基于竖直排列半导体纳米线的光电探测器制备方法

文档序号:7011825阅读:414来源:国知局
基于竖直排列半导体纳米线的光电探测器制备方法
【专利摘要】本发明公开了一种基于竖直排列半导体纳米线的光电探测器制备方法,该方法的核心工艺包括:竖直排列纳米线的旋涂包裹支撑、低温热处理、电极的配置等。该方法对于半导体纳米线的尺寸、力学强度等没有特殊要求,因而将不仅仅局限于常规的Si、ZnO等耐冲击材料体系的的纳米线探测器制备,同时适于研发GaAs、InAs等III-V族以及其他材料体系的纳米线器件。另一方面所采用的低折射率旋涂介质以及低温热处理工艺等将有助于大幅提升纳米线器件的光电探测性能,这也是一直以来器件研发中所忽视的问题。该方法可以直接对外延生长的半导体纳米线进行器件制备,因此尤其适用于高灵敏度、大规模阵列型光电探测器的研发。
【专利说明】 基于竖直排列半导体纳米线的光电探测器制备方法
【技术领域】
[0001]本发明涉及半导体低维结构光电探测器的制备方法,具体是指一种竖直排列纳米线光电探测器的制备方法。
【背景技术】
[0002]半导体纳米线因其独特的结构和光电特性,在光电探测和太阳能收集领域的研究获得了广泛的关注,其部分核心性能已经接近甚至超过经典薄膜材料。特别是自组织生长的竖直排列纳米线结构,由于“光学陷阱”等效应而具有极高的光吸收和转换效率,因而是新型高灵敏度、高效光电子器件的天然优异材质。
[0003]而到目前为止,半导体纳米线光电探测器多数摒弃了纳米线天然的竖直排列结构,同时工艺过程中的电子束光刻、刻蚀、高温热处理等不可避免得会带来对纳米线的表面损伤,这些因素直接导致了纳米线光电探测性能的急剧下降。此外,当前国际上针对竖直排列纳米线结构已经开展的光电探测器研发,其工艺条件多是针对S1、ZnO等耐冲击材料体系,因而具有相当的局限性。
[0004]本发明中将通过一些核心工艺:竖直排列纳米线的旋涂包裹支撑、低温热处理、电极的配置等的采用实现对自组织生长纳米线的探测器应用以及纳米线光电性能的实质性提升。

【发明内容】

[0005]当前基于竖直排列纳米线结构的光电探测器存在的不足可以概括为2方面:①对纳米线的包裹支撑等工艺只适用于S1、ZnO等耐冲击材料体系,缺乏普适性;②大量的高温热处理过程中对纳米线的损伤十分显著,从而带来器件性能的急剧下降。本发明针对这些问题,提供了一种普适的、高灵敏的半导体纳米线光电探测器制备方法。
[0006]本方法中首先解决的是自组织生长纳米线的无损包裹支撑。自组织生长纳米线的竖直排列结构是一种天然的、亚微米波长的类周期结构,其对光波的增强耦合、吸收效应一直以来都受到了广泛的关注。为了实现对这种新结构的器件应用,如何提供必要的保护性支撑成为了当前攻关的难题。机械旋涂是半导体器件中常用的一种成膜工艺,在此被灵活得应用于对纳米线的致密包裹和支撑。旋涂介质的选择是关乎包裹成败的关键,其中介质粘稠度的配置又是核心。特别是对于一些力学强度较弱的材料体系,旋涂介质粘稠度的选取窗口更加狭窄。
[0007]实际上包裹不仅仅是对纳米线的力学支撑,同时也是完善竖直排列纳米线的光电耦合结构、钝化纳米线表面进而固化纳米线电学特性的重要途径。其中要着重关注的问题包括2方面:①旋涂介质的烘焙应采用低温热处理过程,目的是避免高温对纳米线,尤其是纳米线表面的损伤。区别于体材料,纳米线的高表面体积比使得表面损伤等对其性能的影响十分显著。②包裹介质层的折射率应远小于纳米线材料,目的是为了实现纳米线与周围介质层的强烈介电常数对比,从而实现电磁场在纳米线中的聚集效应,即“光学陷阱”效应。[0008]本发明其次要解决的是纳米线探测器的电极配置问题。区别于常规光电探测器的上电极采用微区电极的方式,纳米线器件为了实现对光敏元内所有纳米线的闭环导电接触,其上电极必须做到对光敏元的完全覆盖。同时考虑到衬底的重掺杂特性,器件的光引入方式需采用顶端入射的方式,因而要求上电极需为透明电极。此外,为了满足电学测试的需要,额外的金属延伸电极是必须的。
[0009]本发明半导体纳米线光电探测器的具体制备步骤如下:
[0010]I)对竖直排列纳米线进行绝缘旋涂包裹,采用机械旋涂方法来完成,旋涂介质的粘稠度应在300-500mPa之间,固化后旋涂介质的折射率要小于纳米线的折射率;
[0011]2)对旋涂介质的低温烘焙固化,温度小于150°C ;
[0012]3)通过抛光减薄纳米线及其支撑介质,使纳米线顶端裸露出来;
[0013]4)第一次光刻,制备器件顶端透明电极的图形结构;
[0014]5)蒸镀ITO透明电极、浮胶及退火,以作为竖直排列纳米线的顶端接触电极;
[0015]6)第二次光刻,制备延伸电极的图形结构;
[0016]7)蒸镀延伸金属电极、浮胶、退火,作为纳米线的电学测试用电极;
[0017]8)试样基片形成欧姆接触,用来作为公共下电极。
[0018]本发明的优势体现在其工艺方案具有相当的普适性,不仅仅可以用于S1、ZnO等耐冲击材料体系的纳米线器件制备,同时也能满足II1-V族以及其他材料体系纳米线光电探测器的研发要求。一些核心工艺中的细节,也是之前一直被忽视的问题,如包裹介质粘稠度、器件热处理的温度等将有可能成为纳米线光电探测器性能提升、进而逼近其极限的关键。
【专利附图】

【附图说明】
[0019]图1为本发明核心工艺的流程图。其中(a)为自组织生长的纳米线样品示意图,(b)为经过机械旋涂、烘焙、减薄后的样品示意图,(c)为制备ITO电极后的样品结构示意图,Cd)为延伸电极制备后的样品结构不意图。
【具体实施方式】
[0020]下面以GaAs纳米线为实施例,结合附图对本发明的【具体实施方式】作详细说明。
[0021]竖直排列纳米线光电探测器的核心工艺流程如图1所示,包括机械旋涂、烘焙、抛光减薄、光刻、ITO电极制备、金属外延电极制备等。
[0022]首先通过机械旋涂的方法在样品上表面旋涂一层均匀的PMMA聚合物(折射率要低于纳米线材料,厚度略高于纳米线的高度);然后对包裹的样品进行烘焙,使其完全固化;最后通过抛光减薄的方法去除顶端的包裹物,使得纳米线顶端裸露出来,以达到后续电极制备的要求。
[0023]其次如图1 (C)所示意,通过光刻、电极蒸镀、退火等工艺,在裸露出来的纳米线顶端制备ITO透明电极,其目的一方面是为了形成光敏元内所有纳米线的闭环导电接触,另一方面透明电极的使用也为正上方光引入提供了方便。图1 (d)所示为后续金属延伸电极的制备示意图,其目的是为器件电学测试提供方便。
[0024]以上所述的实施例仅为了说明本发明的技术思想及特点,其目的在于使本领域的普通技术人员能够了解本发明的内容并据以实施,本发明的范围不仅局限于上述具体实施例,即凡依本发明所揭示的精神所作的同等变化或修饰,仍涵盖在本发明的保护范围。
【权利要求】
1.一种基于竖直排列半导体纳米线的光电探测器制备方法,其特征在于包括以下步骤: 1)对竖直排列纳米线进行绝缘旋涂包裹。采用机械旋涂的方法,旋涂介质的粘稠度应在300-500mPa之间,固化后介质的折射率小于纳米线的折射率; 2)对旋涂介质的低温烘焙固化,温度小于150°C; 3)通过抛光减薄纳米线及其支撑介质,使纳米线顶端裸露出来; 4)第一次光刻,制备器件顶端透明电极的图形结构; 5)蒸镀ITO透明电极、浮胶及退火,以作为竖直排列纳米线的顶端接触电极; 6)第二次光刻,制备延伸电极的图形结构; 7)蒸镀延伸金属电极、浮胶、退火,作为纳米线的电学测试用电极; . 8 )试样基片形成欧姆接触,用来作为公共下电极。
【文档编号】H01L31/18GK103681962SQ201310591009
【公开日】2014年3月26日 申请日期:2013年11月21日 优先权日:2013年11月21日
【发明者】夏辉, 李天信, 姚碧霂, 卢振宇, 陈平平 申请人:中国科学院上海技术物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1