯片 110-5包括可选的ESD组件310-2。在下面的讨论中,使用芯片110中的接收电路作为示 范。在某些实施方式中,所描述的组件和技术与芯片110中的发射电路独立地或者附加地 使用。图4给出了示出一种芯片间连接技术400的框图,其中交叉的金属指状物形成了 屏蔽电容器410,其向芯片110-6中的接收电路210的输入节点添加非常小的寄生电容。因 此,接收的信号可以相当大。注意,非导电性屏蔽电容器410将金属焊盘112-1连接至接收 电路210。而且,边缘场屏蔽体412也降低了寄生电容。可以通过与微弹簧114-1的接触的 阻抗来容易地驱动残留寄生电容。尽管图4示出了一层金属中的交叉,但是可以使用更多 层的金属来进一步提高比率。图4还示出在信号金属焊盘112-1任一侧上的ESD暴露在空气中的金属焊盘414。 这些金属焊盘以及相关联的ESD组件416允许小型ESD组件418 (例如,接地的二极管或电 容器,其具有比ESD组件310小得多的寄生负载)保护电容性屏蔽的接收器输出不受kV水 平ESD事件的影响。ESD暴露在空气中的金属焊盘414可以在多个电容性或导电性耦合的 微弹簧金属焊盘或连接之间共享,以降低有效面积的成本。图5示出了与诸如耦合至芯片上的连接体或金属焊盘的微弹簧之类芯片间连接 相关联的可变复阻抗的等效电路500。该等效电路具有与电容器(Ccontact) 512并联的电 阻器(Rcontact) 510。取决于微弹簧尖端是否或者以何种程度穿透金属焊盘上的氧化物, RCOntaCt510通常具有0. 01 Ω到无穷大阻抗之间的值。取决于微弹簧尖端与金属焊盘之间 的重叠面积以在微弹簧尖端与金属焊盘之间的氧化物和空气间隙的厚度,Ccontact 512通 常具有I-IOpF量级的值。为了最大化通过接触传送的信号或者功率,接触阻抗(Zcontact) 应当尽可能的小。Zcontact给出如下 其中j是-1的平方根,而w为角频率。基于等式(1),减小RCOntaCt510确保了 不论Ccontact 512如何,Zcontact在所有频率处较小。然而,如果Rcontact 510较大或 者无穷大,则在高频处,Ccontact 512仍可以导致小接触阻抗。因此,在某些实施方式中,小接触阻抗可以通过对功率和/或数据信号进行AC调制来实现,而不考虑电阻性或电容性 接触的混合。图6A给出了示出发射电路600的框图,并且图6B给出了示出相关联电信号的时 序图650。在发射电路600中,未编码的信号Datain610由时钟信号(Clk) 612调制,以产生 DC-平衡的(50%高电平和50%低电平)信号Txdata 614。该调制技术又是称作lb2b,其 表示数据的一个位被扩频为编码数据的两个位。因此,该调制技术具有相对于带宽的50% 编码开销。例如4b6b或8bl0b或64b65b等其他调制技术具有更低的编码开销,但是通常需 要更多复杂的编解码电路以及较高的附加延迟。在某些实施方式中,使用空闲通道来周期 性地刷新发射通道,从使Datain 610无须被编码成DC平衡的。而且,在某些实施方式中, 使用接收电路偏置而非诸如Txdata 614之类的DC-平衡信号,其中接收电路偏置容许具有 最长行程长度约束的输入。图7和图8给出了示出利用Txdata 614来工作的接收电路700和800的框图。在 图7中,通过Cshield 718将芯片间连接与ESD组件和其寄生电容(表示为Cesd 720)屏 蔽。现在讨论输入节点710与接收输入节点(Rxin)714之间的有效阻抗。由于 Ccontact 512通常具有大约l_10pF的值,因此Cshield 718可以被设计为具有总是远小于 Ccontact 512的电容,例如0. lpF。给定交叉的Cshield(如图4中所示),寄生电容Cshpar 722的电容可以约为Cshield 718的电容的一半或者说0. 05pf。如果Rcontact510为无 穷大,并且使用具有接收焊盘节点712(Rxpad)的y-delta变换作为连接至输入节点710、 Rxin 714和地(通过Cshpar 722)的中心节点,则输入节点710与Rxin 714之间的有效阻 抗(Zeff)为 如果Rcontact 510小于无穷大,则这近似变成十分接近准确值,因为Zeff相对于 Cshield 718 和 Cshpar 722 而言非常小。而且,如果AC调制处于在比Rbias 724所引入的零极点对(高通滤波器)大得多 的频率上,则尽管存在来自Cshield 718与Cesd 720同放大器726的输入电容的和之间的 电容分压器的衰减,但是TXdata614无失真地被传递到Rxin 714。注意,该衰减可能较小, 因为Cesd720可以仅仅是几飞法,并且放大器726的输入电容相对于Cshield718也可以很 小。在接收电路800中,由于没有Cshield 718(图7),所以耦合至接收输入节点 (Rxnoshield)810的净信号能量比耦合至Rxin 714的多。不幸地,耦合到Rxnoshield 810 的信号可能失真,因为其可能在不同的频率下经历不同的衰减和相移。然而,在以下情况下 该失真可以被降低或消除,即,由Rcontact 510与Ccontact 512的乘积给出的时间常量与 接收电路800的内部时间常量(即,Rbias 724与Cesd720和放大器726的输入电容之和 的乘积)相匹配。由于与微弹簧与金属连接体或焊盘之间的耦合相关联的Rcontact 510和/或 Ccontact 512的可能变化,在某些实施方式中,可以通过选择或调节Rbias 724以及Cesd 720与放大器726的输入电容之和之一或两者,来调节接收电路800的内部时间常量。该调节可以至少部分地基于来自控制逻辑812 (或控制逻辑电路)的指令或信号。而且,控制 逻辑812可以在直接或间接地表征与芯片间连接相关联的可变阻抗(例如,Rcontact 510, Ccontact 512和/或其乘积)之后,调节接收电路800的内部时间常量。例如,如果接收电 路800的内部时间常量过大,则Txdata 614上的方波将失真,并且将在每次跃迁之后立即 下冲。备选地,如果接收电路800的内部时间常量过小,则Txdata 614将在每次跃迁之后 立即上冲。控制逻辑812可以在每次跃迁之后取样Rxnoshield两次,并且使用信号的斜率 来确定是否增加或减少Rbias 724、Cesd 720和/或放大器726的输入电容器的可控值。
注意,虽然利用固定的配置(因为图7中的Cshield 718可以具有总是远小于 Ccontact 512的电容)描述了接收电路700(图7),但是在某些实施方式中,接收电路 700 (图7)包括可选控制逻辑728 (或控制逻辑电路),其直接地或间接地表征芯片间连接, 并且相应地选择和调节接收电路700(图7)的内部时间常量。而且,虽然图7和图8每个示出了 一个信号路径,但是在其他实施方式中,使用至 少用于数据信号的不同信号路径来降低对于噪声源的易感性。在这些实施方式中,在图7 和图8中的Vthreshold 730被第二信号路径代替。图9A给出了示出功率信号TXpower 910的时序图900,并且图9B给出了示出相 关联的功率电路950的框图。因为芯片间连接可以是电容性的,所以TXpower 910可以作 为AC信号来发射。该信号可以直接地从电源可获得,或者可以使用DC到AC逆变器电路来 产生。注意,TXpower 910的信号摆幅可以比芯片核心960的需要大两个二极管压降,以便 补偿在功率电路950的每条臂中的两个二极管压降。例如,如果芯片核心960需要1. 8V并 且每个二极管压降为0. 15V(例如肖特基二极管),则TXpower 910可以为2. IV。图9A还 示出了在功率电路950之后的净功率信号(VddCore)912。注意,在Vddcord912中的波纹 随着芯片核心960 (图9B)的电流消耗而增加,并且随着更多的旁路电容被添加到芯片核心 960 (图9B)而减小。此外,该波纹随着接触阻抗Zcontact的减小而减少。虽然将图9B中的功率电路950示为桥式整流器,但是在其他实施方式中,功率电 路950独立地或附加地使用开关电容整流器来整流TXpower 910。该方法还允许整流器按 照需要对幅度进行步增或者步减。而且,在功率电路950之后可以有DC到AC转换器电路。 为了最大化功率传送,在某些实施方式中,在功率信号路径中的发射芯片和接收芯片均不 包括屏蔽电容器。现在描述系统的实施方式,其中半导体管芯或芯片使用微弹簧彼此(直接或间接 地)耦合。图10给出了示出具有使用微弹簧1041-1耦合的芯片1010-1和1012-1的系统 1000。微弹簧1041-1可以集成在芯片1021-1上,并且玻璃切割开口中的接触焊盘1061-1 可以集成在芯片1010-1上。在该实施方式的变型中,存在针对不同金属焊盘1061-1的独 立玻璃切割开口 ;芯片1010-1和1012-1可以使用微弹簧与其他芯片接触(如下面图11中 所示),或者单个芯片可以具有微弹簧1041-1以及与焊盘1061-1的玻璃切割开口二者,以 便与一个或多个其他芯片相接触。图11给出了示出了具有使用微弹簧1014-1和1014-2耦合的芯片1010-2和 1010-3的系统1100的框图。在图11中,此耦合由在两个面上都具有微弹簧1014-1和 1014-2的转接芯片1110来介导(mediate)。芯片1010-2和1010-3上的金属焊盘1016通 过转接芯片1110进行通信。注意,芯片1010-2与1010-3之间的给定连接包括串联的两个导电性接触或电容性接触。通过将相应的传送功能分解为两个串联的传送功能,之前描述 的分析仍然适用。在图11中,转接芯片1110为全部微弹簧1014-1和1014-2提供与芯片1010-2和 1010-3的接触。注意,未示出从转接芯片1110—个面上的微弹簧1041-1到另一面上的微 弹簧1014-2的连接。如果需要,这些连接可以按照同样的顺序在两面上从左到右连接微弹 簧,可以包括微弹簧对的某些重新排列,或者可以将一个微弹簧连接到多个其他微弹簧。在 其他实施方式中,转接芯片1110提供接触的金属焊盘部分,而不是用于至少某些组的连接 的微弹簧。此外,转接芯片1110可以延伸到左侧和右侧并且接触其他芯片。而且,微弹簧 或内部金属焊盘与转接芯片1110之间的连接可能允许给定的芯片与转接芯片1110两侧上 的任意或所有芯片通信。图12给出了示出具有使用公共衬底1012 (例如陶瓷或有机衬底材料)一侧上的 微弹簧1014-1和1014-2来耦合的芯片1010-2和1010-3的系统1200。这是对系统1100 (图 11)的变型,其中所有芯片位于转接芯片1110(图11)的一侧上,其中转接芯片1110已被重 命名为衬底1210。该配置在封装芯片中是有用的,因为其可以更方便地将功率或信号带入 封装体的一面,并且从相对面移除热量。在某些实施方式中,衬底由球栅阵列(BGA)或针栅 阵列(PGA)耦合至可选的电路板1212。在某些实施方式中,发射电路或接收电路位于连接的微弹簧侧或者金属焊盘侧。 如前所述,发射电路还可以使用片上屏蔽电容器而非导电性地耦合至芯片间连接。虽然相 对于与信道的导电性连接发射的能量会降低,但是该方法可以减小耦合至发射电路的一个 或多个ESD组件的尺寸,并因此可以降低功耗。由于在前述实施方式中的微弹簧不再需要锋锐的尖端来刮片,因此这些微弹簧可 以具有各种不同的形状,例如矩形、圆形和/或指形。这些形状可以使微弹簧更容易制 造,提高可靠性,和/或增加接触电容。虽然非导电性屏蔽体是使用屏蔽电容器示出的,但 是在其他实施方式中,可以使用一个或多个电感器,例如耦合螺旋金属电感器(其有效地 起传输器的作用)。而且,在某些实施方式中,在给定芯片上可以存在两个或更多微弹簧几何体。例 如,数据信号微弹簧可以较短且具有不锋利的末端,而功率信号微弹簧可以较长且具有较 锋锐的尖端。以此方式,功率信号微弹簧可以更有可能刮片并且形成电阻性连接,从而最大 化功率传输,并且可能允许较为简单的DC功率传输。此外,通过包括冗余的功率信号微弹 簧,即使某些功率信号微弹簧失去导电性连接,产率与长期可靠性也可以得到增强。数据信 号微弹簧可以被设计为具有较小的插入力,从而简化封装体的设计,因为这些连接可以使 用容许导电性或电容性接触的电路(例如图7和8中的接收电路700和800)。在某些实施方式中,电子对准技术被用于修正系统(诸如图10-图12中的系统) 中的平面机械失准。例如,如果给定的微弹簧接触发射或接收微焊盘或微条带的阵列,则电 子对准可以与导电性_电容性接触结合使用。由于表面的粗糙或不平,给定的微弹簧与金属焊盘之间的氧化物和空气间隙的厚 度可能大于单独氧化物层的厚度。为了增加接触的电容,在某些实施方式中,导电性的液 体、粘合剂或薄膜延伸超出给定微弹簧的边缘。注意,前述实施方式可以包括更少的组件或附加的组件。例如,在具有各向异性橡胶薄膜的实施方式中,芯片金属焊盘的暴露金属可以具有向其添加的一个或多个其他层, 使得其顶面延伸超过芯片钝化层的高度。而且,两个或更多组件可以被结合为单个组件,和 /或一个或多个组件的位置可以改变。在某些实施方式中,如本领域中已知的,功能可以较 多通过硬件而较少通过软件来实现,或者可以较少通过硬件而较多通过软件来实现。而且, 电路可以使用PMOS和/或NMOS来实现,并且信号可以包括具有近似不连续的值的数字信 号和/或具有连续值的模拟信号。现在描述一个用于传送电信号的过程的实施方式,其可以由半导体管芯(或半导 体管芯上的一个或多个电路)来执行。图13给出了示出用于传送电信号的过程1300的流 程图。在操作期间,半导体管芯从接收连接体接收电信号,该接收连接体机械耦合且电耦合 至一个或多个组件间连接体(1310)。注意,在接收连接体与一个或多个组件间连接体之间 存在接收可变复阻抗,并且该接收可变复阻抗对应于与第一电容器并联的第一电阻器。然 后,该半导体管芯至少部分地基于接收的电信号来表征接收可变复阻抗(1312)。接下来,该 半导体管芯至少部分基于接收可变复阻抗的特征来配置接收电路,以减轻与接收可变复阻 抗相关联的信号失真(1314)。
在过程1300的某些实施方式中,存在附加的或者更少的操作。而且,操作的顺序 可以改变和/或两个或多个操作可以结合为一个操作。已经给出的对本发明实施方式的上述描述仅仅是出于示范和描述目的。其并非意 在穷尽,或是将本发明限制为已公开的形式。因此,对于本领域技术人员许多修改和变型都 是显而易见的。此外,以上公开并非意在限制本发明。本发明的范围由所附权利要求来限定。
权利要求
一种半导体管芯,包括接收连接体,其邻近所述半导体管芯的表面,被配置为机械耦合且电耦合至一个或多个第一组件间连接体,从而定义所述接收连接体与所述一个或多个第一组件间连接体之间的接收可变复阻抗,其中所述接收可变复阻抗对应于与第一电容器并联的第一电阻器;以及接收电路,其电耦合至所述接收连接体,用以接收电信号,其中所述接收电路被配置用于减轻与所述接收可变复阻抗相关联的信号失真。
2.如权利要求1的半导体管芯,其中所述一个或多个第一组件间连接体包括微弹簧或 各向异性薄膜。
3.如权利要求1的半导体管芯,其中所述接收电路可配置用于减轻接收的电信号的信号失真。
4.如权利要求3的半导体管芯,其中至少部分地基于所述接收可变复阻抗来选择所述 接收电路的配置。
5.如权利要求4的半导体管芯,还包括控制逻辑电路,其配置用于表征所述接收可变 复阻抗,以及选择所述接收电路的所述配置。
6.如权利要求3的半导体管芯,其中配置所述接收电路包括将所述接收电路中的RC 电路的时间常量调节为约等于所述第一电阻器的电阻与所述第一电容器的电容的乘积。
7.如权利要求1的半导体管芯,还包括内部阻抗,其串联电耦合在所述接收连接体与 所述接收电路之间,其中所述内部阻抗的阻抗在与接收的电信号相关联的频率范围上管控 所述接收可变复阻抗,并且其中所述内部阻抗包括电感器或者第二电容器。
8.如权利要求7的半导体管芯,其中所述第二电容器的电容明显小于所述第一电容器 的电容。
9.如权利要求7的半导体管芯,其中接收的电信号包括在基频大于零的载波上调制的信号。
10.如权利要求7的半导体管芯,其中接收的电信号包括数据信号或功率信号。
11.如权利要求10的半导体管芯,其中所述接收电路包括整流器电路,其用于根据接 收的电信号来恢复DC功率信号。
12.如权利要求7的半导体管芯,其中所述第二电容器的电容由所述半导体管芯中的 介电层来定义。
13.如权利要求7的半导体管芯,还包括与所述接收连接体邻近和相邻的一个或多个 静电放电保护连接体。
14.如权利要求13的半导体管芯,还包括静电放电保护组件,其与所述接收电路并联 地电耦合至所述接收连接体。
15.如权利要求7的半导体管芯,还包括与所述第二电容器邻近或相邻的边缘场屏蔽体。
16.如权利要求1的半导体管芯,其中接收的电信号包括针对所述半导体管芯的数据 或功率。
17.如权利要求1的半导体管芯,其中所述接收连接体位于所述半导体管芯的表面之上。
18.如权利要求1的半导体管芯,还包括发射连接体,其邻近所述半导体管芯表面,被配置为机械耦合且电耦合至一个或多个 第二组件间连接体,由此定义所述发射连接体与所述一个或多个第二组件间连接体之间的 发射可变复阻抗,其中所述发射可变复阻抗对应于与第二电容器并联的第二电阻器;以及 发射电路,其电耦合至所述发射连接体,用以发射另一电信号。
19.一种系统,包括 第一半导体管芯;互连组件,其机械耦合且电耦合至所述第一半导体管芯,其中所述互连组件包括多个 组件间连接体;第二半导体管芯,其机械耦合且电耦合至所述互连组件,其中所述第二半导体管芯包括接收连接体,其位于所述半导体管芯的表面上,被配置为机械耦合且电耦合至一个或 多个组件间连接体,从而定义所述接收连接体与所述一个或多个组件间连接体之间的接收 可变复阻抗,其中所述接收可变复阻抗对应于与第一电容器并联的第一电阻器;以及接收电路,其电耦合至所述接收连接体,用以接收电信号,其中所述接收电路配置用于 减轻与所述接收可变复阻抗相关联的信号失真。
20.一种用于传送电信号的方法,包括在半导体管芯上从接收连接体接收电信号,所述接收连接体机械耦合且电耦合至一个 或多个组件间连接体,其中所述接收连接体与所述一个或多个组件间连接体之间存在接收 可变复阻抗,并且其中所述接收可变复阻抗对应于与第一电容器并联的第一电阻器, 至少部分地基于接收的电信号来表征所述接收可变复阻抗;以及 至少部分地基于所述接收可变复阻抗的表征来配置接收电路,以减轻与所述接收可变 复阻抗相关联的信号失真。
全文摘要
本发明涉及用于具有可变复阻抗的连接体的接收电路。具体地,描述了用于与具有可变复阻抗(其可以是导电性的、电容性的或两个皆有)的芯片间连接的电路结合使用的电路、包括该电路的系统以及一种通信技术的实施方式。该芯片间连接可以形成于芯片表面之上或者邻近芯片表面的微弹簧或各向异性薄膜与金属连接体之间。而且,该电路可以缓解减轻与可变复阻抗相关联的信号失真。例如,该电路可以包括内部阻抗,其与金属连接体串联电耦合,并且具有在操作频率范围内管控可变复阻抗的阻抗。独立地或附加地,该电路可以适于修正信号失真。
文档编号H01L25/00GK101866907SQ201010167448
公开日2010年10月20日 申请日期2010年4月19日 优先权日2009年4月17日
发明者A·乔, R·D·霍普金斯, R·J·德罗斯特 申请人:甲骨文美国公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1