小晶粒银合金层状复合材料及制作方法

文档序号:7148884阅读:446来源:国知局
专利名称:小晶粒银合金层状复合材料及制作方法
技术领域
本发明涉及一种用于制作微电机换向器的层状复合材料,尤其涉及一种小晶粒银合金层状复合材料及制作方法。
背景技术
在直流微电机的工作过程中,换向器和电刷片相互接触并相对滑动,实现电流的传输,保持电机运转;设备工作过程中,换向器和电刷片之间不可避免地存在滑动摩擦磨损,由此产生的磨屑被挤压在换向器和电刷片之间,影响二者的接触性能,造成较大的接触电阻波动,导致输出波形不良和电噪声,严重时甚至会引起非换向期电弧,加快材料的损伤;同时,磨屑在换向期电弧的作用下被熔焊于换向器的沟槽中,极易造成短路,常常导致微电机早期死机;而且,电接触过程中,由于机械摩擦和电流作用所产生的温升会使材料表面硬度下降,降低其硬度和耐磨性,进一步加剧了材料的机械磨损;因此,提高换向器用电接触材料的耐磨性是提高换向器使用性能和微电机使用寿命和稳定性的重要手段。银合金具有优良的导电性和耐腐蚀性能,因而是换向器中最常见,也是用量最大的滑动式电接触合金;由于银的硬度和熔点均偏低,抗磨损和抗电弧性能存在明显不足,无法满足微电机换向器的使用要求,为此,本领域技术人员采用了各种方法来改善银合金性能目前,通过在银合金中添加Cu、N1、Zn、Pd、Pt、RE (稀土)等元素来提高银合金材料性能的技术已经得到广泛的应用,这些合金元素可通过固溶、沉淀等方式来强化银,提高其硬度和耐磨性,提高时效稳定性,从而提高换向器的服役稳定性。但这些改进大都着眼于对银合金的配方的改进,反而忽视了对已有材料的进一步深入研究。

发明内容
现有的用于换向器的层状复合材料上的AgCuZnNiRE合金层(即工作层)的平均晶粒度一般都大于I μ m,发明人经过大量实验后发现,如果能将AgCuZnNiRE合金层的平均晶粒度降到O. 5 μ m或更细,则AgCuZnNiRE合金的耐磨性将大幅提升,从而可以使微电机的寿命得到延长,由此得到的方案是一种小晶粒银合金层状复合材料,包括由AgCuZnNiRE合金形成的工作层,由铜或铜合金形成的基层;工作层复合在基层上形成层状复合材料,其改进在于所述层状复合材料中,AgCuZnNiRE合金的平均晶粒度小于或等于0. 5 μ m。针对现有的AgCuZnNiRE合金,本发明还提出了如下的优选配方所述AgCuZnNiRE合金的成分由Cu、N1、Zn、RE和Ag组成;各种成分的重量百分含量分别为Cu 1~8%, Ni
0.1~0. 5%、Zn :1 5%、RE :0. 05 1%、余量为 Ag ;所述 RE 为 La、Ce、Pr、Nd、Gd、Y 中的一者(具体选择时,可综合考虑各种物质的价格择优选取)。所述工作层和基层的复合方式为或者工作层层叠复合在基层的全部表面上,或者工作层镶嵌复合在基层的部分表面上。按现有结构,将前述的层状复合材料制作为换向器并进一步制作为微电机,可以使换向器和微电机的耐磨性都得到相应提升。
前述的小晶粒银合金层状复合材料可按如下步骤制备1)采用水雾化法对AgCuZnNiRE合金进行粉末化处理,获得粉末状的A产物;水雾化法过程中冷却速率为IO5oC /s 以上;2)将A产物烘干后进行过筛处理,将A产物的粉末颗粒的平均粒度控制在5 μ m以下;3)对A产物进行冷等静压压制处理,获得B产物,冷等静压压制时的压力为60 100Mpa ;4)将B产物置于氨分解气氛或纯氢气氛中进行烧结,获得C产物;烧结温度70(T850°C,烧结时间不小于2小时;5)对C产物进行挤压处理 ,获得D产物;挤压处理时的加热温度不高于600°C,挤压比不小于50 ;6)对D产物进行多次大变形量轧制和退火处理,获得AgCuZnNiRE合金带材;每进行一次大变形量轧制后,就进行一次退火处理;大变形量轧制时,D产物的变形量不低于75%,退火温度不高于350°C ;多次大变形量轧制和退火处理的处理次数满足AgCuZnNiRE合金带材的平均晶粒度小于或等于1. 5 μ m ;7)采用热轧复合工艺,将AgCuZnNiRE合金带材与铜或铜合金带材进行复合,制作成层状复合结构;热轧复合时的温度不高于650°C,热轧复合时的变形量不小于30% ;8)对层状复合结构进行软化退火,软化退火时的温度不高于300°C;然后对层状复合结构进行多次大变形量轧制和退火处理,得到成品层状复合材料;每进行一次大变形量轧制后,就进行一次退火处理;其中,大变形量轧制时的变形量不低于75%,退火温度不高于300°C ;大变形量轧制和退火处理的次数满足成品层状复合材料上的AgCuZnNiRE合金层的平均晶粒度控制在O. 5 μ m以下。前述工艺过程的基本原理是1、步骤I)中的水雾化制粉是现有技术中的常规手段,本发明将其用于本发明方案中,使A产物中大部分粉末的平均粒度达到5 μ m以下,并通过步骤2)中的过筛处理,将平均粒度满足要求的颗粒筛选出来,为后续步骤中进一步细化晶粒尺寸奠定基础;水雾化制粉的基本原理是由于冷却速度极高,液态的AgCuZnNiRE合金瞬间凝固成固体,其晶粒的生长过程十分短暂,因此可以得到粒度尺寸很细小的AgCuZnNiRE合金粉末;本文所述方法,采用的是成品AgCuZnNiRE合金,还可在各种物质都为纯金属的条件下,通过现有的合金化工艺单独制备。2、步骤3)、4)、5)中的冷等静压压制、烧结和挤压工艺,均是常规的工艺方法,本发明将其用于本发明方案中,用于保证产物的物理稳定性及AgCuZnNiRE合金带材的晶粒度;在挤压过程中,采用较低的加热温度和较大的挤压比,可以让晶粒度得到进一步的细化;3、步骤6)中的大变形量轧制操作使D产物发生剧烈的塑性变形,合金内的组织在塑性变形的作用下形成纤维状,后续的退火过程又使纤维状的组织发生再结晶,由于轧制时的变形量很大,而退火中的温度又较低,这就可以使合金内组织的再结晶形核率很高而晶粒长大速率又相对较低,使晶粒得到细化,经过多次轧制、退火处理,每重复一次轧制、退火处理,AgCuZnNiRE合金的晶粒度就得到进一步的细化;多次轧制、退火处理的处理次数,可根据实际情况灵活调整,使AgCuZnNiRE合金的晶粒度降低至1. 5μπι以下即可;4、步骤7)中,通过金属复合工艺将前述步骤中获得的AgCuZnNiRE合金带材与铜或铜合金带材复合为层状复合结构(将AgCuZnNiRE合金带材与铜合金带材进行复合的目的是为了降低材料中的贵金属Ag的用量,降低材料成本,这是现有技术中普遍采用的手段),为了保证层状复合结构的厚度和进一步细化银合金层的晶粒度,在步骤8)中,继续对层状复合结构进行多次大变形量轧制和退火处理(次大变形量轧制和退火处理的处理次数可根据实际的AgCuZnNiRE合金晶粒度大小进行调整,使晶粒度降低至O. 5 μ m以下即可),最终获得超细晶粒的AgCuZnNiRE合金类电接触材料,将其用于微电机中的换向器的制作,可以大幅度减少磨屑、降低电噪声,使直流微电机的稳定性和使用寿命得到提高。本发明的有益技术效果是使AgCuZnNiRE层的耐磨性得到提高,间接地使微电机的使用寿命也得到提高;本发明的改进不需要在现有合金中添加新物质,而且可采用现有常规工艺制备,成本低廉,适用面广。


图1、工作层层叠复合在基层的全部表面上时的层状复合材料截面示意图;图2、工作层镶嵌复合在基层的部分表面上时的层状复合材料截面示意图。图中标记I为工作层,标记2为基层。
具体实施例方式—种小晶粒银合金层状复合材料,包括由AgCuZnNiRE合金形成的工作层,由铜或铜合金形成的基层;工作层复合在基层上形成层状复合材料,其改进在于所述层状复合材料中,AgCuZnNiRE合金的平均晶粒度小于或等于O. 5 μ m。进一步地,所述AgCuZnNiRE合金的成分由Cu、N1、Zn、RE和Ag组成;各种成分的重量百分含量分别为Cu :1 8%、Ni 0. Γθ. 5%、Ζη :1 5%、RE :0. 05 1%、余量为Ag ;所述RE为La、Ce、Pr、Nd、Gd、Y 中的一者。进一步地,所述工作层和基层的复合方式为或者工作层层叠复合在基层的全部表面上,或者工作层镶嵌复合在基层的部分表面上。一种换向器,采用前述的层状复合材料制作换向器。一种微电机,采用前述的换向器制作微电机。一种小晶粒银合金层状复合材料的制作方法1)采用水雾化法对AgCuZnNiRE合金进行粉末化处理,获得粉末状的A产物;水雾化法过程中冷却速率为105°C /s以上;2)将A产物烘干后进行过筛处理,将A产物的粉末颗粒的平均粒度控制在5 μ m以下;3)对A产物进行冷等静压压制处理,获得B产物,冷等静压压制时的压力为60 100Mpa ;4)将B产物置于氨分解气氛或纯氢气氛中进行烧结,获得C产物;烧结温度70(T850°C,烧结时间不小于2小时;5)对C产物进行挤压处理,获得D产物;挤压处理时的加热温度不高于600°C,挤压比不小于50 ;

6)对D产物进行多次大变形量轧制和退火处理,获得AgCuZnNiRE合金带材;每进行一次大变形量轧制后,就进行一次退火处理;大变形量轧制时,D产物的变形量不低于75%,退火温度不高于350°C ;多次大变形量轧制和退火处理的处理次数满足AgCuZnNiRE合金带材的平均晶粒度小于或等于1. 5 μ m ;7)采用热轧复合工艺,将AgCuZnNiRE合金带材与铜或铜合金带材进行复合,制作成层状复合结构;热轧复合时的温度不高于650°C,热轧复合时的变形量不小于30% ;8)对层状复合结构进行软化退火,软化退火时的温度不高于300°C;然后对层状复合结构进行多次大变形量轧制和退火处理,得到成品层状复合材料;每进行一次大变形量轧制后,就进行一次退火处理;其中,大变形量轧制时的变形量不低于75%,退火温度不高于300°C ;大变形量轧制和退火处理的次数满足成品层状复合材料上的AgCuZnNiRE合金层的平均晶粒度控制在O. 5 μ m以下。
实施例实施例1 :采用水 雾化法将AgCuZnNiCe合金(各组分的质量百分比分别为Cu :8%、Zn :1%、N1:O. 4%、Ce:O. 15%、Ag:余量)制备成 AgCuZnNiCe 合金粉末,冷却速率为1.0X105°C /s,将AgCuZnNiCe合金粉末烘干后用筛网进行过筛处理,获得平均粒度为5 μ m的AgCuZnNiCe合金粉末;经IOOMpa冷等静压压制成锭,将锭产物置于纯氢气氛中,在850°C条件下烧结2小时后,在加热温度600°C、挤压比50的条件下进行挤压,挤压后,在轧制变形量75%、退火温度350°C的条件下对银合金进行多次大变形量轧制和退火处理,制成AgCuZnNiCe合金带材,AgCuZnNiCe合金带材的晶粒度达到1. 5 μ m,然后,采用热轧复合工艺在650°C、变形量30%的条件下将AgCuZnNiCe合金带材与铜合金带材复合,获得层状复合结构,在30(TC条件下对层状复合结构进行软化退火处理,再在各次轧制变形量75%,退火温度300°C的条件下对层状复合结构进行多次轧制和退火处理,得到成品层状复合材料,层状复合材料总厚度控制为250 μ m, AgCuZnNiCe合金层厚度控制为30 μ m, AgCuZnNiCe合金的平均晶粒度为O. 49 μ m。实施例2 :采用水雾化法将AgCuZnNiLa合金(各组分的质量百分比分别为Cu :1%、Zn :5%、N1:O. 5%、La:O. 1%、Ag:余量)制备成 AgCuZnNiLa 合金粉末,冷却速率为1.3X105°C /s,将AgCuZnNiLa合金粉末烘干后用筛网进行过筛处理,获得平均粒度为4. 7 μ m的AgCuZnNiLa合金粉末;经60Mpa冷等静压压制成锭,将锭产物置于纯氢气氛中,在700°C条件下烧结2. 5小时后,在加热温度580°C、挤压比55的条件下进行挤压,挤压后,在轧制变形量75%、退火温度300°C的条件下对银合金进行多次大变形量轧制和退火处理,制成AgCuZnNiLa合金带材,AgCuZnNiLa合金带材的晶粒度达到1. 4 μ m,然后,采用热轧复合工艺在630°C、变形量40%的条件下将AgCuZnNiLa合金带材与铜合金带材复合,获得层状复合结构,在30(TC条件下对层状复合结构进行软化退火处理,再在各次轧制变形量75%,退火温度300°C的条件下对层状复合结构进行多次轧制和退火处理,得到成品层状复合材料,层状复合材料总厚度控制为250 μ m, AgCuZnNiLa合金层厚度控制为30 μ m, AgCuZnNiLa合金的平均晶粒度为O. 5 μ m。实施例3 :采用水雾化法将AgCuZnNiPr合金(各组分的质量百分比分别为Cu :4%、Zn :5%、N1: O. 1%、Pr: O. 5%、Ag:余量)制备成AgCuNiPr合金粉末,冷却速率为1.6X105oC /s,将AgCuZnNiPr合金粉末烘干后用筛网进行过筛处理,获得平均粒度为4. 9 μ m的AgCuZnNiPr合金粉末;经80Mpa冷等静压压制成锭,将锭产物置于纯氢气氛中,在800°C条件下烧结3小时后,在加热温度580°C、挤压比60的条件下进行挤压,挤压后,在轧制变形量75%、退火温度330°C的条件下对银合金进行多次大变形量轧制和退火处理,制成AgCuZnNiPr合金带材,AgCuZnNiPr合金带材的晶粒度达到1. 4 μ m,然后,采用热轧复合工艺在600°C、变形量35%的条件下将AgCuZnNiPr合金带材与铜合金带材复合,获得层状复合结构,在30(TC条件下对层状复合结构进行软化退火处理,再在各次轧制变形量75%,退火温度300°C的条件下对层状复合结构进行多次轧制和退火处理,得到成品层状复合材料,层状复合材料总厚度控制为250 μ m, AgCuZnNiPr合金层厚度控制为30 μ m, AgCuZnNiPr合金的平均晶粒度为O. 47 μ m。实 施例4 :采用水雾化法将AgCuZnNiNd合金(各组分的质量百分比分别为Cu 2%、Zn : 1%、N1: O. 2%、Nd: 1%、Ag:余量)制备成AgCuZnNiNd合金粉末,冷却速率为1.4X IO5oC /s,将AgCuNiNd合金粉末烘干后用筛网进行过筛处理,获得平均粒度为4. 7 μ m的AgCuZnNiNd合金粉末;经90Mpa冷等静压压制成锭,将锭产物置于纯氢气氛中,在850°C条件下烧结2. 4小时后,在加热温度580°C、挤压比50的条件下进行挤压,挤压后,在轧制变形量75%、退火温度350°C的条件下对银合金进行多次大变形量轧制和退火处理,制成AgCuZnNiNd合金带材,AgCuZnNiNd合金带材的晶粒度达到1. 3 μ m,然后,采用热轧复合工艺在630°C、变形量30%的条件下将AgCuZnNiNd合金带材与铜合金带材复合,获得层状复合结构,在270°C条件下对层状复合结构进行软化退火处理,再在各次轧制变形量75%,退火温度270°C的条件下对层状复合结构进行多次轧制和退火处理,得到成品层状复合材料,层状复合材料总厚度控制为250 μ m, AgCuZnNiNd合金层厚度控制为30 μ m, AgCuZnNiNd合金的平均晶粒度为O. 39 μ m。实施例5 :采用水雾化法将AgCuZnNiGd合金(各组分的质量百分比分别为Cu :8%、Zn :3%、N1:O. 4%、Gd: 1%、Ag:余量)制备成AgCuZnNiGd合金粉末,冷却速率为1.6X105oC /s,将AgCuZnNiGd合金粉末烘干后用筛网进行过筛处理,获得平均粒度为
4.8 μ m的AgCuZnNiGd合金粉末;经IOOMpa冷等静压压制成锭,将锭产物置于纯氢气氛中,在830°C条件下烧结2小时后,在加热温度580°C、挤压比50的条件下进行挤压,挤压后,在轧制变形量75%、退火温度350°C的条件下对银合金进行多次大变形量轧制和退火处理,制成AgCuZnNiGd合金带材,AgCuZnNiGd合金带材的晶粒度达到1. 5 μ m,然后,采用热轧复合工艺在630°C、变形量30%的条件下将AgCuZnNiGd合金带材与铜合金带材复合,获得层状复合结构,在30(TC条件下对层状复合结构进行软化退火处理,再在各次轧制变形量75%,退火温度300°C的条件下对层状复合结构进行多次轧制和退火处理,得到成品层状复合材料,层状复合材料总厚度控制为250 μ m, AgCuZnNiGd合金层厚度控制为30 μ m, AgCuZnNiGd合金的平均晶粒度为O. 5μπι。实施例6 :采用水雾化法将AgCuZnNiY合金(各组分的质量百分比分别为Cu 1%、Zn :4%、N1: O. 1%、Y: O. 05%、Ag:余量)制备成 AgCuZnNiY 合金粉末,冷却速率为1.5X105°C /s,将AgCuZnNiY合金粉末烘干后用筛网进行过筛处理,获得平均粒度为
4.7 μ m的AgCuZnNiGd合金粉末;经IOOMpa冷等静压压制成锭,将锭产物置于纯氢气氛中,在850°C条件下烧结3小时后,在加热温度600°C、挤压比60的条件下进行挤压,挤压后,在轧制变形量75%、退火温度340°C的条件下对银合金进行多次大变形量轧制和退火处理,制成AgCuZnNiY合金带材,AgCuZnNiY合金带材的晶粒度达到1. 36 μ m,然后,采用热轧复合工艺在630°C、变形量30%的条件下将AgCuZnNiY合金带材与铜合金带材复合,获得层状复合结构,在30(TC条件下对层状复合结构进行软化退火处理,再在各次轧制变形量75%,退火温度300°C的条件下对层状复合结构进行多次轧制和退火处理,得到成品层状复合材料,层状复合材料总厚度控制为250 μ m, AgCuZnNiY合金层厚度控制为30 μ m, AgCuZnNiY合金的平均晶粒度为O. 4 μ m。为了比较本发明方案与现有技术的差异,发明人还设计了如下两个比较例比较例1:按现有工艺将AgCuZnNiCe合金(各组分的质量比分别为Cu :7%、N1:O. 4%、Zn 1%、Ce:O. 5%、Ag:余量)加工为带材,然后将AgCuZnNiCe合金带材与铜合金带材复合为层状复合材料,AgCuZnNiCe合金带材的平均晶粒度为3 μ m ;层状复合材料的总厚度控制为250 μ m,工作层厚度控制为30 μ m。比较例2 按现有工艺将AgCuZnNiY合金(各组分的质量比分别为Cu :4%、N1:0. 5%、Zn :2%、Y0. 15%,Ag:余量)加工为带材,然后将AgCuZnNiY合金带材与铜合金带材复合为层状复合材料,AgCuZnNiY合金带材的平均晶粒度为2. 3 μ m ;层状复合材料的总厚度控制为250 μ m,工作层厚度控制为30 μ m。将前述6个实施例和2个比较例所获得的层状复合材料分别用于微电机中的换向器制作,对应的电刷片材料均为AgPd30/MX96 ;对微电机进行寿命试验,试验条件如下测试温度常温;测试负荷-Ag · cm ;测试电压4V ;电机转速12000rpm ;运转方式:连续;测试过程中,通过检测电机转速和电流的变化来判定电机的工作状态,出现转速或电流超标或停止运转时均判定为寿命终止。测试结果见下表
实施例1寿命(h)~
实施例1 1092 实施例2 1037 实施例3 1201 实施例4 1111 实施例5 1132 实施例6 1074 比较例I 576 比较例2 599结论上述测试结果表明,通过使现有的AgCuZnNiRE合金层的平均晶粒度减小到
O.5μπι以下后,可以提高换向器材料的耐磨性,制作出的微电机换向器,在相同运行条件下比现有的微电机换向器具有更长的使用寿命,达到了提高微电机工作寿命和稳定性的目的。
权利要求
1.一种小晶粒银合金层状复合材料,包括由AgCuZnNiRE合金形成的工作层,由铜或铜合金形成的基层;工作层复合在基层上形成层状复合材料,其特征在于所述层状复合材料中,AgCuZnNiRE合金的平均晶粒度小于或等于O. 5 μ m。
2.根据权利要求1所述的小晶粒银合金层状复合材料,其特征在于所述AgCuZnNiRE合金的成分由Cu、N1、Zn、RE和Ag组成;各种成分的重量百分含量分别为Cu Γ8%, Ni O.Γθ. 5%、Zn :1 5%、RE :0. 05 1%、余量为 Ag ;所述 RE 为 La、Ce、Pr、Nd、Gd、Y 中的一者。
3.根据权利要求1所述的小晶粒银合金层状复合材料,其特征在于所述工作层和基层的复合方式为或者工作层层叠复合在基层的全部表面上,或者工作层镶嵌复合在基层的部分表面上。
4.一种换向器,其特征在于权利要求1 3中任一项所述层状复合材料制作换向器。
5.一种微电机,其特征在于米用权利要求4所述的换向器制作微电机。
6.一种小晶粒银合金层状复合材料的制作方法1)采用水雾化法对AgCuZnNiRE合金进行粉末化处理,获得粉末状的A产物;水雾化法过程中冷却速率为105°C /s以上; 2)将A产物烘干后进行过筛处理,将A产物的粉末颗粒的平均粒度控制在5μ m以下; 3)对A产物进行冷等静压压制处理,获得B产物,冷等静压压制时的压力为6(Γ100Mpa ; 4)将B产物置于氨分解气氛或纯氢气氛中进行烧结,获得C产物;烧结温度70(T850°C,烧结时间不小于2小时; 5)对C产物进行挤压处理,获得D产物;挤压处理时的加热温度不高于600°C,挤压比不小于50 ; 6)对D产物进行多次大变形量轧制和退火处理,获得AgCuZnNiRE合金带材;每进行一次大变形量轧制后,就进行一次退火处理;大变形量轧制时,D产物的变形量不低于75%,退火温度不高于350°C ;多次大变形量轧制和退火处理的处理次数满足=AgCuZnNiRE合金带材的平均晶粒度小于或等于1. 5 μ m ; 7)采用热轧复合工艺,将AgCuZnNiRE合金带材与铜或铜合金带材进行复合,制作成层状复合结构;热轧复合时的温度不高于650°C,热轧复合时的变形量不小于30% ; 8)对层状复合结构进行软化退火,软化退火时的温度不高于300°C;然后对层状复合结构进行多次大变形量轧制和退火处理,得到成品层状复合材料;每进行一次大变形量轧制后,就进行一次退火处理;其中,大变形量轧制时的变形量不低于75%,退火温度不高于3000C ;大变形量轧制和退火处理的次数满足成品层状复合材料上的AgCuZnNiRE合金层的平均晶粒度控制在O. 5 μ m以下。
全文摘要
本发明公开了一种小晶粒银合金层状复合材料,包括由AgCuZnNiRE合金形成的工作层,由铜或铜合金形成的基层;工作层复合在基层上形成层状复合材料,其改进在于所述层状复合材料中,AgCuZnNiRE合金的平均晶粒度小于或等于0.5μm。本发明的有益技术效果是使AgCuZnNiRE层的耐磨性得到提高,间接地使微电机的使用寿命也得到提高;本发明的改进不需要在现有合金中添加新物质,而且可采用现有常规工艺制备,成本低廉,适用面广。
文档编号H01R39/04GK103057201SQ20121056616
公开日2013年4月24日 申请日期2012年12月24日 优先权日2012年12月24日
发明者徐永红, 章应 申请人:重庆川仪自动化股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1