多层预成型片材的制作方法

文档序号:13448565阅读:196来源:国知局
多层预成型片材的制作方法

本发明涉及多层预成型片材。

首先,对本说明书中使用的用语定义如下。

(1)说到“金属”、“金属粒子”或“金属成分”时,不仅仅指金属元素单质,还包括含有多种金属元素的合金或它们的组合。

(2)纳米是指1μm(1000nm)以下的大小。

(3)金属基质是指填充金属间化合物的间隙的金属或合金。



背景技术:

在长时间地持续高温工作状态、而且伴随从高温工作状态到低温停止状态这种大的温度变动等严酷的环境下使用的设备、例如车载用电力控制元件(功率元件),要求不管温度如何变动都能够长期地维持高的接合强度。可是,以往知道的接合材未必能满足上述的要求。

例如,专利文献1中公开的snagcu系接合材(粉末焊料材料)无法满足上述的要求。

作为提高接合部的耐热性和接合强度的手段,已知有下述方法:增加接合材中所含的高熔点金属的含量或增加所形成的金属间化合物的量。可是,高熔点金属较多时,需要将接合温度设定成高温,这成为损伤基板或部件等的原因。另外,在增加所形成的金属间化合物的量时,本来应该用于与被接合构件的扩散反应的金属却用在了金属间化合物的形成,接合有可能变得不充分。

另外,存在着由接合部的柯肯达尔孔洞(kirkendallvoid)引起的机械强度下降的问题。因金属的相互扩散不均衡所产生的原子空穴(晶格)不消失而集聚起来就会产生柯肯达尔孔洞。例如,在sn与cu的界面的情况下,由于sn的扩散比cu的扩散少,所以空穴集聚在金属间化合物和cu界面处,形成柯肯达尔孔洞。该柯肯达尔孔洞会发展成更大的空洞或裂纹,使接合部或三维造型物的可靠性和品质下降,进而机械强度下降,还有可能产生剥离、断裂、破损等。

在专利文献2中公开了下述方法:在被连接构件上形成ni层,使cu6sn5析出或移动至其上而形成阻隔层,抑制因连接界面反应所引起的化合物层的生长和随之产生的孔洞的形成。

可是,cu6sn5析出或移动至连接界面需要时间,这期间扩散反应也会进行。因此,未必能够抑制柯肯达尔孔洞的形成。

现有技术文献

专利文献

专利文献1:日本特开2007-268569号公报

专利文献2:日本特许第5517694号公报



技术实现要素:

本发明的课题是提供能够形成不易产生柯肯达尔孔洞的高可靠性和高品质的电气配线、导电性接合部等的多层预成型片材。

本发明的另一个课题是提供能够形成耐热性优良的高可靠性和高品质的电气配线、导电性接合部等的多层预成型片材。

为了解决上述课题,本发明的多层预成型片材至少具有第1层和第2层。上述第1层是含有金属间化合物的接合材,上述第2层含有第1金属和第2金属。上述第1金属是熔点为300℃以上的金属或合金,上述第2金属是能够与上述第1金属形成金属间化合物的金属或合金。

在本发明的多层预成型片材中,第1层是含有金属间化合物的接合材。上述接合材通过选择其构成材料,可以在不损伤基板或电子部件等的温度下,将多层预成型片材与被接合构件接合。

使用以往的焊料材料进行接合时,由于被接合构件与焊料材料直接接触,所以在接合界面处会产生柯肯达尔孔洞。

与此相对,上述第1层预先含有金属间化合物。上述金属间化合物通过在被接合构件和接合材之间作为阻隔层存在,由此扩散反应速度被抑制。其结果是,相互扩散的不均衡以及由扩散反应引起的化合物层的极端生长得到抑制,柯肯达尔孔洞的产生也得到抑制。

进而,本发明的多层预成型片材具有第2层。上述第2层含有:作为熔点为300℃以上的金属或合金的第1金属;和作为能够与上述第1金属形成金属间化合物的金属或合金的第2金属。

上述第1金属和上述第2金属通过在接合时形成金属间化合物,由此接合强度变高。另外,上述第1金属由于熔点为300℃以上,所以上述金属间化合物具有耐热性,形成的接合部具有优良的耐热性。当上述第1金属的熔点低于300℃时,不能确保所要求的耐热性。

另外,上述第1层可以是接合材,并含有至少2重量%的cu与sn的金属间化合物。上述第2层含有第1金属和第2金属,上述第1金属可以含有cu,上述第2金属可以含有sn。有关在这种情况下的作用效果,将在实施例中详细说明。

本发明的多层预成型片材的金属成分由选自cu、al、ni、sn、ag、au、pt、pd、si、b、ti、bi、in、sb、ga、zn、fe、ge、mn、cr、co中的金属元素构成。

本发明的多层预成型片材通过具有上述第1层和上述第2层,从而在接合时,能够在不损伤基板或部件等的熔点下接合,能够将凝固后的再熔融温度提高至第2层中所形成的金属间化合物的熔点。因此,能够形成耐热性优良的高可靠性和高品质的接合部、导体部。金属粒子的该特性对于发热量大的电力控制用半导体元件(功率元件)用的导电性接合材是有用的。

另外,在上述第2层中,通过调整第1金属与第2金属的含有比率或接合温度、时间,可以将形成的金属间化合物的间隙用金属基质填充。上述金属基质比上述金属间化合物的韧性高。因此,使用本发明的多层预成型片材而形成的接合部能够兼具由金属间化合物带来的耐热性和由金属基质带来的柔软性。因此,无论是在长时间地持续高温工作状态的情况下,还是在伴随从高温工作状态到低温停止状态这种大的温度变动等严酷环境下使用的情况下,都能长期地维持高的耐热性、接合强度和机械强度。

进而,上述第2层还可以含有金属间化合物。通过从接合前就含有金属间化合物,可以抑制由接合时的加热所引起的第2层内的第1金属与第2金属的扩散反应速度,能够抑制柯肯达尔孔洞的产生。

如上所述,本发明的多层预成型片材是将具有各种组成和结构、作用效果的预成型片材层叠至少2层以上而成的结构。通过采取上述结构,能够解决接合时的基板和部件的损伤、由接合材不足所引起的接合不良等问题。例如,像第1层是有助于与被接合构件接合的预成型片材、第2层是有助于接合部的强度的预成型片材、第3层是有助于散热的预成型片材等这样,能够赋予各种特别的作用效果。其结果是,能够提高多层预成型整体上的功能。

另外,上面论述了作为接合材的有效性,但并不限于此,也可以成为也适合于电气配线和层叠基板的电极等的材料。

如上所述,根据本发明,可以提供能够形成不易产生柯肯达尔孔洞的高可靠性和高品质的电气配线、导电性接合部等的多层预成型片材。

另外,本发明还可以提供能够形成耐热性优良的高可靠性和高品质的电气配线、导电性接合部等的多层预成型片材。

附图说明

图1是示出本发明的多层预成型片材的一个例子的图。

图2是示出本发明的多层预成型片材的接合时的状态的一个例子的图。

图3是示出由本发明的多层预成型片材形成的接合部的一个例子的图。

图4是示出本发明的多层预成型的实施方式的一个例子的图。

图5是示出图3的a部的sem图像的图。

图6是将图5的sem图像放大地示出的图。

图7是示出图3的主要b部的sem图像的图。

图8是示出由本发明的多层预成型片材形成的接合部的剪切强度的图。

图9是示出本发明的多层预成型片材的另一个例子的图。

图10是示出使用了压延法的预成型片材的制造方法的图。

图11是示出使用了压延法的多层预成型片材的制造方法的图。

符号说明

1多层预成型片材

1a预成型片材(单层)

11第1层

12第2层

13第3层

1n第n层

100、500基板

101、501被接合构件

300接合部

4金属粉末

31、32压延辊

具体实施方式

参照图1进行说明。多层预成型片材至少具有第1层11和第2层12。第1层11是含有金属间化合物的接合材。上述金属间化合物在第1层11中更优选以2重量%至50重量%的范围含有,但并不限于此。上述接合材以能在不会损伤基板和部件等的温度下熔融、并能与被接合构件进行扩散接合的金属或合金为主材。

第2层12含有第1金属和第2金属。上述第1金属是熔点为300℃以上的金属或合金,此外还可以含有金属间化合物。上述第2金属是能够与上述第1金属形成金属间化合物的金属或合金,此外还可以含有金属间化合物。在将第1金属和第2金属的总重量设为100重量%时,上述第1金属更优选以1重量%至80重量%的范围含有,但并不限于此。

第1层11与形成于基板100上的被接合构件101扩散接合(参照图2)。

参照图3所示,多层预成型片材1例如将形成于相向配置的基板100、500上的被接合构件101、501接合。接合部300可以通过使用多层预成型片材1而得到。基板100、500例如是构成功率元件等电子电气设备的基板,被接合构件101、501是作为电极、凸部、端子或引线导体等设置于基板100、500上。功率元件等电子电气设备中,被接合构件101、501一般是以cu或其合金来构成,但并不限于此。另外,与基板100、500相当的部分也不排除由金属/合金体构成。

参照图4进行说明。第1层11是含有金属间化合物的接合材,具体地说以sn或sn的合金为主材。上述金属间化合物是由sn和cu形成的cuxsny(主要为cu6sn5),含有大约20重量%。第2层12含有第1金属和第2金属,上述第1金属是cu或cu的合金,上述第2金属是sn或sn的合金。第2层12中的cu含量大约为40重量%。第3层13是结构和构成与第1层11完全相同并含有金属间化合物的接合材,将与被接合构件扩散接合。

图5和图6是示出多层预成型片材1与被接合构件的接合界面附近的结构的一个例子的sem图像。图5是图3的a部的sem图像,图6是将图5放大的图。被接合部101、501是cu或cu合金层。接合部300可以通过使用图4所示的多层预成型片材来得到。接合所需的时间和温度可以在不损伤基板和部件等的温度范围内,根据多层预成型片材和被接合构件的结构和构成来适当设定。本实施方式中,阶段性地升高温度,并在280℃下保持1~20分钟。

接合部300具有在被接合构件101、501的表面上依次层叠层301、层302和层303而成的结构。层301中所含的金属间化合物主要是cu3sn,层302中所含的金属间化合物主要是cu6sn5。

由图5可知,金属间化合物层的极端生长得到抑制,形成了孔洞较少的接合部。这是因为在第1层11的以sn或sn合金为主材的接合材和以cu为主材的被接合构件101、501之间,第1层11中所含的金属间化合物cuxsny作为阻隔层存在,扩散速度被抑制。其结果是,sn的扩散比cu的扩散少这一相互扩散的不均衡被消除,柯肯达尔孔洞的产生被抑制。因此,能够形成机械强度高、不易产生剥离、断裂、破损等的高可靠性和高品质的接合部。

在使用图10所示的制造方法(将在后文描述)制造第1层11的预成型片材的情况下,当使用的金属粉末4全部是具有金属间化合物的金属粒子时,能够获得更优选的结果。在这种情况下,作为阻隔层的金属间化合物均衡地分散于第1层11中,成为阻隔层与被接合构件101、501可靠地直接接触的结构。因此,抑制扩散速度的效果提高。

另外,层301和层302中所含的金属间化合物也可以采取带状结构。参照图6所示,层301和层302中所含的金属间化合物采取带状结构,形成了隔开间隔地排列的条纹状组织或薄层状组织。

假设即使产生了柯肯达尔孔洞,在到达金属间化合物的带状结构的地方,柯肯达尔孔洞的生长也会停止。另外,由于上述带状结构的间隔是纳米级的,所以柯肯达尔孔洞的生长能够被抑制在狭小范围,不会发展成裂纹等重大的缺陷。因此,能够形成机械强度大、不易产生剥离、断裂或破损等的高可靠性和高品质的接合部。

进而,层301和层302可以含有金属基质。本实施方式中的金属基质具体地是指sn、sn合金等混杂在一起而成的合金。该金属基质比金属间化合物的韧性高。因此,层301和层302能够兼具由金属间化合物带来的耐热性和强度以及由金属基质带来的柔软性。因此,无论是在长时间地持续高温工作状态的情况下,还是在伴随从高温工作状态到低温停止状态这种大的温度变动等严酷环境下使用的情况下,都能长期地维持高的耐热性、接合强度和机械强度。

多层预成型片材1还具有第2层12。第2层12含有第1金属和第2金属,上述第1金属是cu或cu的合金,上述第2金属是sn或sn的合金。第2层12在接合时形成金属间化合物cuxsny(典型的有cu3sn和cu6sn5)。由于cu3sn的熔点约为676℃,cu6sn5的熔点约为435℃,所以能够通过接合来提高熔融、凝固后的再熔融温度。

另外,通过调整第1金属与第2金属的含有比率、或接合温度、时间,可以将形成的金属间化合物的间隙用金属基质填充。本实施方式中的金属基质具体地是指sn、sn合金等混杂在一起而成的合金。上述金属基质比上述金属间化合物的韧性高。因此,能够兼具由金属间化合物带来的耐热性和强度以及由金属基质带来的柔软性。因此,无论是在长时间地持续高温工作状态的情况下,还是在伴随从高温工作状态到低温停止状态这种大的温度变动等严酷环境下使用的情况下,都能长期地维持高的耐热性、接合强度和机械强度。

第2层12也可以预先含有金属间化合物。通过接合时的加热,在第2层12中产生第1金属与第2金属的扩散反应。因此,当不含上述的金属间化合物时,有可能因扩散反应而产生柯肯达尔孔洞。与此相对,通过在第2层12中从接合前就预先含有金属间化合物,可看到下述效果:扩散反应速度得到抑制,抑制了柯肯达尔孔洞的产生。

进而,通过将上述第2金属设定成预先在金属粒子中形成和分散了金属间化合物而成的合金,也能够形成高温耐热性和接合强度更高的接合部。上述第2金属可以应用日本特许第4401281号中公开的技术来制造。在日本特许第4401281号中记载了:向粒状化室供给室温的氛围气,皿形盘的转速优选为每分钟30000转以上。本发明中对该技术进行了更详细的查证。供给的氛围气是室温的,但实际上,粒状化室内温度上升至接近80℃了。于是,将粒状化室内温度保持在40℃以下,结果骤冷效果增加,所形成的金属间化合物的结构被发现有变化。另外可知,根据皿形盘的转速的不同,金属间化合物的分散状态会产生差异。将皿形盘的转速设定成每分钟约100000转这样的高速旋转时,骤冷会使形成的金属间化合物集聚于表层,会制造出具有像外壳这样的结构的金属粒子。

将使用由上述方法制造的第2金属形成的接合部示于图7中。图7是图3所示的接合部300的sem图像。图3的b部是相当于图5中的层303的部分。如图7中所示,能看到形成了单独集群的金属间化合物,同时还能看到生长成分枝状(分枝状珊瑚那样的形状)、或树脂状、或岛状、形成了支撑整个接合部的骨架那样的结构(以下称作骨架结构)的金属间化合物。另外可知,金属基质填充了骨架结构的间隙。这样的骨架结构在使用采用一般的制造方法例如雾化法等制造的合金时是观察不到的。

如上所述,通过不仅具有单独集群的金属间化合物,而且还具有采取骨架结构的金属间化合物,接合部300的接合强度变得更高。另外,通过由韧性高的金属基质填充骨架结构的间隙,还能够兼具柔软性。

各预成型片材与相邻的预成型的片材通过扩散接合等而接合。

本发明的多层预成型片材的金属成分可以根据目的和用途来选择。具体地说,由选自cu、al、ni、sn、ag、au、pt、pd、si、b、ti、bi、in、sb、ga、zn、fe、ge、mn、cr、co中的金属元素构成。

将使用本发明的多层预成型片材形成的接合部的剪切强度示于图8中。使用cu的含量不同(8重量%和40重量%)的2种多层预成型片材,测定剪切强度。作为比较例,记载了使用sac305(sn-3.0%ag-0.5%cu)形成的接合部的剪切强度。在使用了sac305的情况下,剪切强度在200℃下已经下降,在225℃下为0,未保持接合状态。

另一方面,使用本发明的多层预成型片材而形成的接合部的剪切强度在200℃下具有充分的强度。当达到225℃时,根据cu含量的不同而有所差异,但仍都保持了强度。如果进一步提高温度,则8重量%的接合部的强度显著下降,而40重量%的接合部保持了充分的强度。即,根据使用环境来选择适合的cu含量,就能够形成以往的接合材难以实现的在高温下也保持了接合强度的接合部。

附带说一下,通过260℃的高温保持试验(hts)得到了下述试验结果:从试验开始时至约100小时,剪切强度从约35mpa上升至约40mpa,在至500小时的时间区域,大致稳定在40mpa。

另外,通过(-40~200℃)的冷热循环试验(tct)得到了下述试验结果:从超过约200次循环至整个循环(1000次循环),剪切强度稳定在约35mpa。

图9是示出本发明的多层预成型片材的另一个例子的图。根据用途和目的,可以将多个即n层的预成型片材(11、12、……1n)层叠。

本发明的预成型片材1a典型地可以通过使用压延处理将金属粉末制成片材的粉末压延法来获得。粉末压延法本身是已知的,本发明中,可以适用这些公知技术。图10和图11中示出了能够适用的典型例。图10中,在朝着相向的方向r1、r2旋转的压延辊31、32之间供给金属粉末4,由压延辊31、32对粉体4施加压力,由此得到预成型片材1a。如图11所示,通过将预成型片材1a层叠后再压延,由此得到多层预成型片材1。各个预成型片材的厚度和多层预成型片材整体的厚度可以根据用途和用途来适当调整。

以上,参照附图详细地说明了本发明,但本发明并不限于它们,显然的是,只要是本领域技术人员,根据其基本的技术构思和教示能够想到各种变形例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1