侧壁结构的可切换电阻器单元的制作方法

文档序号:7149017阅读:215来源:国知局
专利名称:侧壁结构的可切换电阻器单元的制作方法
侧壁结构的可切换电阻器单元
本申请是分案申请,原申请的申请日为2009年04月01日,申请号为 200980112695. X,发明名称为“侧壁结构的可切换电阻器单元”。技术领域
本发明一般涉及制备半导体器件的方法,更具体地说,涉及制备半导体非易失性存储器单元的方法。
背景技术
由半导体材料制备的器件被用来生成电气部件和系统中的存储器电路。存储器电路是这类器件的支柱,因为数据和指令集都被存储在其中。最大化这类电路上每单位面积的存储器元件的数目能够最小化其成本,因此是这类电路设计的主要动力。
图I图示说明了示例性的现有技术的存储器元件20,该存储器元件包括垂直朝向的圆柱形的结型二极管22和存储元件24 (例如反熔丝的介电质或者金属氧化物电阻率切换层),所述结型二极管作为单元的导向元件。二极管22和存储元件24被插入顶部导体或电极26和底部导体或电极28之间。垂直朝向的结型二极管22包括第一导电类型(例如 η型)的重掺杂的半导体区域30、未掺杂的半导体材料或者轻掺杂的半导体材料的中间区域32 (被称为本征区域)以及第二导电类型(例如P型)的重掺杂的半导体区域34,以形成 p-i-n 二极管。如果需要,P型区域和η型区域的位置可以互换。结型二极管22的半导体材料通常为硅、锗、或者硅和/或锗的合金。也可以使用其它半导体材料。结型二极管22和存储兀件24被串联布置在底部导体28和顶部导体26之间,所述底部导体和顶部导体可以由金属例如钨和/或TiN形成。存储元件24可以位于二极管22上或者二极管下。参照图 1Α,由 Herner 等提出的题为“High-Density Three-Dimensional Memory Cell” 的美国专利6,952,030公开了一种示例性的非易失性存储器单元,该专利在下文中称作“030专利” 并且通过引用以其整体合并到此。
金属氧化物可切换电阻器的电阻可能太小,以至于不被三维(3D) 二极管阵列有效地探测到。相对于高的重置电流,低的重置电流通常是优选的,因此电阻器元件的电阻通常优选是高的。因为金属氧化物元件24被淀积在二极管柱22上,因此氧化物元件的电阻可能太小,因此产生不期望的高的重置电流。而且,在制备过程中,金属氧化物电阻器材料可能会由于刻蚀而被损坏,从而不能提供切换功能。发明内容
—种制备存储器器件的方法,包括形成第一导电电极,在第一导电电极上形成绝缘结构,在绝缘结构的侧壁上形成电阻率切换元件,在电阻率切换元件上形成第二导电电极,以及在第一导电电极和第二导电电极之间形成与电阻率切换元件串联的导向元件,其中电阻率切换元件在从第一导电电极到第二导电电极的第一方向上的高度大于电阻率切换元件在与第一方向垂直的第二方向上的厚度。


图IA图示说明了现有技术的存储器单元的三维视图。图IB和IC分别示出了现有技术的电阻率切换存储元件的侧视图和顶视图。
图2A和2B分别示出了根据本发明的实施例的单元的侧视图和顶视图。
图3、4、5、6A和7图示说明了根据本发明的实施例的存储器单元的侧截面图。图 6B是图6A的单元的顶视图。
具体实施方式
本发明人认识到,可以通过几何效应来增加存储元件(在此也被称为电阻率切换元件)的电阻,这里电阻率切换元件形成在绝缘结构的侧壁上,与导向元件串联。在该配置中,电阻率切换元件在从底部导电电极到上部导电电极的“垂直”方向上的高度大于电阻率切换元件在与“垂直”方向正交的第二方向上的厚度。电阻率切换元件可以是位于绝缘结构的侧壁上的二元金属氧化物的薄层,并且仍然被提供为在下部电极和上部电极之间与二极管导向元件串联。
电阻率切换材料24的电阻值R可以通过下式计算
R=P *t/(L*W) [I]
这里P为材料的电阻率,t是层的高度,(L*W)是导电通路的面积。因此,层的电阻值可以高度依赖于几何尺寸。图1B、1C、2A和2B图示说明了电阻的这种依赖性。图IB和 IC图示说明了位于二极管顶部的电阻率切换元件24 (为了清楚,在图IB和IC中省略该二极管,其可以位于元件24的上方或下方)。由于在元件24切换到低电阻率状态期间形成的导电细丝25的面积L*W不受单元结构的限制,因此导电细丝的电阻可以是相对低的电阻。 典型的金属氧化物可切换电阻材料可以形成具有在IK欧姆到IOK欧姆范围内的电阻的细丝,该电阻低于由用于三维二极管阵列而形成的二极管典型实现的电阻。三维二极管阵列中的二极管不能可靠地重置相对低电阻的细丝。
图2A和2B图示说明了根据本发明的一个实施例的存储器单元结构的一部分的侧面截面图和顶视图,这里为了清楚,再次省略了二极管,但是其在电极26和28之间,位于电阻率切换元件14的上方或下方并且与电阻率切换元件串联。在这个实施例中,电阻率切换元件被形成在绝缘结构13的侧壁上。在这个配置中,由下式计算电阻值
R=P *T/(1*W) [2]
这里I是元件14在绝缘结构侧壁上淀积的厚度。长度I可以显著小于图IB和IC 中的长度L。与图IB和IC中的配置相比,图2A和2B的配置中电阻增大为(L/1)倍。高度 T是覆盖绝缘结构13的侧壁的电阻率切换元件14的高度。高度T可以等于图IB和IC的现有技术的平面厚度t,并且在一些情况下可以大于该平面厚度t。
图2A和2B中所示的本发明的实施例的一个优点是低电阻状态的增加,其依赖于高度T的数值。注意到,对于一些材料,切换到高电阻的区域可以小于图3中所示的T。从上面所描述的图中可以看出,,W倾向于大于图IB和IC中所示的现有技术的配置中的t,并且小于图2A和2B中所示的本发明的实施例的侧壁配置中的T。侧壁层的厚度I可以小于细丝区域的典型尺寸。由于I可以小于现有技术的细丝的直径,因此为了进一步增大电阻,在一些材料中还倾向于减小细丝在W尺寸上的程度。
本发明的实施例中的电阻率切换元件的电阻较少依赖于可变的细丝形成的尺寸, 因为它受到尺寸I的限制。由于在一些材料中,电流通路穿过电阻率切换元件的截面面积被限定到小于典型的细丝尺寸,因此重置电流也会比较小。开关和阵列线中重置电流以及相关的IR压降的减小,对于允许包括侧壁电阻率切换元件的存储器阵列中重置电压和功耗降低是极大优势。三维二极管阵列中的二极管能够可靠地重置本发明的实施例中形成的相对高电阻的细丝。
在图I中,L倾向于随着t增加,并且可以大约为t的四倍,例如t是5nm,L是 20nm。但是在图2中,I对T不敏感,使得可以通过工艺选择来增加T ;例如,电阻率切换材料层的高度T可以大于5nm,例如大于20nm,并且厚度I可以小于20nm,例如小于5nm。结果,电阻可以从图I所示的增加为(L/1)* (T/t)倍,在该示例中即增加16倍。
图3-7图示说明了根据本发明的实施例的具有各种绝缘结构13的示例性存储器单元结构。电阻率切换元件14可以具有不同的形状。例如,其可以是环形的,围绕着绝缘结构,或者其可以位于绝缘材料中的槽内。类似地,绝缘结构可以具有不同的形状,例如柱形或轨道形。
如图3中所示,在下部电极28 (在图I中示出)上形成柱形二极管22 (也在图IA 中详细地示出)。二极管22可以由任何合适的半导体材料形成,如硅、锗、SiGe或者其它化合物半导体材料,其可以是多晶的、单晶的或者无定形的。电极28位于衬底上,例如半导体晶圆(包括硅或者化合物半导体晶圆),或者玻璃、塑料,或者金属衬底。电极28可以包括金属(例如钨、铝或者它们的合金)或者金属化合物(例如氮化钛)。
接着,在二极管22上形成可选的导电阻挡层16。阻挡层16可以包括任何导电材料,例如氮化钛。接着,在阻挡层16上形成绝缘结构13。绝缘结构13可以包括任何合适的绝缘材料,例如氧化娃或者氮化娃或者有机绝缘材料。结构13可以具有任何合适的形状, 例如轨道形或者柱形,只要其包含侧壁15。
接着,在绝缘结构13的至少一个侧壁上形成至少一个电阻率切换元件14。如果结构是圆柱形,如图2B中所示,则其只有一个侧壁15。电阻率切换元件14可以包括熔丝、多晶硅存储器效应材料、金属氧化物(例如二元金属氧化物(例如氧化镍)或者可切换复杂金属氧化物(例如钙钛矿氧化物))、碳纳米管、石墨烯可切换电阻材料、其它碳电阻率切换材料(例如无定形碳、多晶碳或者微晶碳)、相变材料,电解质切换材料,可切换复杂金属氧化物、导电桥元件或者可切换聚合物。电阻率切换元件的电阻率可以响应于在图IA中所示的电极26和28之间提供的正向和/或反向偏压而被增大或者减小。
可以通过任何合适的方法在绝缘结构13上形成电阻率切换元件14,例如化学气相沉积,物理气相沉积(例如溅射)等。元件14可以位于绝缘结构13的顶表面和绝缘结构 13的侧壁15。替换地,可以在绝缘结构13上形成元件14 (例如金属氧化物绝缘层),并且接着通过CMP或者其它方法来平坦化该元件14,以去除元件14位于结构13的上表面的厚度U,并且暴露出绝缘结构13的上表面。如图3中所示,元件14的有效切换区域18具有长度L,该长度可能由于PVD淀积的遮蔽效应而比元件的平面厚度要薄。区域18中的这个侧壁颈缩增大了元件14的电阻。
在图4所示的替换实施例中,金属或者金属氮化物薄膜(例如氮化钛薄膜)被淀积在结构13上,并且随后通过CMP或者其它平坦化方法从绝缘结构的顶部选择性地去除。接着,在氧化气氛中氧化图形化的薄膜,从而形成金属氧化物或者氮氧化物电阻率切换元件 14,例如氮氧化钛元件。由于上面所描述的颈缩现象,元件的有效区域18可以被完全转化为绝缘金属氧化物或者氮氧化物,而元件14的上部分42可以保持是导电金属或者金属氮化物。在图4中,为了清楚,放大了元件14的厚度。元件14可以具有IOnm到30nm的垂直厚度。
在图4的实施例中,结构13的侧壁15包括在绝缘层13 (例如氧化硅层)内形成的孔或者槽42的侧壁。孔或者槽露出底部电极28,以允许电阻率切换材料在电气上接触底部电极。如果需要,可以用绝缘填充材料44 (例如氧化硅或者有机材料)填充保持在电阻率切换元件14中的沟,并且通过CMP或者其它合适的方法来平坦化该沟,以露出元件14的上表面。
如图4中所示,底部电极28可以包括TiN和钨层的组合。而且,如图4中所示,二极管22位于电阻率切换元件14和阻挡层16之上。然而,顺序可以是颠倒的,可以在阻挡层16和元件14之下形成二极管22。如果需要,可以在二极管22和上部电极26之间形成上部阻挡层46。上部阻挡层46可以包括硅化钛层(例如通过使钛层与二极管的多晶硅材料反应形成的C49相硅化钛层)和Ti/TiN双分子层。
如上面所讨论的,二极管22作为单元的导向元件。例如,存储器单元可以包括垂直朝向的圆柱形的结型二极管。在此使用术语“结型二极管”指代具有非欧姆导电特性的、 具有两个终端电极并且由半导体材料制成的半导体器件,其在一个电极处是P型,在另外一个电极处是η型。示例包括ρ-η 二极管和η-ρ 二极管(其具有ρ型半导体材料与η型半导体材料的接触,例如齐纳二极管)以及p-i-n 二极管(在其中在P型半导体材料和η型半导体材料之间插入本征(未掺杂的)半导体材料)。在其它实施例中,可以使用包括MIM或者 ΜΠΜ结构的隧道二极管。
在图5中所示的另一替换实施例中,电阻率切换元件14包括绝缘层,例如以绝缘状态淀积在孔或者槽42内(而不是如图4中所示的氧化导电层)的金属氧化物层(例如 Al2O3X从而,使用大马士革类型工艺形成元件。如图5中所示,形成元件14的绝缘层并不一定需要平坦化,可以延伸出结构13。而且,如图5中所示,二极管22可以相对于元件14 被偏移(offset),以确保元件14接触二极管。如图5中所示,元件14可以为5nm_30nm高, 而电极28可以是大约200nm高。
在图6A和6B分别示出了另外一个实施例的侧视图和顶视图,其中绝缘结构13可以包括绝缘的轨道形状的结构13。可以通过图形化绝缘层(例如氧化硅或者氮化硅)来将轨道形成到绝缘结构轨道13中。轨道13可以在与下部电极28 (例如TiN/W/TiN电极)相同的方向上延伸。优选地,轨道13可以相对于电极28偏移,使得每个轨道13的侧壁15位于邻近电极28的上表面。接着,在轨道13的侧壁15上形成电阻率切换元件14。从而,底部电极28被暴露在邻近轨道13之间。由于轨道13与电极28和二极管22部分地未对准, 因此这允许电阻率切换元件14位于与各自下面的电极28和各自覆在上面的二极管22接触。例如,可以通过在轨道13上淀积金属氧化物层并且接着将该金属氧化物层平坦化来形成元件14。金属氧化物层可以凹陷低于轨道的上表面,在这里没有二极管22形成在金属层上。可以用绝缘填充材料44 (例如氧化硅)来填充轨道13之间的空间,之后进行CMP或者其它平坦化。同样地,也可以用平坦化的填充材料48来填充二极管22之间的空间。
在图7所示的另一替换实施例中,可以通过在底部电极28上形成至少一个二极管 22来形成存储器器件。随后,在二极管上形成阻挡层16和绝缘结构13,例如圆柱形结构 13。在结构13的侧壁15上形成电阻率切换元件14。
可以通过在绝缘模版层上形成硬质掩膜图形层来形成结构13。硬质掩膜层可以包括钨或者无定形碳或者其它材料。可以通过任何合适的方法(例如各向同性刻蚀),使用硬质掩膜图形作为掩膜来钻蚀(undercut)硬质掩膜图案,以此来选择性地去除模版层。结果,减小了模版层的宽度,并且由模版层形成至少一个绝缘柱。这形成了“蘑菇”形的绝缘结构13柱干,其被较大直径的硬质掩膜盖覆盖。
接着,通过任何合适的方法(例如原子层淀积)在绝缘结构13柱的侧壁以及硬质掩膜盖上随后淀积电阻率切换材料,例如金属氧化物层。可以使用硬质掩膜图形作为掩膜选择性地刻蚀半导体二极管层(以及可选地刻蚀阻挡层16),以形成至少一个柱形二极管导向元件(以及可选地形成图形化阻挡层16)。在上部电极26被形成为与电阻率切换元件14接触之前,可以可选地去除硬质掩膜图形层,或者如果硬质掩膜是导电的,则可以将硬质掩膜保留为上部电极26的一部分。从而,在这个结构中,二极管具有与硬质掩膜图形相同的直径,而绝缘结构13由于各向同性刻蚀和钻蚀而具有比二极管小的直径(或者宽度)。这可以允许电阻率切换元件14的边缘直接或者间接地在电气上接触结构13下面的二极管22,并且直接或者间接地在电气上接触位于结构13上面的上部电极26。
本发明的实施例的存储器单元可以包括一次性可编程的(OTP)或者可重复写入的非易失性存储器元件,并且可以选择于以下器件中的至少一个反熔丝,熔丝,串联布置的二极管与反熔丝,多晶硅存储效应元件,金属氧化物存储器,可切换复杂金属氧化物,碳纳米管存储器,石墨烯或者其它碳可切换电阻材料,相变材料存储器,导电桥元件或者可切换聚合物存储器。
已经描述了第一存储器级的形成。可以在该第一存储器级上形成其它的存储器级,以形成单片三维存储器阵列。在一些实施例中,存储级之间可以共用导体;也就是,顶部导体将作为下一个存储器级的底部导体。在其它实施例中,在第一存储器级上形成层间介电层(未示出),其表面被平坦化,并且在该平坦化的层间介电层上开始构造第二存储器级, 而没有共用导体。
单片三维存储器阵列是在单个衬底(例如晶圆)上形成多个存储器级,而没有插入的衬底。在现有的级的层上直接淀积或生长形成一个存储器级的层。相比之下,堆叠式存储器通过在分开的衬底上形成存储级并且将这些存储级互相粘结在顶上,如Leedy的美国专利 No. 5,915,167, “Three dimensional structure memory” 中公开的那样。在粘结之前, 可以减薄衬底或者从存储器级中去除衬底,但是由于存储器级最初是在分开的衬底上形成的,因此这种存储器不是真正的单片三维存储器。
在衬底上形成的单片三维存储器阵列包括在衬底上第一高度处形成的至少第一存储器级和在不同于该第一高度的第二高度处形成的第二存储器级。可以在衬底上以这种多层阵列方式形成三个、四个、八个或者实际上任何数目的存储器级。
在整个说明书中,一个层被描述为在另一个层“上”或者“下”。应理解,这些术语描述了层和元件相对于在其上形成它们的衬底(在大多数实施例中是单晶硅晶圆衬底)的位置;一个特征当其离晶圆衬底较远时是在另一个上,当其离晶圆衬底较近时是在另一个下。虽然很清楚,可以在任意方向旋转晶圆或者管芯,但是第一特征在晶圆或者管芯上的相对方向不会改变。此外,附图刻意没有按比例示出,仅表示层和被处理的层。
已经以说明性的方式描述了本发明。应理解,所用的术语意在描述词语的本质而不是限制它。在上述教导下,本发明的许多修改和变型是可能的。因此,在附随的权利要求的范围之内,可以以不同于具体描述的实施例来实施本发明。
权利要求
1.一种存储器器件,包括 第一导电电极; 绝缘结构; 位于所述绝缘结构的侧壁上的电阻率切换元件; 位于所述电阻率切换元件上的第二导电电极; 位于所述第一导电电极和所述第二导电电极之间,与所述电阻率切换元件串联的导向元件; 其中所述电阻率切换元件在从所述第一导电电极到所述第二导电电极的第一方向上的高度大于所述电阻率切换元件在与所述第一方向垂直的第二方向上的厚度,以及 其中所述绝缘结构包括多个绝缘轨道,并且所述电阻率切换元件位于至少一个绝缘轨道的侧壁上并且与暴露在邻近轨道之间的所述第一导电电极接触。
2.根据权利要求I所述的器件,其中所述导向元件包括位于所述电阻率切换元件上的二极管。
3.根据权利要求I所述的器件,其中所述导向元件包括位于所述电阻率切换元件下的二极管。
4.根据权利要求I所述的器件,其中所述导向元件包括通过导电阻挡层与所述电阻率切换元件隔离的柱形的p-i-n 二极管。
5.根据权利要求I所述的器件,其中所述电阻率切换元件是位于所述绝缘结构的侧壁上的金属氧化物层。
6.根据权利要求I所述的器件,其中所述电阻率切换元件选自于反熔丝介电质、熔丝、多晶硅存储效应材料、金属氧化物或者可切换复杂金属氧化物材料、碳纳米管材料、石墨烯可切换电阻材料、碳电阻率切换材料、相变材料、导电桥元件、电解质可切换材料或者可切换聚合物材料。
7.根据权利要求I所述的器件,其中用绝缘填充材料填充所述多个绝缘轨道之间的空间,并且每个绝缘轨道与所述第一导电电极和所述导向元件部分地未对准,使得所述电阻率切换元件位于与所述第一导电电极和所述导向元件接触。
8.根据权利要求I所述的器件,其中所述电阻率切换元件具有大于IOnm的高度和小于IOnm的厚度。
全文摘要
一种制备存储器器件的方法,包括形成第一导电电极(28),在该第一导电电极上形成绝缘结构(13),在该绝缘结构的侧壁上形成电阻率切换元件(14),在该电阻率切换元件上形成第二导电电极(26),以及在该第一导电电极和该第二导电电极之间形成与该电阻率切换元件串联的导向元件(22),其中该电阻率切换元件在从第一导电电极到第二导电电极的第一方向上的高度大于该电阻率切换元件在与第一方向垂直的第二方向上的厚度。
文档编号H01L27/24GK102983273SQ201210572290
公开日2013年3月20日 申请日期2009年4月1日 优先权日2008年4月11日
发明者R·E·朔伊尔莱因 申请人:桑迪士克3D公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1