用于制造光电子半导体芯片的方法

文档序号:7249123阅读:131来源:国知局
用于制造光电子半导体芯片的方法
【专利摘要】本发明提出一种用于制造光电子半导体芯片的方法,具有下述步骤:在外延设备中提供生长衬底(1);将至少一个中间层(2)外延地沉积到生长衬底(1)上;在中间层(2)的背离生长衬底(1)的一侧上产生背离生长衬底(1)的结构化的表面(3);将有源层(4)外延地沉积到结构化的表面(3)上,其中在外延设备中产生结构化的表面(3);以及有源层(4)至少部局部保形地或者至少局部基本上保形地跟随结构化的表面(3)的结构化部。
【专利说明】用于制造光电子半导体芯片的方法
【技术领域】
[0001]本发明提出一种光电子半导体芯片。
【背景技术】
[0002]例如在基于GaN的发光二极管芯片中,特别是在基于InGaN的发光二极管芯片中,出现如下效应,即光发射随着驱动发光二极管芯片的电流的电流密度变大而以成低于线性的比例的方式增加。如果有效地驱动这些发光二极管芯片,那么它们因此必须以较低的电流密度来驱动。

【发明内容】

[0003]待实现的目的在于,提出一种光电子半导体芯片,能够在高的电流密度的情况下以高的效率驱动所述光电子半导体芯片。
[0004]提出一种用于制造光电子半导体芯片的方法。所述光电子半导体芯片能够是产生辐射的半导体芯片,例如发光二极管芯片。此外所述光电子半导体芯片能够是检测辐射的半导体芯片,例如光电二极管。
[0005]根据所述方法的至少一个实施形式,首先在外延设备中提供生长衬底。所述生长衬底是衬底晶片,待制造的光电子半导体芯片的半导体材料能够外延地生长在所述衬底晶片上。生长衬底例如由蓝宝石、GaN、SiC或者硅形成。生长衬底特别是也能够由所述材料中的一种构成。
[0006]在外延设备中提供生长衬底,在所述外延设备中进行光电子半导体芯片的后续的制造。外延设备例如是金属有机化学气相外延(英语是Metal Organic Chemical VaporPhase Epitaxy, MOVPE)反应器,在所述MOVPE反应器中,光电子半导体芯片能够至少局部地借助于金属有机气相外延来制造。
[0007]根据所述方法的至少一个实施形式,将至少一个中间层外延地沉积到生长衬底上。在此,外延的沉积在外延设备中进行。至少一个中间层例如是掺杂的半导体层,例如是被沉积到生长衬底上的η型掺杂的半导体层。
[0008]根据所述方法的至少一个实施形式,在中间层的背离生长衬底的一侧上产生结构化的表面。结构化的表面例如能够是在中间层的背离生长衬底的一侧上所产生的结构化的层的表面。此外可行的是,将中间层的背离生长衬底的一侧,即中间层的表面本身改变为结构化的表面
[0009]当前,将结构化的表面理解为具有结构的表面,以至于所述表面在MOVPE生长中通用的标准方面不能够被称之为是平滑的。也就是说,结构化的表面例如具有凹陷和突起,其中结构化的表面的突起与结构化的表面的凹陷相比高出半导体材料的至少几个单层。
[0010]两个突起之间在横向方向上的平均间距例如为至少50nm和/或至多50 μ m,特别是为至少500nm和/或至多1500nm。凹陷和相邻的突起之间的在竖直方向上的间距通过小平面的约60°的侧面角相应地得出。[0011]根据所述方法的至少一个实施形式,在随后的方法步骤中进行将有源层外延地沉积到结构化的表面上。也就是说,将例如在光电子半导体芯片工作时设置用于产生或者检测电磁辐射的有源层外延地沉积到结构化的表面上。在此也可行的是,在结构化的表面和有源层之间存在有其它的层,所述其它的层同样被外延地沉积到结构化的表面上。有源层此外能够包括多个层,也就是说例如能够是有源层序列。有源层例如包括单量子膜或多量子膜。
[0012]根据所述方法的至少一个实施形式,在外延设备中产生结构化的表面。也就是说,例如不通过借助于蚀刻进行粗化而在外延设备外部产生结构化的表面或者不通过将掩膜层施加到生长衬底上而在外延设备外部产生结构化的表面,而是在外延过程期间在原位实现结构化的表面的产生。
[0013]根据所述方法的至少一个实施形式,有源层生长为,使得所述有源层在其伸展中至少局部保形地或者至少局部基本上保形地跟随结构化的表面的结构化部。也就是说,有源层不生长超过结构化的表面使得容易覆盖结构化的表面的结构化部,而是有源层至少局部地跟随结构化的表面的伸展或者所述有源层基本上跟随该伸展。在此,“基本上”是指,有源层的伸展能够偏离于结构化的表面的严格的保形映射(konformen Abbildung)。但是如果结构化的面例如具有凹陷和突起,那么有源层的凹陷位于结构化的表面的凹陷的区域中,而有源层的突起位于结构化的表面的突起的区域中。这至少在部段上是这种情况,以至于有源层至少在部段上具有类似于结构化的表面的结构化部。
[0014]根据用于制造光电子半导体芯片的所述方法的至少一个实施形式,所述方法包括下述步骤:
[0015]-在外延设备中提供生长衬底;
[0016]-将至少一个中间层外延地沉积到生长衬底上;
[0017]-在中间层的背离生长衬底的一侧上产生背离生长衬底的结构化的表面;
[0018]-将有源层外延地沉积到结构化的表面上;其中
[0019]-在外延设备中产生结构化的表面;以及
[0020]-有源层至少局部保形地或者至少局部基本上保形地跟随结构化的表面的结构化部。
[0021]在此,所述方法还基于下述知识:通过构成结构化的有源层能够实现下述有源层:所述有源层与未结构化地生长到平坦的表面上的有源层相比具有增大的外面进而具有增大的放射面或者增大的检测面。通过有源层的该更大的面,在芯片尺寸相同的情况下,也就是说,在芯片横截面和电流相同的情况下,提高例如发射辐射的光电子半导体芯片的效率。替选可行的是,使用横截面积缩小的芯片,所述芯片由于有源层的增大的面积具有与没有结构化的表面的芯片类似的效率。如果有源的表面上的结构例如是理想的六边形棱锥,那么有源层的面积能够扩大大约为1.4倍。效率由此提高10%。也就是说,效率的提高能够为至少5%或者更多。
[0022]根据光电子半导体芯片的至少一个实施形式,半导体芯片的外延地制造的层至少部分地或者完全地基于氮化物化合物半导体材料。
[0023]基于氮化物化合物半导体材料在本文中意味着,半导体层序列或者其至少一部分具有氮化物化合物半导体材料,优选为AlnGamIni_n_mN或者由其构成,其中0<η<1、O< m < I并且n+m < I。在此,所述材料不必强制地具有根据上式的数学上精确的组成。更确切地说,所述材料例如能够具有一种或多种掺杂材料以及附加的组成部分。但是为了简单性起见,上式仅包含晶格(Al,Ga,In,N)的基本的组成部分,即使所述组成部分能够部分地通过少量的其它材料来取代和/或补充。
[0024]层例如基于InGaN半导体材料和/或GaN半导体材料。
[0025]根据所述方法的至少一个实施形式,结构化的表面借助于有针对性地改变外延设备中的生长条件而产生。也就是说,通过调整外延设备中的生长条件、例如生长温度或者流量来实现结构化的表面的生长或产生。因此,来自外部的另外的干预,例如引入附加的蚀刻剂是不必要的。在此可行的是,精确地改变生长条件的一个参数或者同时改变生长条件的多个参数,以便产生结构化的表面。
[0026]根据所述方法的至少一个实施形式,结构化的表面借助于有针对性地改变外延设备中的温度来产生。在此能够提高或者降低外延设备中的温度以用于产生结构化的表面。由此中间层的外面例如能够被结构化成结构化的表面,或者在将结构化的层生长到中间层的外面上期间调整外延设备中的被改变的温度,以至于在结构化的层上构成结构化的表面。
[0027]根据所述方法的至少一个实施形式,借助于有针对性地改变外延设备中的前体的流量和/或载体气体的流量来产生结构化的表面。流量的改变例如能够是前体的和/或载体气体的流的下降或者切断。同时,能够提高其它前体的和/或其它载体气体的流量。
[0028]根据所述方法的至少一个实施形式,为了形成结构化的表面,降低外延设备中的温度,使得构成所谓的V形缺陷。V形缺陷例如在氮化物化合物半导体材料中具有敞开的、在生长方向上倒置的棱锥体的形状,所述棱锥体例如具有六边形的基面。在横截面中,所述缺陷具有V形的形状。V形缺陷能够在氮化物化合物半导体材料中,例如在基于GaN的或者由所述半导体材料构成的层中,通过调整生长参数,特别是生长温度来产生。V形缺陷的大小因此取决于产生V形缺陷的层的厚度。
[0029]根据所述方法的至少一个实施形式,中间层包括线位错(Fadenversetzungen),其中V形缺陷的大部分分别构成在线位错上。线位错例如在将中间层的半导体材料异质外延到生长衬底上的情况下产生,所述生长衬底具有与半导体材料不同的晶格常数。中间层例如生长到由蓝宝石构成的生长衬底上,所述生长衬底相对于中间层的氮化物化合物半导体材料能够具有直至大约14%的晶格失配度。通过选择生长衬底以及生长条件、特别是生长温度,能够调节V形缺陷的密度。V形缺陷的密度确定结构化的表面的粗糙度,也就是说例如凹陷的深度以及其彼此间的间距。
[0030]根据所述方法的至少一个实施形式,中间层基于GaN,例如基于η型掺杂的GaN,并且V形缺陷在外延设备中的温度小于900°C的情况下生长。这种生长条件被证实为特别有利于产生V形缺陷。
[0031]根据所述方法的至少一个实施形式,中间层基于GaN,并且为了形成结构化的表面,下降或者中断NH3-前体的流持续达一段特定的时间。在此,也能够同时降低外延设备中的温度。在中间层的生长结束之后,在有源层的生长之前,由于氮组分的降低或缺失,能够导致背离生长衬底的中间层的基于GaN的表面的分解。这引起所述表面的粗化进而引起结构化的表面的构成。[0032]根据所述方法的至少一个实施形式,将掩膜层施加到中间层的背离生长衬底的表面上,所述掩膜层具有通向中间层的多个开口,并且结构化的表面通过掩膜层的外延过度生长来构成。也就是说,例如将基于氮化硅的层施加到外延制造的中间层上,所述基于氮化硅的层例如能够以光刻的方式来结构化,使得所述基于氮化硅的层具有能够至少部分地空出中间层的开口。在所述掩膜层的后续的过度生长时,因此特别是对于基于GaN的半导体材料而言能够构成六边形的棱锥结构或者梯形结构。因此以该方式生产结构化的层,所述结构化的层在其背离生长衬底的一侧上具有结构化的表面。
[0033]根据所述方法的至少一个实施形式,在掩膜层的外延过度生长时,将材料引入到掩膜层的开口中,以至于外延生长的材料部分地与中间层直接接触。
【专利附图】

【附图说明】
[0034]在下文中根据实施例和与其相关的附图详细地阐述在此所描述的方法。
[0035]图1、2和3根据示意剖面图示出借助在此描述的方法的不同的实施形式来制造的光电子半导体芯片。
[0036]相同的、同类的或者起相同作用的元件在附图中设有相同的附图标记。附图和在附图中所描述的元件彼此间的大小比例不能够视为是按比例的。相反,为了更好的可描述性和/或为了更好的理解能够夸张大地示出个别元件。
【具体实施方式】
[0037]图1的示意剖面图示出一种光电子半导体芯片,例如发光二极管芯片。光电子半导体芯片包括生长衬底I。生长衬底I例如能够是蓝宝石衬底。将中间层2施加到生长衬底I上。中间层2例如以η型掺杂的GaN形成。由于生长衬底I和中间层2之间的晶格差异,在中间层2中构成线位错2,所述线位错延伸穿过中间层2。
[0038]在改变生长条件的情况下,结构化的层21外延地生长到中间层2的背离生长衬底I的一侧上。在此,外延生长在与制造中间层2相同的外延设备中进行。结构化的层21例如在外延设备中的温度<900°C的情况下生长。V形缺陷7以该方式产生分别在线位错6上形成的规则的尺寸。V形缺陷7的密度例如能够为至少5X10VcnT2,例如至少108/cnT2。V形缺陷能够生长大至,使得它们几乎接触。这例如能够通过结构化的层21的厚度d来调节。在此,厚度d取决于V形缺陷的密度,所述V形缺陷的密度能够通过选择温度来调节。
[0039]V形缺陷7产生结构化的表面3,所述结构化的表面在V形缺陷7的区域中具有凹陷。在凹陷之间设置有例如能够具有六边形棱锥体形状的突起。
[0040]随后改变生长条件,也就是说,当前能够由多个层构成的后续的有源层4,以其它的材料和/或其它的温度来生长。
[0041]这样产生的有源层4的结构化部尽可能保形地跟随结构化的表面3的结构化部。因此以该方式产生波纹状的有源层,所述波纹状的有源层与例如直接生长到平滑的或者平坦的中间层2的外面上的有源层相比具有更大的外面。由此,获得上文中所描述的效率提闻。
[0042]随后,能够生长覆盖层5,所述覆盖层例如借助P型传导的半导体材料形成,所述半导体材料能够基于GaN。[0043]在其它的方法步骤中,例如能够剥离生长衬底1,并且为了接触光电子半导体芯片,能够产生相应的金属的接触部。
[0044]结合图2,在此描述的方法的另一实施例根据借此制造的光电子半导体芯片来详细阐明。与图1的光电子半导体芯片的区别在于:在所述方法的该实施形式中不形成V形缺陷。也就是说,不必降低生长温度、即外延设备中的温度。更确切地说,将掩膜层8施加到中间层2的背离生长衬底I的光滑的表面上,所述掩膜层例如由SiN构成并且具有通向中间层2的开口 81。
[0045]因为掩膜层8通过例如η型传导的基于GaN的半导体材料横向地过度生长,所以在外延沉积相应的半导体材料时构成结构化的层21。所述结构化的层21在其背离生长衬底I的一侧上具有结构化的表面3。后续地,如在上文中所描述,将有源层4生长到所述结构化的表面上,所述有源层能够保形地跟随结构化的表面3的结构化部。随后,施加例如由P型掺杂的半导体材料构成的覆盖层5。
[0046]在此被证实为特别有利的是,开口 81在其在掩膜层8中的尺寸和/或位置方面随机地设置。由此,能够实现尤其适合地粗化结构化的表面3。
[0047]结合图3,根据示意剖面图详细阐述在此描述的方法的另一实施例,所述示意剖面图示出借助所述方法制造的光电子半导体芯片。
[0048]不同于之前的实施例,在所述实施例中,结构化的表面3构成在中间层2本身的背离生长衬底I的一侧上,以至于中间层2也是结构化的层21。这至少能够以两种方式来实现:
[0049]首先在中间层2的生长结束且降低外延设备中的温度后,能够降低或者完全中断ΝΗ3-前体的流。由于氮组分的降低或者缺失,引起中间层2的基于GaN的表面的分解进而引起该层的粗化。随后,将有源层4保形地沉积到所述结构化的表面3上,所述有源层能够
被覆盖层5覆盖。
[0050]作为可替选的可能性,也可以经由外延设备中的载体气体的、例如氢气的速率(rate)来调节粗糙度。如果氢气的速率升高,那么提高结构化的表面3的粗糙度。这同样适合于温度的提高。
[0051]此外可设想的是,在高温、即例如高于用于生长有源层4的通常的生长条件至少50K、例如200K的情况下,中断NH3-前体的流持续达一段特定的时间。也以该方式获得所期望的粗化。
[0052]借助全部所描述的方法可行的是,在工作中由例如电磁辐射照射有源层的面、也就是有源的外面,以便大约提高1.4倍。以该方式,直至10%的效率提高是可行的。
[0053]本发明不由于根据实施例进行的描述而局限于此。相反,本发明包括每个新的特征以及特征的任意的组合,这尤其是包含在权利要求中的特征的任意的组合,即使这些特征或者这些组合本身没有在权利要求或者实施例中明确地说明。
[0054]本专利申请要求德国专利申请102011012925.1的优先权,其公开内容通过参引的方式并入本文。
【权利要求】
1.一种用于制造光电子半导体芯片的方法,具有下述步骤: -在外延设备中提供生长衬底(I); -将至少一个中间层(2)外延地沉积到所述生长衬底(I)上; -在所述中间层(2)的背离所述生长衬底(I)的一侧上产生背离所述生长衬底(I)的结构化的表面(3); -将有源层(4)外延地沉积到所述结构化的表面(3)上,其中 -在所述外延设备中产生所述结构化的表面(3);以及 -所述有源层(4)至少局部地保形地或者至少局部地基本上保形地跟随所述结构化的表面(3)的结构化部。
2.根据上一项权利要求所述的方法, 其中所述中间层(2)基于GaN,并且为了形成所述结构化的表面(3),降低或者中断NH3-前体的流持续达一段特定的时间。
3.根据上一项权利要求所述的方法, 其中在所述中间层(2)的生长结束后降低或者完全中断所述NH3-前体的流,并且由于氮组分的降低或者缺失,进行所述中间层(2)的基于GaN的所述表面的部分的分解,由此粗化所述中间层(2)的背离所述生长衬底(I)的一侧并且构成所述结构化的表面(3)。
4.根据上一项权利要求所述的方法,` 其中在降低或者中断所述NH3-前体的流之前和在降低或者中断所述NH3-前体的流期间,降低所述外延设备中的温度,特别是降低到900°C以下。
5.根据上述权利要求之一所述的方法, 其中为了形成所述结构化的表面(3),降低所述外延设备中的温度,使得构成V形缺陷(7)。
6.根据上一项权利要求所述的方法, 其中所述中间层(2)包括线位错(6),并且所述V形缺陷(7)的大部分分别构成在线位错(6)上。
7.根据上述权利要求之一所述的方法, 其中所述中间层(2)基于GaN,并且所述V形缺陷(7)在所述外延设备中的温度低于900°C的情况下生长。
8.根据上述权利要求之一所述的方法, 其中所述中间层(2)由GaN构成,并且为了形成所述结构化的表面(3),降低或者中断NH3-前体的流持续达一段特定的时间。
9.根据上述权利要求之一所述的方法, 其中将掩膜层(8)施加到所述中间层(2)的背离所述生长衬底(2)的表面上,所述掩膜层具有通向所述中间层(2)多个开口(81),并且所述结构化的表面(3)通过所述掩膜层(8)的外延的过度生长形成。
10.根据上一项权利要求所述的方法, 其中在所述开口(81)中空出所述中间层(2)并且在外延地过度生长时部分地填充所述开口(81)。
11.根据上述权利要求之一所述的方法,其中所述结构化的表面(3)借助于有针对性地改变所述外延设备中的生长条件来产生。
12.根据上述权利要求之一所述的方法, 其中借助于有针对性地改变所述外延设备中的温度来产生所述结构化的表面(3)。
13.根据上述权利要求之一所述的方法, 其中借助于有针对性地改变所述外延设备中的前体的流量来产生所述结构化的表面(3)。
14.根据上述权利要求之一所述的方法, 其中借助于有针对性地改变所述外延设备中的载体气体的流量来产生所述结构化的表面(3)。
【文档编号】H01L31/0304GK103430329SQ201280011577
【公开日】2013年12月4日 申请日期:2012年2月15日 优先权日:2011年3月3日
【发明者】克里斯蒂安·莱雷尔, 安东·沃格尔, 安德烈亚斯·比贝尔斯多夫, 约阿希姆·赫特功, 泷哲也, 赖纳·布滕戴奇 申请人:欧司朗光电半导体有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1