表面改性的锂化H2V3O8的制作方法与工艺

文档序号:11972187阅读:387来源:国知局
表面改性的锂化H2V3O8的制作方法与工艺
表面改性的锂化H2V3O8发明领域本发明涉及高能量密度锂离子电池领域。它尤其涉及改进的负极材料,特别是表面改性的LixH2-xV3O8负极材料。发明背景在过去几十年,钒氧化物对于锂离子电池中的正电极引起了很大兴趣。其中,V2O5最初由于它的低原子质量、钒(V)的高氧化值和工业规模合成的容易性而被认为非常有希望的负极电活性材料[1]。尽管接近3锂当量可在电池首先放电至2V时插入V2O5晶格中,实际上小于2锂当量被准可逆地嵌入结构中[2]。迄今为止,该事实妨碍该化合物作为大量生产负极的标准的传播。然而,继续研究其它钒氧化物结构如LixV3O8和H2V3O8。这些负极材料是商业锂离子电池的有希望的候选者,但仍要解决长期循环的稳定性问题[3,4]。已显示相对于平均电势接近2.7V的Li/Li+[3,5],至多4锂当量(约400Ah/kg)可嵌入4.2-1.5V的H2V3O8中。这导致高于1kWh/kg的比能量密度,其本身显示出与用于锂离子电池的该化合物有关的大电势。例如,与市售锂离子负极如铁、钴和/或锰氧化物或磷酸盐有关的理论能量密度在0.5kWh/kg的范围内。然而,在该体系中测量的实际容量低于报告的理论值。在先前的共有公开专利申请[6]中,研究了H2V3O8的合成和用氧化石墨烯制备电极。本发明提出通过用氢氧化铝表面装饰而提高循环期间的负极电荷保持力的新路线。与用于锂离子电池的目前大部分负极相反,H2V3O8显示出低热稳定性。已知存在于该化合物(也写为V3O7.H2O)中的结构水在加热至200℃以上时释放[2,7]。普遍接受的是在接近350℃的温度下得到无水材料。该性能限制涂覆H2V3O8表面的可能化合物的选择。例如广泛研究了几种金属氧化物如MgO、Al2O3、SiO2、TiO2、ZnO、SnO2、ZrO2、玻璃和磷酸盐作为锂离子负极的表面涂料。报告了这些涂料防止嵌入化合物与电解溶液直接接触,抑制不理想的相变,改进结构稳定性并降低晶位中阳离子的无序性。因此,可降低循环期间的副反应和热产生[8]。然而,由于涉及溶剂的加工限制和H2V3O8的pH相容性或热稳定性,用于将负极材料表面用提及的金属氧化物涂覆或装饰的常用湿和固态化学方法不适于H2V3O8。因此,本发明的目的是提高H2V3O8化合物作为锂离子电池负极在充放电循环下的锂嵌入的容量保持率。发明概述本发明提供具有改进的循环稳定性的可再充电锂离子电池用负极材料,其通过在含水介质中在低温下进行用Al(OH)3表面改性得到。取决于它的厚度,用Al(OH)3的这一表面改性称为涂层或装饰。在本发明范围内,涂层为覆盖电活性材料颗粒的整个表面的厚层,而装饰为仅形成部分涂层,即不覆盖整个表面的(通常较薄)层。因此,本发明的一个目的是通过应用Al(OH)3的涂层/装饰而制备用于LixH2-xV3O8基可再充电锂离子电池的至少部分稳定化电活性负极材料(EAM)的方法。通常,进行涂覆/装饰步骤,即将可溶性铝来源,优选铝盐水合物加入包含化学锂化H2V3O8的悬浮液中,其后加入碱至7-8的pH。合适的碱同时为布朗斯台德和路易斯碱,即同时能够提高pH并络合路易斯酸Al(III),特别是氨水。该步骤优选在含水介质中在低温,即100℃以下,例如70-90℃,优选约80℃下进行。通常,包含化学锂化H2V3O8的悬浮液如[6]所述由H2V3O8、锂来源和还原剂原位形成并且不经任何分离和/或提纯步骤而使用。在本发明范围内的还有提供具有如[6]所述石墨烯层的Al(OH)3涂覆/装饰的EAM。可再充电锂离子电池通过由负极、隔离物、电解质层和正极组成的组装堆栈形成。合适的正极材料包括例如锂、锂合金、LixC6、硅化物和纳米硅基材料。电解质层优选包含隔板和非质子溶剂或非质子溶剂与溶解锂盐的混合物。合适的隔板(spacer)为填充有电解质的泡沫。电池可由几个堆栈组成并密封在容器中。负极材料基本由改性LixH2-xV3O8和炭黑组成。也可使用粘合剂,但不是必须的。负极通过将集电器用这类负极材料涂覆而形成。LixH2-xV3O8保持H2V3O8结构(Pnam)。在该化合物中,x为0.1-1.5,优选接近1.5。锂化方法有利地在涂覆/装饰反应以前立即进行。使用至少一种Li+来源和还原剂将H2V3O8锂化。这类Li+来源和还原剂优选由还原锂盐,更优选抗坏血酸锂组成或者包含还原锂盐,更优选抗坏血酸锂。Al(OH)3涂层优选在一锅(onepot)多步骤反应中起始于相纯H2V3O8作为原料,其后将原料化学锂化而产生。随后进行用氢氧化铝表面涂覆或装饰。在优选实施方案中,Al(OH)3由铝盐水合物,例如选自Al(NO3)3.9H2O、AlCl3.6H2O或Al2(SO4)3.18H2O,优选AlCl3.6H2O或Al(NO3)3.9H2O的盐产生。氢氧化物通过加入碱而原位产生,所述碱同时为布朗斯台德和路易斯碱,优选氨水(NH3)。通常Al(III):NH3的比为约1:1。所用铝的量应相对于H2V3O8被包括0.5-10重量%,优选1-3重量%,更优选1-2%,最优选约1.5重量%。由于优选进行该反应使得Al(OH)3沉积于EAM且不沉淀于溶液中,所用量基本相当于涂层/装饰的量,且涂层的厚度可通过用于进行反应的铝的量调整。由于涂层/装饰优选在一锅法中进行,假定Al(OH)3涂层/装饰可包含一些杂质如抗坏血酸盐(如果抗坏血酸锂用于锂化)或NH3(如果NH3用作碱)或AlO(OH)。用该负极嵌入材料组装的锂离子电池显示出与未涂覆LixH2-xV3O8相比经200个循环更高的稳定性。例如,在相对于Li/Li+,以100A/kg的速率在4.05-2.2V之间的200个充放电循环以后,Al量相对于H2V3O8为1.5重量%的Al(OH)3涂覆的LixH2-xV3O8显示出与未涂覆LixH2-xV3O8的67%相比89%的容量保持率。不愿受解释该效果的任何尝试限制,假定Al(OH)3涂层或装饰通过提高纤维的结构稳定性和/或通过表面钝化而抑制循环期间的钒溶解。附图简述为更好地理解本发明的公开内容,提出一系列图。图1a:未涂覆H2V3O8纤维的氦离子显微镜照片。图1b:涂有1.5重量%Al的LixH2-xV3O8纤维的氦离子显微镜照片。图1c:涂有3重量%标称Al的LixH2-xV3O8纤维的氦离子显微镜照片。图2a:涂有0.5重量%标称Al的LixH2-xV3O8纤维的高分辨透射电子显微镜(HRTEM)显微照片。图2b:涂有1.5重量%标称Al的LixH2-xV3O8纤维的HRTEM显微照片。图2c:涂有3重量%标称Al的LixH2-xV3O8纤维的HRTEM显微照片。图3a:涂有1.5重量%标称铝试样的LixH2-xV3O8的典型区的HRTEM显微照片。图3b:如果图3a显示加在H2V3O8晶体结构上的无定形背景的话,则显示为HRTEM显微照片的快速傅里叶变换。图3c:如果图3a的话,则显示为HRTEM的AlL2/3边缘上的电子能量损失谱(EELS)。左边的Y轴表示I/10测量信号。右边的Y轴表示扣除背景的测量信号。它清楚地显示在约70eV下消失的AlL2/3边缘。图3d:如果图3a的话,则显示HRTEM的能量色散谱(EDX)。Cu为来自用于透射电镜(TEM)试样制备的Cu格栅的痕量元素。测量1.2原子%铝。图4:涂覆、装饰和未涂覆LixH2-xV3O8纤维的X射线衍射谱(XRD)。检测到的唯一晶体结构为H2V3O8的结构,表明无定形Al(OH)3表面膜。图5:涂覆、装饰和未涂覆LixH2-xV3O8的归一化示差扫描量热谱(DSC)。Al(OH)3表面涂层对H2V3O8纤维脱水温度的影响:脱水温度随着铝量的提高而提高。涂层对LixH2-yV3O8纤维的热稳定具有直接影响。实验条件:加热比:7.5℃min-1;合成空气:50mLmin-1。图6:用如实施例3中所述制备的未涂覆LixH2-xV3O8负极组装的电池相对于Li/Li+,以100A/kg的速率在4.05V与2.2V之间的第20和第200个循环的充放电曲线。图7:用如实施例3中所述制备的涂有1.5重量%Al的LixH2-xV3O8负极Al(OH)3组装的电池相对于Li/Li+,以100A/kg的速率在4.05V与2.2V之间的第20和第200个循环的充放电曲线。图8:由实施例3的涂覆和未涂覆试样在第100个循环时的恒电流充放电曲线计算的微分容量(荷质比(specificcharge))曲线。表面涂层引发的小极化存在于含有1.5和3重量%Al的试样上。图9:显示用如实施例3所述制备的涂有3重量%Al的LixH2-xV3O8负极Al(OH)3组装的电池相对于Li/Li+,以100A/kg的速率在4.05V与2.2V之间的第20和第200个循环的充放电曲线。图10:实施例3的涂有3重量%Al的LixH2-xV3O8纤维Al(OH)3的HRTEM显微照片。在200个充放电循环以后氢氧化铝涂层的成像显示涂层在电化学试验期间保留在表面上。图11:显示作为循环数目的函数,如实施例3所述组装且具有不同Al(OH)3含量的电池的荷质比的演变。发明详述无定形Al(OH)3涂膜在含水介质中在低温下沉积于EAM的表面上是使用Li+来源与还原剂,特别是具有接近抗坏血酸/抗坏血酸盐中一种的氧化还原电势的还原剂将H2V3O8化学锂化期间的附加步骤。目前更优选的锂来源和还原剂为抗坏血酸锂。总方法由多步骤一锅反应组成,其中首先将H2V3O8纤维至少部分,优选部分锂化,然后涂覆/装饰。Al(OH)3薄膜的全表面覆盖可以以更高的铝含量实现,而表面装饰以较低的铝含量得到。对于涂覆/装饰步骤,将可溶性铝来源(铝盐水合物)加入由H2V3O8、锂来源和还原剂原位制备的悬浮液中。然后通过加入稀氨溶液而引发涂覆/装饰反应,并在7-8的pH下进行。然而,注意到来自锂化步骤的残余有机物种或还原的EAM表面的存在显示出与裸温度稳定化EAM相比更高的钒(IV)物种浓度,对Al(OH)3表面覆盖的均匀性,由此对电化学性能具有相当的影响。实施例1H2V3O8的合成相纯H2V3O8纤维可根据共有公开美国专利申请US2012/0100402A1[6]所述方法制备:将3gVOSO4.5H2O溶于50mL去离子水中。然后将2mL25重量%氨(NH4OH)加入先前的悬浮液中。将立即形成的密实沉淀物过滤并收集灰色湿固体产物,放入高压釜的容器中并分散于400mL蒸馏水中。在加入1mL的12MHCl以后,将高压釜密封并将悬浮液在220℃下水热处理48小时。在反应结束时,将绿色至黄绿色固体产物过滤,用水和异丙醇洗涤并在空气中在100℃下干燥整夜。通过该方法得到750mg的H2V3O8。钒收率等于70%。实施例2一锅化学锂化和Al(OH)3表面涂覆使用抗坏血酸锂作为还原和络合剂在含水介质中在环境温度下进行如实施例1所述制备的H2V3O8纤维的化学锂化。首先制备包含抗坏血酸和锂盐,优选LiOH的溶液。将30mg(0.17毫摩尔)抗坏血酸(SigmaAldrichL-抗坏血酸99%)溶于15mLMilliQ水(18.2MΩcm)中,然后加入15mgLiOH.H2O(AlfaAesar一水合物56.5%min.)(0.20毫摩尔min.)。为充分质子交换,搅拌溶液直至pH稳定,通常约30分钟。该前述溶液称为S1。制备包含分散于50mLMilliQ水中的原H2V3O8纤维的第二悬浮液,称为S2。该悬浮液的pH接近4。随后将抗坏血酸锂溶液(S1)加入含有H2V3O8化合物的悬浮液(S2)中。由此由于S1中的过量氢氧化锂而将S2的pH中和。在搅拌几分钟以后,pH从10降至接近7的值。悬浮纤维现在显示出浅蓝色(悬浮液S3),这表明钒氧化态一定程度地从钒(V)还原成钒(IV)。考虑化合物的电荷平衡,这一事实表明Li+并入H2V3O8结构中。该颜色变化—确切地说,不存在其它颜色变化表明锂化反应已完成。向该反应介质(S3)中作为固体加入所需量的水合铝盐,例如AlCl3.6H2O或Al(NO3)3.9H2O。不同涂层/装饰的合成中所用铝的量显示于表1中。表1—用于不同涂料组合物的铝的量当将固体铝盐加入悬浮液S3中时,pH取决于加入的铝盐的量降至4.5-6的值。其后,将该悬浮液加热至80℃并逐滴加入0.1M(铝(III)/NH3)摩尔比等于1的氨溶液。pH提高至7-8的值。在搅拌2小时以后,悬浮液的pH达到6-7的稳定值。然后将悬浮液过滤并用水洗涤一次。最后将过滤的化合物在85℃下干燥,然后在空气中在180℃下热处理1小时。图1a、1b和1c显示未涂覆纤维和用1.5重量%和3重量%铝装饰/涂覆的那些的表面粗糙度。图像使用氦离子显微镜得到。尽管在未涂覆与1.5重量%Al试样之间仅可辨别表面粗糙度的微小变化,在3重量%Al试样中识别纤维表面清晰的均匀覆盖(图1c)。通过HRTEM得到的表面的高倍放大图像显示于图2a、2b和2c中。可以看出0.5重量%和1.5重量%铝化合物的表面是粗糙的,但从HRTEM图像中不能识别在较低含量铝涂层上的清晰涂层。为进一步理解LixH2-xV3O8表面上铝的存在,在LixH2-xV3O8-1.5重量%Al化合物上进行EELS和EDX分析。结果显示于图3c和图3d上。分析在图3a所示区上进行,容许检测EELS光谱中显示铝存在的AlL2,3边缘。该结果由EDX分析证实,其中可测量约1.2重量%Al。在3重量%铝组合物上可以看见LixH2-xV3O8表面被无定形Al(OH)3清晰覆盖。该涂层的形态是均匀的,如通过图1c和图2c中存在的图像所证实。粗糙薄层覆盖表面,其中Al(OH)3膜厚度为3-10nm。在本文中稍后讨论涂层厚度和表面覆盖率对EAM的电化学性能的影响。与所用铝的量无关,涂层没有引发EAM的可识别晶体结构变化。X射线衍射不能检测到其它晶相,尽管3重量%结晶Al相应给出信号。结果显示于图4中。在所有试样中可识别EAM的晶体结构,但铝装饰的透射电子显微镜法不能看见有序结构。这强烈表明铝结构是无定形的。而且图3b所示LixH2-xV3O8-1.5重量%Al化合物的电子衍射图显示加在EAM晶体结构上的强无定形贡献,其在不具有Al涂层下是不存在的。这完全符合XRD数据。为进一步理解试样上的铝分布,低倍扫描电镜(SEM)/EDX容许表征化合物的本体组成。而且在未涂覆和3重量%铝化合物上进行X射线光电子光谱法(XPS)分析。结果汇总于表2中。EDX结果表明涂层反应收率接近40%。XPS证明在3重量%铝化合物上非常高的铝表面浓度。表2.涂覆和未涂覆试样的XPS和SEM-EDX表面和本体元素组成假定指定不完全的表面覆盖,则在较低铝含量涂层上仅检测到铝痕迹。图3d的局部EDX分析支持该假定,其中可测量与本体相比更高的含量。然而,似乎甚至少量铝对热稳定性具有相当的影响。图5显示用H2V3O8、LixH2-xV3O8和Al(OH)3涂覆的LixH2-xV3O8原始化合物得到的归一化差示扫描量热法曲线。在涂覆试样上观察到脱水反应清楚地移向较高温度。该反应可描述为[2,7]:H2V3O8→V3O7+H2O在合成空气下,进行脱水反应的温度对用所用1.5重量%和3重量%铝量涂覆的材料而言提高约50℃,证明表面改性对材料的结构稳定性的影响。氢氧化铝表面覆盖程度和膜厚度可以以非线性方式通过沉积反应中铝的量调整。实施例3涂覆/装饰和未涂覆试样的电化学性能制备电池以电化学表征负极储存材料的稳定性。为制备各电池,首先将20mg涂覆/装饰或未涂覆LixH2-xV3O8化合物超声分散于5mLTHF(AlfaAesar99%)中。然后加入10mg炭黑(来自TIMCAL的)并超声混合几分钟直至得到暗色均匀悬浮液,从而使碳和EAM密切混合。将一半体积的悬浮液转移至研钵中并用研杵温和地搅拌。THF蒸发产生稠糊。然后将含有EAM的该糊转移至铝集电器中,用纸片按压以吸收残余THF,并使其在空气中干燥,然后在空气下在180℃下进行热处理10分钟。接近4mg的EAM通过该方法沉积于集电器上。电池在氩气填充的手套箱(<0.1%H2O和<0.1%O2)中如下组装:建立由含有EAM的铝集电器、聚丙烯Celgard隔离物、填充有LP50电解质(在EC/EMC1:1中的1MLiPF6)的二氧化硅泡沫隔板和金属锂正极组成的垂直堆栈。将该堆栈包含在非常紧的不锈钢电池中。使所述组装的电池经受相对于Li/Li+以100A/kg的电流率在4.05V与2.2V之间的恒电流充放电循环。图6显示作为未涂覆LixH2-xV3O8负极中嵌入的锂的函数,第20和第200个循环电池电压的变化。在第20个循环,对于该化合物,测得240Ah/kg的荷质比。在相对于Li/Li+在4.05V与2.2V之间放电期间,每摩尔EAM嵌入接近2.5摩尔锂原子。记录充放电下H2V3O8的典型电压特征,其中可以看见几个电压平台。放电与充电之间的库伦效率在第20个循环时接近98.7%,并在第200个循环时随着循环数目提高至99.4%。然而,循环数目的提高导致电极性能的下降,且在第200个循环时,保留162Ah/kg的容量。该值表明现在每摩尔EAM仅插入1.7摩尔锂原子,显示出在第20与第200个循环之间67%的容量保持率。而且,荷质比的降低均匀地分布于整个电势范围。有趣的是,2.7V以上的高电势区的容量保持率与相对于Li/Li+在2.7与2.2V之间测量的相同。在两种情况下,在第200个循环时可得到在第20个循环时测量的容量的67%。图7类似于图6,其显示用标称1.5重量%铝装饰的LixH2-xV3O8上记录的电压特征曲线。在第20个循环,对于该化合物,测量到与未涂覆EAM相比更低的荷质比(约203Ah/kg),这意味着约15%更少的锂原子嵌入结构中。然而,与第20个循环相比,在200个循环以后的容量保持率接近89%,这比未涂覆的纤维高得多。与未涂覆化合物的1.7相比,在200个循环以后,LixH2-xV3O8-1.5重量%Al化合物仍可嵌入2摩尔锂原子每摩尔H2V3O8。如图6和图7中所见,几乎没有注意到未涂覆和1.5重量%铝装饰化合物的电压性能的差别。然而,通过分析图8所示计算的微分容量曲线,可以看出涂层引发了小的极化。该极化表现为与未涂覆和装饰化合物相比,移向锂脱嵌反应的较高电势,同时充电,反之放电亦然。涂有标称3重量%铝的LixH2-xV3O8在第20和第200个循环时的充放电电压特征曲线显示于图9中。在该图上注意到电压平台比未涂覆和较低铝含量材料的情况下较差地限定,这可能是由于较厚涂层引发的锂嵌入反应的提高的复杂性。此外,充放电反应中涉及的容量也比未涂覆LixH2-xV3O8上测量的更低。每摩尔H2V3O8仅接近1摩尔锂原子嵌入结构中。然而,在200个循环以后,记录到荷质比提高5%。而且,电压特征曲线变得更好限定,表明在该化合物上的锂渗透在循环下改进,在较高电势区中尤其如此。这些结果显示该厚涂层相当地影响EAM结构中Li嵌入的有效荷质比,但它容许与裸EAM相比在循环下非常高的稳定性。无定形Al(OH)3涂层在电化学应力下的稳定性可从3重量%铝涂覆纤维在循环以前(图2c)与在循环以后(图10)的HRTEM图像对比中看出。这些图片清楚地显示出表面涂层在循环条件下是稳定的。图11显示作为循环数目的函数,用未涂覆和涂覆/装饰化合物组装的电池中容量的变化。LixH2-xV3O8纤维在充放电循环下的稳定性可通过在含水介质中在低温下进行的Al(OH)3表面涂层/装饰提高。氢氧化铝涂层的存在提高了LixH2-xV3O8在循环下的容量保持率。钒溶解和由于长单晶纳米带破裂导致的纤维形态变化报告为循环期间化合物容量损失的最可能机制[2]。本发明中报告的装饰/涂层通过以两种主要的可能方式影响本体化合物而提高循环下的容量保持率。1)提高结构稳定性;2)限制钒溶解。热重分析数据确证了电化学结果,表明用涂层改进了LixH2-xV3O8的结构稳定性。装饰/涂层厚度和表面覆盖率对电极稳定性起重要作用。值得注意的是这些变量还影响电极的锂渗透,其与嵌入/脱嵌反应的动力学有关。Al(OH)3装饰/涂层形态,即表面覆盖率和厚度的微调对确保高循环稳定性,同时保持高锂渗透并限制极化负效应而言是重要的。文献[1]–US5219677。[2]–C.Delmas,H.Cognac-Auradou,J.M.Cocciantelli,M.Ménétrier,J.P.Doumerc,SolidStateIon(固态离子).69(1994)257。[3]–Y.P.Mettan,ETHZürich2011,博士论文(PhDThesis)。[4]–S.Jouanneau,A.Verbaere,S.Lascaud,D.Guyomard,SolidStateIon(固态离子).177(2006)311。[5]–J.Prado-Gonjal,B.Molero-Sánchez,D.EmilioMorán,J.C.Pérez-Flores,A.Kuhn,F.García-Alvarado,J.PowerSources232(2013)173。[6]–US2012/0100402A1。[7]–H.Li,T.Zhai,P.He,Y.Wang,E.Hosono和H.Zhou,J.Mater.Chem.2011,21,1780。[8]–C.Li,H.P.Zhang,L.J.Fu,H.Liu,Y.P.Wu,E.Tahm,R.Holze,H.Q.Wu,Electrochim.Acta51(2006)3872。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1