使用罩盖装配电气构件的方法和适合在该方法中使用的罩盖与流程

文档序号:11891395阅读:426来源:国知局
使用罩盖装配电气构件的方法和适合在该方法中使用的罩盖与流程

本发明还涉及一种用于电组件的罩盖,其中,该组件具有基底和至少一个装配在基底上的构件。罩盖具有支承面,罩盖可以支承面安放在基底上。罩盖另外具有空腔,在该空腔中可容纳构件。构件不仅在其上侧而且在其下侧(构件以其下侧装配在基底上)具有触点。这些触点因此处于不同的接合水平面。

所述接合水平面这样限定,即,电子构件的触点当装配在基底上时和当触点接通时处于不同的平面,其中,用词“平面”在这里是指技术意义而非数学意义。平面或相关的接合水平面限定了待触点接通的构件的特定的电连接部或否则机械连接部所处于的区域。通过叠置构件,接合水平面优选地同样叠置,尤其沿彼此平行的取向叠置。

用于将电子构件装配到基底上的方法是已知的。这些装配方法也得以应用于功率电子应用的电子组件的装配。例如,在DE100 62 108A1中描述了可构建功率模块,其中电子的功率构件可以通过烧结层与基底连接。基底可以是通常应用于功率电子中的DCB-陶瓷基底(DCB表示覆铜陶瓷(Direct Copper Bond))。功率构件的上侧可以用烧结层例如连接在提供热沉的附加热容上。基底可完全一样地用其下侧经由烧结层与另外的热沉连接。

根据DE 10 2007 047 698A1已知,电子组件的烧结连接可借助特殊工具制造。这些工具具有与要烧结的构件接触的压力面,从而在烧结处理期间可施加压力于所述压力面上。通过工具中的公差补偿可以确保,当待烧结的组件具有取决于公差的制造误差时,所施加的压力也可以是均匀的。在烧结处理时,除了形成压力以外,在限定的时间间隔内达到特定的烧结温度也是必要的。还可以设置钎焊连接替代烧结连接。

根据US 2013/0201631A1要注意的是,这样选择对于烧结过程所需的温度,使得该组件中已经装配的接合连接部不会由于刚刚发生的热处理而再次熔融。这如下实现:在相关的连接工艺之前已经实现的构件连接具有这样的连接材料,这些连接材料的工艺温度(软化温度、烧结温度、熔融温度)以足够的安全距离处于刚刚发生的连接工艺的相关工艺温度之上。以该方式,已经形成的接合连接部关于它们的完整性不会因刚刚进行的连接过程而受损。

在完成这些构件在基底上的装配之后通常还必须进行通过适合的触点接通结构使这些构件与基底的触点接通。在此,处于构件上侧的触点与在基底上的相应触点相连接。为此除了根据US 2012/0106109A1通常已知的焊线以外还可应用金属导电结构,这些金属导电结构例如可为引线框架的一部分。以适合方式弯曲的导电结构优选地借助烧结或钎焊与相关的接触面连接。另一可能性在于,这些触点接通结构通过柔性膜(Flexfolien)提供,在所述柔性膜上印制例如导电结构。根据DE 10 2009 016 112A1,这些柔性膜也可借助烧结连接在构件上侧和基底装配侧的相关接触面处连接。

通过在形成功率电子时经转换的电功率,功率电子组件以热和电的方式被强烈负载,因此这些电连接部和其它接合连接部必须具有高的可靠性。恰好的烧结连接特别地适合于该目的,因为其热稳定性以及接合连接部的无缺陷形成能够得以确保。然而,相较于例如钎焊而言,通过烧结连接来装配功率电子组件目前意味着在制造中一定的额外耗费。



技术实现要素:

本发明要解决的技术问题在于,提供一种用于将电气构件装配在基底上的方法,其中该方法被简化并且还允许功率电子构件的装配。另外,技术问题在于提供前述类型的罩盖,该罩盖可在该改善的方法中使用。

根据本发明,该技术问题是用前述方法通过将触点接通结构以导电路径的形式集成在罩盖中解决的。该罩盖由可热软化或可热硬化的材料制成。在装配时,将罩盖首先安放在基底的装配侧上。在此,罩盖跨越构件(或多个构件)。在此,触点接通结构与基底的接触面位于由基底的装配侧提供的第一接合水平面内。基底与这些接触面导电连接。在罩盖内侧上存在触点接通结构的另外的接触面,其中这些另外的接触面在构件上侧的高度上的第二接合水平面内与处于那里的构件的触头形成嵌接。以该方式,触点接通结构实现了在基底上的接触面和在构件上侧上的接触面之间的电连接,其中,桥接这两个接合水平面。

另外,根据本发明规定,罩盖的材料在装配时至少在软化区域中(在罩盖由可热软化的材料构成的情况下)或在硬化区域(在罩盖由可热硬化的材料构成的情况下)被加热。这具有以下优点,即,罩盖的材料在装配过程期间能够塑性变形至一定程度。若在装配时出现公差,则这些公差由此能够可靠地消除。这减少了所需的装配准确性或增大了接合配对体的容许制造公差。因此有利地简化了装配工艺。

软化区域或固化区域的特征为这样的温度范围,在该温度范围中以装配工艺允许的措施进行材料软化或材料固化。在装配期间,即,将罩盖安放在基底上期间,要照顾到在装配工艺中的相应的温度控制,由此产生罩盖的可塑性变形的行为。

构件构件基底构件基底根据本发明的设计方式规定,首先将基底、构件和具有触点接通结构的罩盖在要形成的构造中彼此放置在一起。在此之后才应当在同一工序中通过升高温度或升高温度和压力来完成在至少两个接合水平面内在构件处接合连接部、尤其是电连接部。换言之,根据本发明规定,用于将电子组件装配在基底上的方法应以两个限定的工艺段进行。在第一工艺段中,由基底提供的组件的所有待装配构件彼此放置在一起。在此,这也导致接合连接的形成,然而该接合连接仍未完成。在第二制造阶段中,完成这些接合连接。为此,需要使用适合的接合方法,其中,根据待形成的机械连接的类型,需要升高温度(例如在钎焊时)或升高温度和压力(例如在扩散钎焊或在烧结时)。有利地设成,这些接合连接可在一个工序中形成。为此需要针对在该单个工序中使用的工艺参数来设计所有待形成的接合连接。由此达到特定的温度水平。另外,至少可以额外地施加压力于这些连接部的一部分上。分别选择的连接类型以及可能必要的焊接填充料不一定需要在所有接合连接部中均完全相同。关键的仅仅是,工艺参数对于所有的连接类型和材料都彼此匹配并且以该方式能够在一个工序中同时形成所有的接合连接。

通过同时形成所有的接合连接,有利地尤其也可以装配这样的触点接通结构,它们的特别是电连接部处于不同的接合水平面上。在此可将这些接合水平面桥接,而无需额外的用于形成接合连接部的工序。有利地是如下实现:构件下侧位于由基底装配侧提供的第一接合水平面内,并且,构件上侧位于第二接合水平面内。第一接合水平面由常规地通过基底提供的平面限定。电连接部的组合位于该平面上(该平面对于不平的基底如壳体而言无须强制性地在数学意义上是平的),电气构件的下侧分别以这些电连接部在基底上触点接通。只要构件具有电接触面,构件上侧就限定出第二接合水平面,第二接合水平面通过这些电气构件的空间高度伸展与第一接合水平面隔开。由于这些电气构件的高度不同,可能的是,第二接合水平面不处于一个平面上,其中,所有接触面的总和均在这些构件的各个上侧上限定出该接合水平面。

如果多个电气构件彼此堆叠,则相应地在堆叠体的每个“楼层”中均形成进一步的接合水平面,这些接合水平面对于电连接而言可能必须通过相应的触点结构进行桥接。这些电气构件以这样的布置、即它们的触点可分别对应于不同的接合水平面这样的布置,有利地简化了电组件的装配,在该电组件中这些构件和这些触点结构可以一层一层地预先装配(即,可以彼此放置在一起),以便随后在一个工序中在所有接合水平面中均形成优选的电连接部。

根据本发明的特殊设计方式规定,罩盖的软化或硬化和接合连接部的完成在相同条件下以同一工序实现。在此有利的情形是,软化区域或硬化区域的温度范围与用于完成接合连接的温度范围至少有重叠的部分。在该情况下能够找到用于装配的温度,在该温度下接合连接部的完成和罩盖的硬化或软化能够同时发生。然而,罩盖的硬化或软化和接合连接部的完成也能够在同一工序中相继地进行。

另外,塑性变形的罩盖材料必须对抗足够的阻力,由此有可能在完成接合连接部时能够形成压力,该压力在制造电触头上的烧结连接部或扩散焊接连接部的情况下是必需的。该压力可通过在塑性变形期间同时在罩盖材料中产生一部分弹性变形来形成。接下来一方面针对接合连接的材料配对、另一方面针对罩盖给出满足上述条件的实施例。

烧结连接:

银-烧结膏(例如Heraeus mAgic Paste,Microbond ASP Serie),温度范围200-280℃

扩散焊料连接:

材料体系SnCu、SnAg、SnNi和能够形成高熔点的金属间相的其它材料体系。在此可使用不同的配制物,例如,

-单膏体系(Einpastensystem),其具有分散在由低熔点合金(如SnCu)制成的基体中的高熔点颗粒(如Cu),

-使用依次施涂方法的双膏体系(高熔点Cu,随后是SnCu-合金),或

-将低熔点的焊接填充料(例如SnCu-合金)施涂在高熔点界面(例如Cu)之间的方法,其中,在工艺条件下通过扩散性浓度变化产生高熔点接合区。

可热硬化的罩盖材料:

预浸渍材料(例如,Isola Duraver-E-Cu104ML),最高温度230℃

可热软化的罩盖材料:

这里作为实例的是热塑性材料,如聚乙烯对苯二甲酸酯(PET),改性聚醚醚酮(PEEK)(在升高的接合温度下)、聚酰胺和聚邻苯二酰胺(PPA)。

根据本发明的另一设计方式规定,基底以其背离装配侧的背侧提供接触面,以所述接触面可获得第三接合水平面。在该接合水平面内放置构件。随后,以根据本发明的方式在这样的工序中通过升高温度或升高温度和压力来完成该构件与基底之间的连接,恰恰在该工序中还完成了在第一接合水平面和第二接合水平面(以及可能的其它接合水平面)中在电气构件上的接合连接。由此有利地实现了对装配工艺的进一步简化。在完成这些连接时在一个工序中考虑到越多不同的接合水平面,装配工艺的简化程度就越大,这最终也对其经济性有好处。

装配在基底背侧上的构件也可以例如为冷却体或者散热器,该冷却体在功率电子组件中用于排出热损失。该冷却体也可设计成基体,其中,该冷却体可用于多个电子组件的共同装配。另一可能性在于,基底在两侧上配备有电气构件。在此情况下例如可通过基底上的冷却通道进行冷却。

根据本发明的一个特别设计方式规定,所有接合连接均在同一接合工艺中完成。如已所述,同样可能的是,针对各个接合连接选择不同的接合工艺。然而必须满足以下条件:所选的各个接合工艺能够在预设的工艺条件(温度、压力)下实现。尤其地,在整个待装配的电组件上温度必须相同。压力可以变化,方式是例如使用多个接合工具或设置这样的一个接合工具,其中例如通过具有不同的弹簧刚度的弹簧机构将不同的制造压力施加在待接合的结构的不同部件上。即使对于以同一接合工艺完成所有接合连接的这种情形,这些条件也适用。特别优选地,对于所选的接合工艺(尤其是扩散钎焊或烧结)也可选择同样的焊接填充料,以使针对整个组件的接合工艺而言的制造条件一致。然而也可选择不同的焊接填充料,只要这些焊接填充料能够以上述方式在预设的接合条件下完成就可。

根据本发明的另一设计方式规定,除了接合连接外,用所选的接合工艺还完成了在构件(例如冷却体)与基底(在背侧上)之间的连接。由此,所阐述的优点也能够扩展到构件与基底之间的连接部的接合上,这些连接部能够在一个工序中与基底装配侧上的接合连接部一起完成。当然,当装配在那里的构件是电构件时,基底背侧上的连接部也可以是电连接部。

本发明的另一设计方式规定,使用扩散钎焊或烧结作为接合工艺。这些工艺当需要装配功率电子元器件时是特别适合的,因为所形成的连接部具有低的缺陷密度且拥有高的热稳定性。扩散钎焊具有一个与烧结关联的工艺流程。向待接合的构件之间的区域中引入焊接填充料,其中,该焊接填充料在温度和必要时升高的压力的作用下有助于低熔点和高熔点的合金组分的扩散。通过该局部的浓度变化,在接合区中和在接合区与相邻构件的交界面上导致高熔点的金属间相的生成,这些金属间相具有高的温度稳定性。所形成的连接具有很高的导电性和导热性以及高的机械强度。

另外可有利地规定,在放置于待形成的构造中之前,将焊接填充料引入到基底和/或构件和/或在罩盖中的触点接通结构和/或构件上。如前所述,这些焊接填充料可有利于接合,例如烧结或扩散钎焊。然而,对烧结过程或扩散过程负责的连接组成部分也可以包含在用于待形成的连接的接触面中。对于典型的钎焊,始终需要焊料作为焊接填充料。

本发明的另一设计方式规定,罩盖在外部具有平行于基底延伸的平面。这大大有利于装配工艺的进程,该进程由此被简化。平面能够实现接合工具的简单安放,使用该接合工具可向待装配的组件上施加压力。另外,当加热该工具时,经由该工具还能够引入所需的工艺热。当提供的是尤其在罩盖的整个表面尺寸上延伸的平面时,工艺热在待接合的构件、特别是罩盖上的传递同样得以改善。另一优点在于,接合工具无需在几何结构上与罩盖匹配。接合工具在标准情况下配置有用于施加压力的平面,其中,原则上能够以同一接合工具装配不同应用情形的罩盖,确切地说具有不同尺寸或具有不同的内侧结构的罩盖。

特别优选的情形是,使用预浸料作为可硬化的材料。这些材料可作为半成品获得并以该方式无需大的制造耗费就可制造不同结构的罩盖。由纤维和基体(Matrix)构成的复合材料被认作预浸料,所述基体由尚未完全硬化的、优选热固性的树脂构成。然而,树脂可经部分硬化,以改善预浸料的机械稳定性和加工性能。随后如前所述地在装配罩盖的范围内进行最终硬化。

为了制造罩盖,例如可使用预浸料Isola Duraver-E-Cu。这些预浸料随后可以适合方式剪切并相互层叠,其中形成层状三维结构。触点接通结构同样可由层状材料如金属箔构成,但或者也可由引线框架构成。随后将这些金属结构整合成层状复合材料并通过罩盖材料的硬化嵌在罩盖材料中。

根据本发明的另一设计方式可规定,相变材料(也称为变相材料)可用作可热软化的材料。相变材料应理解为这样的材料,所述材料的潜在熔融热、溶解热或吸收热大于所述材料基于其比热容、即无相变效应的前提下能够存储的热。这些材料关于它们的相变性能这样选择,使得该相变在电子组件的计划运行中至少在特定运行状态下实现。以该方式可以确保,罩盖例如在功率电子构件超载运行时提供冷却储备,方法是:通过加热实现相变材料的相变。在组件后来的运行期间的相变温度在任何情况下均低于罩盖软化的相应温度。该软化尤其也在运行中发生并因此危害该组件的功能。这样的相变材料因此不能单独形成罩盖,而是必须被结合到罩盖的另一材料中。例如,这可以填充有相变材料的垫的形式实现,其中相变材料嵌入到罩盖的其它材料中。然而,相变材料能够在装配期间由于以液相存在而用作公差补偿并且还能够以该状态塑性变形。因此,相变材料的使用可有利于该装配方法,甚至当其性能主要对于该组件的后期运行有重要作用时也是如此。

根据本发明,前述罩盖通过将以导电路径形式集成到罩盖中的触点接通结构得以解决。该罩盖本身由可热软化或热硬化的材料构成。触点接通结构在罩盖内侧上具有接触面,所述接触面用于在基底上且在构件处电连接。在此,触点接通结构在罩盖内侧上延伸,其中,该触点接通结构这样延伸,使得所述接触面布设在不同高度上,这些不同高度在后来的装配时限定出接合水平面。如前所述地,这些接合水平面之一由基底表面提供。另一接合水平面由构件上侧限定,在所述构件上侧处提供用于与触点接通结构接触的接触面。

根据本发明的有利实施方式,罩盖以夹层式结构或三明治结构实现。在此,根据本发明,可热软化或可热硬化的材料和触点接通结构二者均构成了夹层式结构中的层。这些层能够如前所述地由热塑性塑料膜或可热硬化的预浸料构成,而触点接通结构例如可由金属膜或引线框架形成。由此,半成品基本上是二维的并且能够为了制造罩盖以适合方式剪切。通过堆叠各个层形成罩盖的三维结构。

特别优选的情形是,在罩盖中将焊接填充料施加在触点接通结构的接触面上。在此,如前所述地可涉及高温钎焊材料、扩散钎焊材料或烧结材料。在罩盖装配在组件上后,这些焊接填充料则可用于形成接合连接。接合可以上文已述的方式实现。

有利的情形还有,通过罩盖边缘形成支承面。随后将罩盖以其边缘安放在基底上。只要边缘是环绕的,在将罩盖安放在基底上时就会出现封闭的空腔,该空腔有利地确保了防止组件免受污染和其它环境影响。在罩盖边缘上也可另外规定接触面或备有焊接填充料的接触面,因为由此可实现触点接通结构与基底的触点接通。

另外特别优选的情形是,罩盖外侧是平的。这带来了经简化的装配的已述优点,因为接合工具可具有平的和进而简单的几何结构并且还可得以应用于不同的罩盖几何结构(具有平的外侧)。不言而喻地,当罩盖外侧平行于支承面地设计时是有利的,因为基底(如果基底以水平定位来装配)也可通过水平施加接合工具来装配。

作为用于电气构件的材料可考虑硅、碳化硅、砷化镓或氮化镓。这些材料优选地用于功率电子构件。基底可例如由陶瓷制成。所述陶瓷可涂覆有铜、银或金,其中,用于形成电接触面和导电路径的涂层可被结构化。作为焊接填充料,可根据接合工艺使用高温焊料如含锑的合金,或常规的含铅量高的焊料,材料体系Sn-Cu、Sn-Cu-Ni、Sn-Cu-Ag的扩散焊料,和优选地含银的烧结膏(Sinterpasten)或烧结膜。

附图说明

接下来借助附图来说明本发明的其它细节。相同或相对应的标记元素分别设有相同的附图标记并且在各图之间存在差异时才多次阐述。其中:

图1示出根据本发明的罩盖的实施例的横截面示意图,其中,在此也涉及根据本发明的方法的实施例的第一步骤,和

图2和3示出了根据本发明的方法的该实施例的其它工艺步骤,作为侧视图,局部剖视图和

图4以横截面示出完成装配的组件,该组件包括根据本发明的另一实施例的罩盖。

具体实施方式

图1中示出了罩盖11,其根据图3可安放在配有电气构件12的基底13上。罩盖由多个层构成,所述多个层一起产生了夹层式结构。设置由可热硬化的预浸料材料构成的层14,金属层15在层14之间产生触点接通结构16。由此将该触点接通结构集成到罩盖材料中。在该实施例中在触点接通结构16的端部、即提供用于触点接通的接触面处,设置以扩散钎焊形式的焊接填充料。罩盖除内侧18外还具有外侧19,其中外侧19设成平的,从而能够将带有平的压力面的接合工具20a安放在罩盖11的外侧19上(比对图3)。

另外,在罩盖的内侧18上形成支承面21,支承面21在图1所示的剖面图中由焊接填充料17在罩盖的外边缘处提供。在未设有焊接填充料之处,该支承面21还可通过另一层(未示出)预浸料形成。支承面的作用是,使得能够在另一工艺步骤中直接被安放在基底上。由此,罩盖的内部可以对周围密封,以便在罩盖的内部形成空腔22(比对图3和4)。

图2中可见基底13,其具有装配侧23和背侧24。在此涉及未详细示出的DCB-陶瓷基底,其中,铜层未详细示出。在装配侧23上且在背侧24上设置另外的具有焊接填充料17的区域,不同的接合配对件应当随后被装配在这些区域中(比对图3)。装配侧23上未示出的铜层以适合方式结构化,由此可使待装配的构件12以适合方式触点接通。

图3中示出了如何形成待装配的电组件的方式。由此可见,在基底13的装配侧23上在焊接填充料的区域中(比对图2),构件12以其下侧26被安放在基底13的装配侧23上。该构件12具有在其上侧27上未详细示出的电触点。将罩盖11根据图1安放在这样形成的由基底13和构件12构成的组件上,其中,触点接通结构16以它们的端部和焊接填充料(比对图1)实现了平放在构件12的上侧27和基底13的装配侧23上。在此要考虑到,触点接通结构16的端部分别处于不同的高度或水平上,所述不同的高度在图3中标出作为通过基底13的装配侧23而设的第一接合水平面28和作为通过构件12的上侧27而设的第二接合水平面29。第三接合水平面30通过基底13的下侧24提供。这用于固定基板31,基板31设计为散热器或冷却体,并作为构件经由所述焊接填充料(比对图2)与基底13的下侧24热传导地连接。出于冷却的目的,在基板23中例如可设有冷却通道32。这时,根据图3的组件是预装配的。也就是说,各个构件部件(基板31、基底13、构件12、触点接通结构16)在待形成的构造中彼此放置在一起。焊接填充料17的作用在于,使得该构造为了有利于在其它制造工艺中的操作已然具有足够的稳定性。出于该目的,还可以具有未详细示出的接合辅助件。这些接合辅助件例如可以由外部工具如夹子组成。还可将接合辅助件如卡夹连接集成到各个构件中(未示出)。借助这些接合辅助件对该组件的单个构件的固定仅仅是暂时的,直到该组件的最终装配。

根据图3,两个由金属制成的层15在预浸料的下层14内同样经由焊接填充料的模块(比对图1)连接。这具有的优点是,这两个层在接合工艺期间也能够可靠地彼此相连。在这两个层15之间由此也在接合工艺期间制成金属连接部35a,例如烧结连接部。作为替代方案(未示出),触点接通结构16也可以由一件制成。然而,必须随后以适合方式剪切这些由预浸料制成的层14,由此这些层能够分别安置在触点接通结构的垂直延伸的部件之前或之后。因为由预浸料制成的这些层是弹性的,所以在此能够克服某些底切(Hinterschneidungen)。

最终装配同样在图3中表示。该组件被插入到适合的工具中。该工具由从下方且从上方引到完成的组件25上的接合工具20a、20b组成。这些接合工具拥有支承面34,以这些支承面34能够将按压力P施加在待接合的构件上。这些支承面34有利地设计为平的,这是通过基板31和罩盖11均以适合方式提供用于接合工具20a、20b的平的支承面实现的。因此,未详细示出的用于使接合工具处于温度T的加热器可以将热量在整个支承面34上传递到组件25上。接合工具中的热量例如可以通过未示出的电阻式加热器实现。与必要的按压力P一起,将焊接填充料(比对图1)转换成根据图3的接合连接部35、35a,从而以该方式永久性地装配该组件。

在制成接合连接部35、35a的同时,也硬化了由预浸料制成的层14的材料。可以看出,该材料因压力P塑性变形。另外,该材料在此安放在构件12的上侧27上并可在那里形成接合压力。此外在预浸料的层14彼此连接的过程中,缝隙36(比对图1)被封闭。由于塑性变形,在图3中还可看出罩盖11的鼓起的外侧37。在该状态下将预浸料材料硬化,而同时在一个工序中制成接合连接部35。温度T和压力P在接合工艺过程中的变化曲线必须既考虑到预浸料的硬化时间又考虑到接合连接部的形成条件。在此,压力P和温度T无需强制性地保持不变。还可以例如首先达到用于形成要求较低的预浸料的热力条件并且随后使用经硬化的预浸料提供接下来的烧结处理所需的压力P。在此必要时也可以升高温度,因为经硬化的预浸料材料这时在较高的温度下也保持机械稳定。

图4中示出了另一种构造的组件25,事实上在去掉接合工具后。因为外表面19以及基板31的面分别设成平的,所以根据图3的接合工具33也可用于根据图4的电组件25。然而,根据图4的罩盖11的构造不同于根据图1和3的罩盖。它由热塑性塑料材料制成。在罩盖的内侧18中安置以引线框架形式的触点接通结构16。在触点接通结构被预先固定之后,引线框架的多余部件已然分开(未详细示出)。触点接通结构同样设有焊接填充料(类似于图1和2),该焊接填充料在根据图4的组件25中形成接合连接部35。

图4中也可看到,罩盖的外侧37拱起。这归因于在接合工艺期间由于作用力P(比对图3)导致热塑性塑料已开始流动。然而,接合所需的温度这样与罩盖11的热塑性材料的软化温度区域相匹配,使得该流动过程仅缓慢地进行并且就这方面而言保持热塑性材料的足够的机械稳定性,由此能够将接合力P传递到要形成的接合连接部35上。另外,热塑性材料的蠕变必须这样缓慢实现,使得该接合压力能够在整个接合工艺的时间段内得以保持。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1