电子设备及其制造方法与流程

文档序号:12725270阅读:140来源:国知局
电子设备及其制造方法与流程

技术领域

本文所讨论的实施例涉及一种电子设备和一种电子设备制造方法。



背景技术:

已知通过使用接合材料来接合电子部件的端子的电连接电子部件的端子的技术。例如,包含一种或更多种成分的焊料用作接合材料。例如,已知通过使用焊料凸块在诸如印刷版的板上方安装半导体元件或半导体封装的技术。

日本已公开专利公报第2002-239780号

日本已公开专利公报第2007-242783号

由于外部影响或电子部件产生的热或施加于电子部件的热所产生的热应力,在电子部件的端子之间的接合部中可能出现接合故障,例如,裂纹、剥离或断开连接。



技术实现要素:

根据一个方面,提供了一种电子设备,该电子设备包括具有第一端子的第一电子部件,具有与第一端子相对的第二端子的第二电子部件、以及接合部,该接合部将第一端子与第二端子相接合,并且该接合部包含在第一端子与第二端子彼此相对的方向上延伸的第一极状化合物。

附图说明

图1例示了根据第一实施例的电子设备的示例;

图2A、图2B以及图2C例示了根据第一实施例的电子部件接合处理的示例;

图3例示了半导体元件的结构的示例;

图4例示了半导体封装的结构的示例(部分1);

图5例示了半导体封装的结构的示例(部分2);

图6例示了半导体封装的结构的示例(部分3);

图7A和图7B例示了电路板的结构的示例;

图8A、图8B以及图8C例示了根据第二实施例的电子部件接合处理的示例;

图9例示了根据第二实施例的电子设备的结构的第一示例;

图10A和图10B例示了根据第二实施例的电子设备的结构的第二示例;

图11A、图11B和图11C例示了根据第三实施例的电子部件接合处理的示例;

图12例示了根据第三实施例的电子设备的结构的第一示例;

图13A和图13B例示了根据第三实施例的电子设备的结构的第二示例。

图14A、图14B和图14C例示了根据第四实施例的电子部件接合处理的示例;

图15是用于描述根据第四实施例的电子部件接合处理的另一示例的视图(部分1);

图16是用于描述根据第四实施例的电子部件接合处理的另一示例的视图(部分2);

图17是用于描述根据第四实施例的电子部件接合处理的另一示例的视图(部分3);

图18例示制造电子设备的设备的示例。

具体实施方式

首先将描述第一实施例。

图1例示了根据第一实施例的电子设备的示例。图1是根据第一实施例的电子设备的示例的局部示意性剖视图。

图1中例示的电子设备1包括电子部件10、电子部件20、以及将电子部件10与电子部件20接合的接合部30。

电子部件10具有在表面10a上方形成的端子11。在图1的示例中,例示了一个端子11。

电子部件20与电子部件10相对设置。电子部件20具有在与电子部件10的表面10a相对的表面20a上方形成的端子21。在图1的示例中,例示了一个端子21。电子部件20的端子21形成在与电子部件10的端子11对应的位置处。

接合部30形成在电子部件10的端子11与电子部件20的端子21之间并且将端子11与端子21相接合。

半导体元件(半导体芯片)、包括半导体元件的半导体封装、电路板等用作电子部件10和电子部件20中的每一个。后面将描述电子部件10和电子部件20中的每一个的结构的细节。

焊料用于形成将电子部件10与电子部件20接合的接合部30。使用包含锡(Sn)的焊料。例如,使用不包含铅(Pb)的无铅焊料。例如,使用包含Sn和银(Ag)的Sn-Ag焊料来形成接合部30。例如,使用含0.5wt%或更多Ag的Sn-Ag焊料。

在电子设备1中,接合部30包含极状化合物31,其在电子部件10的端子11与电子部件20的端子21彼此相对的方向上(在从端子11侧至端子21侧的方向上或在从端子21侧至端子11侧的方向上)延伸。例如,如果上面的Sn-Ag焊料用于形成接合部30,则接合部30包含极状化合物31(IMC(金属间化合物,InterMetallic Compound)),其是Ag3Sn。

在通过使用形成接合部30的材料(接合材料)来接合电子部件10和电子部件20的处理中形成极状化合物31。

图2A、图2B以及图2C例示了根据第一实施例的电子部件接合处理的示例。图2A、图2B以及图2C均是根据第一实施例的电子部件接合处理的示例的局部示意性剖视图。图2A例示了接合之前的状态的示例。图2B例示了接合时的状态的示例。图2C例示了接合之后的状态的示例。

首先,制备图2A中例示的要接合在一起的电子部件10和电子部件20。接合材料30a预先放置在所制备的电子部件10和电子部件20中的一个的端子上。在图2A的示例中,接合材料30a预先放置在电子部件20的端子21上。接合材料30a用于形成上面的接合部30。例如,焊料用作接合材料30a。对Sn-Ag焊料用作接合材料30a的情况作为示例来给出描述。

例如,按下面的方式来形成图2A中例示的电子部件20的端子21上的接合材料30a。通过在端子21上安装焊料球或通过在端子21上通过电镀来沉积焊料而放置在端子21上的焊料通过加热被熔化并且通过冷却被固化。在图2A的示例中,将接合材料30a形成为具有接近球的形状。然而,接合材料30a的形状不受限制并且接合材料30a可以采用各种形状。

在制备了以上电子部件10和其上放置了接合材料30a的以上电子部件20之后,如图2A中所例示的,电子部件10的端子11与电子部件20的端子21(接合材料30a)对准,以将它们布置成彼此相对。

如图2B中所例示的,然后,电子部件20的端子21上的接合材料30a通过加热被熔化并且连接至电子部件10的端子11。在接合材料30a连接至端子11之后,通过冷却来固化接合材料30a。在这种情况下,接合材料30a在惰性气体例如氮气(N2)的气氛中在炉中被加热。接合材料30a在惰性气体的气氛中在炉中冷却。例如,通过使炉的内部换气(purge)来冷却接合材料30a,或者允许在炉内冷却接合材料30a。

接合材料30a在加热之后进行冷却的处理中,进行调节以例如至少在从接合材料30a的固化的开始至结束的时段期间使得电子部件10和电子部件20中的一个的温度高于另一个的温度。例如,进行调节以使得电子部件20的温度高于电子部件10的温度。可替换地,进行调节以使得电子部件10的温度高于电子部件20的温度。

例如,具有确定热容量的构件布置在电子部件10和电子部件20中的一个上方,以降低其上方布置有该构件的那个电子部件冷却的速率。这使得例如在从接合材料30a的固化的开始至结束的时段期间,一个电子部件的温度高于另一个电子部件的温度。

可以使用另一方法。选择性地加热一个电子部件,以降低这一个电子部件冷却的速率。可替换地,选择性地冷却另一个电子部件,以提高该另一个电子部件冷却的速率。这使得例如在从接合材料30a的固化的开始至结束的时段期间,一个电子部件的温度高于另一个电子部件的温度。

如已描述的那样,例如,接合材料30a在加热之后进行冷却的处理中,在从接合材料30a的固化的开始至结束的时段期间,使得一个电子部件的温度高于另一个电子部件的温度。通过这样做,在固化时间在接合材料30a中产生温度梯度。也就是说,产生了下面的温度梯度。温度高的这一电子部件侧上的接合材料30a的温度高于另一电子部件侧上的接合材料30a的温度。产生这样的温度梯度,使得接合材料30a的固化通常从温度低的这一电子部件侧向温度高的这一电子部件侧进行。

固化以这种方式进行。因此,如图2C中例示的,极状化合物31(其是Ag3Sn)在接合材料30a(其是Sn-Ag焊料)中形成,因此,极状化合物31在固化进行的方向上延伸,也就是说,在电子部件10的端子11与电子部件20的端子21彼此相对的方向上延伸。在图2C的示例中,例示了多个极状化合物31。极状化合物31(其是Ag3Sn)被部分32覆盖,部分32包含接合材料30a中所包含的Sn和Ag。随着固化的进行,包含极状化合物31的接合部30在部分32内形成。结果,如图2C中所例示的,获得了电子部件10和电子部件20通过接合部30接合的电子设备1。

在接合部30中形成了在电子部件10的端子11和电子部件20的端子21彼此相对的方向上以这种方式延伸的极状化合物31。极状化合物31用作金属加固物,使得接合部30对抗外部力或热产生的应力的强度提高。例如,接合部30对抗在与极状化合物31延伸的方向相交的方向上产生的应力的强度提高。

例如,随着所安装的半导体元件的密度增大或者端子之间的间距减小,半导体元件或半导体封装的尺寸增大或者半导体元件或半导体封装与电路板之间的焊料接合部变得微小。结果,更大的外部力或应力会被施加于接合部。如果上面的Sn-Ag焊料用于形成接合部并且不使用在图2A至图2C中描述的以上接合方法,则在接合部中可能形成粗糙的Ag3Sn化合物,或者在接合部中形成的极状Ag3Sn化合物可能在端子表面的方向上延伸。如果,外部力或热产生的应力集中在这样的化合物上,则裂纹、剥离、由于剪切应力导致的剪切剥离往往出现在接合部中,以该化合物的部分作为起点。

如上所述,在电子部件10与电子部件20之间的接合部30中形成在电子部件10的端子11与电子部件20的端子21彼此相对的方向上延伸的极状化合物31。通过这样做,接合部30对抗外部力或热产生的应力的强度提高。接合部30的强度上的这种提高有效地控制了接合部30中由外部力或应力造成的裂纹或剥离或由这种裂纹或剥离造成的断开的出现。

不需要所形成的极状化合物31从电子部件10的端子11到达电子部件20的端子21。即使极状化合物31短并且没有从端子11到达端子21,接合部30中存在极状化合物31仍能引起接合部30的强度上的以上提高并且控制了裂纹或剥离的出现。例如,所形成的以上极状化合物31的长度可以是端子11与端子21之间的距离的一半或更长。

例如,多个极状化合物31形成在电子部件10的端子11与电子部件20的端子21之间并且在端子11与端子21彼此相对的方向上延伸。在这种情况下,该多个极状化合物31不必彼此平行延伸。此外,该多个极状化合物31不必延伸以具有相同的长度。另外,该多个极状化合物31不必从端子11或端子21的表面以在同一水平的位置作为起点来延伸。

此外,接合部30不必包含多个极状化合物31。接合部30中存在至少一个极状化合物31引起接合部30的强度上的以上提高并且控制了裂纹或剥离的出现。

Ag3Sn作为极状化合物31的一个示例。然而,极状化合物31可包含其他包含Ag和Sn的结晶相。即使在那种情况下,包含了极状化合物31,因此实现了接合部30的强度上的以上提高。结果,控制了裂纹或剥离的出现。

此外,Sn-Ag焊料作为接合材料30a的一个示例。然而,其他焊料可以用作接合材料30a。包含Sn和镍(Ni)的Sn-Ni焊料、包含Sn和铜(Cu)的Sn-Cu焊料、包含Sn和金(Au)的Sn-Au焊料、包含Sn和钯(Pd)的Sn-Pd焊料等可用作接合材料30a。即使它们中的一个用作接合材料30a,通过使用在图2A至图2C中描述的以上接合方法能够形成包含极状化合物31的接合部30,并且通过形成极状化合物31能够获得上述相同效果。用作接合材料30a的焊料不限于包含两种元素的焊料。

另外,接合材料30a预先放置在电子部件20的端子21上。然而,接合材料30a可预先放置在电子部件10的端子11上以将电子部件10与电子部件20相接合。

如上所述,半导体元件,包括半导体元件的半导体封装、电路板等用作电子部件10和电子部件20中的每一个。将参考图3至图7A和图7B来描述半导体元件、半导体封装以及电路板的结构的示例。

图3例示了半导体元件的结构的示例。图3是半导体元件的示例的局部示意性剖视图。

图3中例示的半导体元件100包括半导体基板110和在半导体基板110上方形成的布线层120,在半导体基板110中形成了元件,例如,晶体管。

硅(Si)基板、锗(Ge)基板、硅锗(SiGe)基板、砷化镓(GaAs)基板、磷化铟(InP)基板等用作半导体基板110。元件,例如,晶体管、电容器以及电阻器,在半导体基板110中形成。图3例示了MOS(金属氧化物半导体,Metal Oxide Semiconductor)晶体管130作为元件的示例。

在半导体基板110中形成的隔离区域110a划界的元件区域中形成MOS晶体管130。MOS晶体管130包括在半导体基板110上方形成的栅电极132,其中在源极区133和漏极区134之间的栅极绝缘膜131形成在栅电极132的两侧上的半导体基板110中。在栅电极132侧面上形成隔层(侧壁)135,隔层是绝缘膜。

布线层120在半导体基板110上方形成,在半导体基板110中形成了以上MOS晶体管130等。布线层120包括电连接至在半导体基板110中形成的MOS晶体管130等的导体部(布线和通孔)121和覆盖导体部121的绝缘部122。图3例示了电连接至MOS晶体管130的源极区133和漏极区134的导体部121作为示例。各种导电材料,例如Cu和铝(Al),用于形成导体部121。诸如氧化硅的无机绝缘材料或者诸如树脂的无机绝缘材料用于形成绝缘部122。

在布线层120的表面中的导体部121包括用作用于外部连接的端子121a的部分。在半导体元件100接合至另一电子部件时或之前,与上面的接合材料30a(图2A至图2C)对应的焊料的凸块等放置在端子121a上。

图4至图6中的每一个例示了半导体封装的结构的示例。图4至图6中的每一个是半导体封装的示例的局部示意性剖视图。

首先将描述图4中例示的半导体封装200。

图4中例示的半导体封装200包括封装基板(电路板)210、安装在封装基板210上方的半导体元件220、以及密封半导体元件220的密封层230。

印刷版等用作封装基板210。封装基板210包括导体部(布线和通孔)211和覆盖导体部211的绝缘部212。各种导电材料,例如Cu和Al,用于形成导体部211。诸如酚醛树脂、环氧树脂或聚酰亚胺树脂的树脂材料、通过使玻璃纤维或碳纤维浸渍这种树脂产生的复合树脂材料等用于形成绝缘部212。

半导体元件220通过使用晶片附接材料240(例如,树脂或导电糊膏)附接并且固定在以上封装基板210上方并且通过引线250电连接(引线结合)至封装基板210。封装基板210上方的半导体元件220和引线250被密封层230密封。诸如环氧树脂的树脂材料,通过使这样的树脂材料包含绝缘填料产生的材料等用于形成密封层230。

与其上方安装了半导体元件220的表面相对的封装基板210的表面中的导体部211包括用作用于外部连接的端子211a的部分。在半导体封装200接合至另一电子部件时或之前,与上面的接合材料30a(图2A至图2C)对应的焊料的凸块等放置在端子211a上。

在图4的示例中,半导体元件220引线结合(wire-bonded)至封装基板210。然而,半导体元件220可以倒装键合至封装基板210。

此外,多个半导体元件220可安装在封装基板210上方。另外,不仅半导体元件220,而且诸如芯片电容器的其他电子部件可安装在封装基板210上方。

接下来,将描述图5中例示的半导体封装300。

图5中例示的半导体封装300包括封装基板(电路板)310、安装在封装基板310上方的半导体元件320、以及覆盖半导体元件320的覆盖材料330。

印刷版等用作封装基板310。封装基板310包括通过使用Cu、Al、等形成的导体部(布线和通孔)311和覆盖导体部311并且通过使用树脂材料等形成的绝缘部312。

半导体元件320通过在半导体元件320上形成的焊料的凸块等340电连接(倒装键合)至以上的封装基板310。封装基板310与半导体元件320之间的空间填充有底部填充(under-fill)材料341。封装基板310上方的半导体元件320用覆盖材料330来覆盖。导热材料,例如,Cu,用作覆盖材料330。覆盖材料330通过使用热界面材料(TIM,thermal interface material)350附接至半导体元件320并且热连接至半导体元件320。例如,覆盖材料330的端部通过使用粘合剂351附接至封装基板310。

封装基板310的与其上方安装了半导体元件320的表面相对的表面中的导体部311包括用作用于外部连接的端子311a的部分。在半导体封装300接合至另一电子部件时或之前,与上面的接合材料30a(图2A至图2C)对应的焊料的凸块等被放置在端子311a上。

多个半导体元件320可以安装在封装基板310上方。另外,不仅半导体元件320,而且诸如芯片电容器的其他电子部件可安装在封装基板310上方。

接下来,将描述图6中例示的半导体封装400。

图6中例示的半导体封装400包括树脂层410、嵌入树脂层410中的多个(在此示例中,两个)半导体元件420、以及在树脂层410上方形成的布线层(再布线层)430。

每个半导体元件420嵌入在树脂层410中,使得其布置了端子420a的表面将暴露出来。布线层430包括通过使用Cu、Al等形成的导体部(再布线和通孔)431和覆盖导体部431并且通过使用树脂材料等形成的绝缘部432。

在布线层430的表面中的导体部431包括用作用于外部连接的端子431a的部分。每个半导体元件420的端子420a的位置通过在用于外部连接的端子431a的位置处的导体部431来重新放置。在半导体封装400接合至另一电子部件时或之前,与以上接合材料30a(图2A至图2C)对应的焊料的凸块等放置在端子431a上。

一个或三个或更多个半导体元件420可嵌入在树脂层410中。此外,不仅半导体元件420,而且诸如芯片电容器的其他电子部件可嵌入在树脂层410中。

图7A和图7B中的每一个例示了电路板的结构的示例。图7A和图7B中的每一个是电路板的示例的局部示意性剖视图。

在图7A的示例中,包括多个布线层的多层印刷电路板例示为电路板500。电路板500包括通过使用Cu、Al等形成的导体部(布线和通孔)511和覆盖导体部511并且通过使用树脂材料等形成的绝缘部512。这与图4中例示的封装基板210和图5中例示的封装基板310相同。

在电路板500的表面中的导体部511包括用作用于外部连接的端子511a的部分。在电路板500接合至另一电子部件时或之前,与上面的接合材料30a(图2A至图2C)对应的焊料的凸块等放置在端子511a上。

在图7B的示例中,通过使用积层方法形成的积层板例示为电路板600。电路板600包括芯板610、在芯板610上方形成的绝缘层620、其间形成有绝缘层620的导体图案630、以及连接不同的导体图案630的通孔640。陶瓷材料、有机材料等用于形成芯板610。绝缘材料,例如,预浸料坯用于形成绝缘层620。导电材料,例如Cu,用于形成导体图案630和通孔640。

在电路板600的表面中的导体图案630包括用作用于外部连接的端子630a的部分。在电路板600接合至另一电子部件时或之前,与上面的接合材料30a(图2A至图2C)对应的焊料的凸块等放置在端子630a上。

例如,图3中例示的半导体元件100、图4中例示的半导体封装200、图5中例示的半导体封装300、图6中例示的半导体封装400、在图7A中例示的电路板500或在图7B中例示的电路板600可用作在图1和图2A至图2C中例示的电子部件10或电子部件20。

例如,要接合在一起的电子部件10和电子部件20的组合可以是半导体元件与电路板的组合、半导体封装与电路板的组合、或者半导体元件与半导体封装的组合。可替换地,要接合在一起的电子部件10与电子部件20的组合可以是半导体元件的组合、半导体封装的组合、或者电路板的组合。

通过使用在图2A至图2C中描述的用于接合电子部件10和电子部件20的各种组合中的每一个的以上接合方法,在由于接合材料30a的固化而形成的接合部30中形成在端子11和端子21彼此相对的方向上延伸的极状化合物31。因此,接合部30的强度提高。结果,有效控制了接合部30中由外部力或应力造成的裂纹或剥离或者由这种裂纹或剥离造成的断开的出现。

现在将描述第二实施例。

将针对如下情形给出描述:其中,要接合在一起的电子部件中的一个是电路板,其中,另一电子部件是半导体封装,并且其中,它们通过使用作为示例的Sn-Ag焊料接合在一起。

图8A、图8B以及图8C例示了根据第二实施例的电子部件接合处理的示例。图8A、图8B以及图8C中的每一个均是根据第二实施例的电子部件接合处理的示例的局部示意性剖视图。图8A例示了接合之前的状态的示例。图8B例示了接合时的状态的示例。图8C例示了接合之后的状态的示例。

在这种情况下,首先制备图8A中例示的电路板40和半导体封装50,作为要接合在一起的电子部件。

电路板40具有在表面40a上方形成的端子41。端子41包括通过使用Cu等形成的电极层41a和例如在电极层41a上方形成并且具有Ni和Au的层叠结构的Ni-Cu电极层41b。接合材料60b(例如,其是Sn-Ag-Cu焊料)预先放置在电路板40的端子41(电极层41b)上。例如,通过将焊膏施加于端子41或者通过电镀沉积焊料来形成接合材料60b。

半导体封装50与电路板40相对布置并且具有在与电路板40的表面40a相对的表面50a上方形成的端子51。端子51包括通过使用Cu等形成的电极层51a和例如在电极层51a上方形成的Ni-Au电极层51b。接合材料60a(例如,其是Sn-Ag-Cu焊料)预先放置在半导体封装50的端子51(电极层51b)上。通过借助加热熔化通过安装焊料球或通过电镀沉积焊料而放置在端子51上的焊料并且通过冷却固化焊料来形成接合材料60a。

具有确定热容量的构件70A布置在半导体封装50的与其上方形成了端子51的表面相对的表面(上表面)50b上方。如后面描述的,具有这样的热容量的材料用作构件70A,该热容量使得,当通过加热来熔化接合材料60a和接合材料60b并且然后通过冷却固化它们时,其上方布置了构件70A的半导体封装50的温度高于电路板40的温度。为了使构件70A具有确定的热容量,选择材料(特定热)并且设置其平面尺寸和厚度。Cu、Al等的板用作构件70A。

构件70A通过使用粘合剂例如树脂或金属膏(图8A、图8B或图8C中未例示)附接至半导体封装50的上表面50b。将在后面描述构件70A在半导体封装50上方的布置。

如图8A中所例示的,电路板40的其上方形成有接合材料60b的端子41(接合材料60b)与其上方形成有接合材料60a并且其上方布置有构件70A的半导体封装50的端子51(接合材料60a)对准,以将它们布置成彼此相对。

如图8B中例示的,然后,在半导体封装50的端子51上的接合材料60a通过加热被熔化并且连接至在电路板40的端子41上也被熔化的接合材料60b。接合材料60a和接合材料60b以这种方式熔化并连接,并且彼此成一体。通过以这种方式使接合材料60a和接合材料60b彼此成一体而形成的部分(接合部)60c通过冷却固化。

如上所述,具有确定热容量的构件70A布置在半导体封装50上方。接合材料60a和接合材料60b在加热之后进行冷却的处理中,通过构件70A进行调节,使得例如,在从接合材料60a和接合材料60b(接合部60c)的固化开始至结束的时段期间,半导体封装50的温度高于电路板40的温度。

与其上方未布置构件70A的半导体封装50相比,其上方布置了构件70A的半导体封装50的热容量更大。因此,当通过借助于加热熔化接合材料60a和接合材料60b并且通过使它们彼此成一体而形成的接合部60c进行冷却以固化时,其上方布置有构件70A的半导体封装50的冷却速率低于其上方未布置有构件70A的半导体封装50的冷却速率。也就是说,构件70A的布置使得更难以冷却半导体封装50。例如,其上方布置有构件70A的半导体封装50的冷却速率是1℃/分钟,或1℃/分钟以下。

当通过借助于加热熔化接合材料60a和接合材料60b并且通过使它们彼此成一体而形成的接合部60c进行冷却以固化时,不仅半导体封装50,而且电路板40进行冷却。此时,由于构件70A的存在,半导体封装50的冷却速率下降。与其上方未布置构件70A的半导体封装50相比,其上方布置了构件70A的半导体封装50缓慢冷却。同时,电路板40进行冷却。结果,其上方布置了构件70A的半导体封装50的温度会变成高于电路板40的温度。具有确定热容量的构件70A布置成使得例如,在从接合部60c的固化开始至结束的时段期间,以这种方式在其上方布置了构件70A的半导体封装50的温度高于电路板40的温度。

布置以上构件70A,并且使半导体封装50的温度高于电路板40的温度。通过这样做,在固化时在接合部60c中产生了使半导体封装50侧的温度高于电路板40侧的温度的温度梯度。产生了这样的温度梯度,因此,接合部60c的固化通常从处于更低温度的电路板40侧向处于更高温度的半导体封装50侧进行。

固化以这种方式进行。因此,如图8C中所例示的,在接合部60c中形成了极状化合物61(其是Ag3Sn),使得极状化合物将在固化进行方向上延伸,也就是说,在电路板40的端子41与半导体封装50的端子51彼此相对的方向上延伸。在图8C的示例中,例示了多个极状化合物61。然而,化合物61的数量或布置不限于图8C中例示的化合物61的数量或布置。极状化合物61(其是Ag3Sn)被部分62覆盖,部分62包含接合材料60a和接合材料60b中所包含的Sn、Ag和Cu。随着固化的进行,包含极状化合物61的接合部60在部分62内形成。结果,如图8C中所例示的,获得了其中电路板40和半导体封装50通过接合部60接合的电子设备1A。

在端子41的电极层41b和端子51的电极层51b中的每一个中所包括的Ni层具有防止接合部60c或接合部60的焊料成分扩散进通过使用Cu等形成的基础电极层41a或电极层51a的功能。电极层41b或电极层51b中所包括的Ni层可以与接合部60c或接合部60的焊料成分反应,以形成金属间化合物。电极层41b或电极层51b中所包括的Au层具有防止Ni层在接合之前氧化的功能。电极层41b或电极层51b中所包括的Au层可在接合时与接合部60c或接合部60的焊料成分反应,以形成金属间化合物。

如已描述的,通过如图8C中例示的电子设备1A,在电路板40的端子41与半导体封装50的端子51通过其相接合的接合部60中形成在端子41和端子51彼此相对的方向上延伸的极状化合物61。极状化合物61功能如同金属加固物,使得接合部60对抗外部力和热产生的应力的强度提高。例如,接合部60对抗在与极状化合物61延伸的方向相交的方向上所产生的应力的强度提高。通过在接合部60中形成极状化合物61,例如,在重复弯曲试验或温度循环试验中,接合部60的寿命是其中未形成极状化合物61的接合部60的寿命的两倍或更长。

现在将参考图9、图10A以及图10B来描述在半导体封装50上方的具有确定热容量的构件70A的布置。

图9例示了根据第二实施例的电子设备的结构的第一示例。图9是根据第二实施例的电子设备的结构的第一示例的局部示意性剖视图。

如在图9中例示的电子设备1Aa中,通过使用粘合剂80a,将构件70A设置在半导体封装50的上表面50b上方。例如,树脂材料,例如,环氧树脂,用作粘合剂80a。可替换地,例如,金属膏材料,例如,铟银(InAg)合金或金锡(AuSn)合金用作粘合剂80a。

制备半导体封装50,构件70预先通过使用粘合剂80a附接至该半导体封装50。如图8A至图8C中所例示的,所制备的半导体封装50接合至电路板40。结果,如图9中所例示的,获得了电子设备1Aa,其中,通过使用粘合剂80a附接了构件70A的半导体封装50与电路板40经由包含极状化合物61的接合部60来接合。在电子设备1Aa中附接至半导体封装50的构件70A用作例如热辐射构件,用于向外部辐射在使用电子设备1Aa时半导体封装50所产生的热。

图10A和图10B例示了根据第二实施例的电子设备的结构的第二示例。图10A和图10B中的每一个是根据第二实施例的电子设备的结构的第二示例的局部示意性剖视图。

在此示例中,如图10A中所例示的,构件70A通过使用粘合剂80b附接至半导体封装50的上表面50b。紫外线固化树脂用作粘合剂80b。当紫外线固化树脂被紫外线照射时,其固化并且其可脱离性出现(其粘合性减弱)。

紫外线固化树脂用作粘合剂80b并且制备预先附接了(暂时附接)构件70A的半导体封装50。如图8A至图8C中所例示的,所制备的半导体封装50接合至电路板40。结果,如图10A中例示的,获得了其中通过使用粘合剂80b暂时附接了构件70A的半导体封装50与电路板40经由包含极状化合物61的接合部60来接合的结构。

在获得了这种结构之后,用紫外线照射粘合剂80b。结果,粘合剂80b的可脱离性出现,并且暂时附接至半导体封装50的构件70A和粘合剂80b能够从半导体封装50脱离的状态呈现。从半导体封装50上方去除处于这种状态下的构件70A和粘合剂80b,并且获得了图10B中例示的电子设备1Ab。如已描述的,构件70A在电路板40与半导体封装50接合时暂时附接至半导体封装50,并且可在电路板40与半导体封装50接合之后被去除。

在第二实施例中,Sn-Ag焊料用于形成接合材料60a和接合材料60b(接合部60c)和接合部60的情况作为示例。然而,这同样适用于使用Sn-Ni焊料、Sn-Cu焊料、Sn-Au焊料、Sn-Pd焊料等的情况。此外,还可能在半导体封装50上方形成以上接合材料60b,在电路板40上方形成以上接合材料60a,以及将半导体封装50与电路板40接合。

在第二实施例中,将电路板40与半导体封装50接合的情况作为示例来给出描述。然而,使用以上构件70A的技术还适用于将各种电子部件进行接合的情况。

现在将描述第三实施例。

在第三实施例中,将针对如下情况给出描述:其中,要接合的电子部件中的一个是电路板,其中另一个电子部件是半导体封装,并且其中,它们通过使用作为示例的Sn-Ag焊料来接合。这与上面的第二实施例相同。

图11A、图11B和图11C例示了根据第三实施例的电子部件接合处理的示例。图11A、图11B和图11C中的每一个均是根据第三实施例的电子部件接合处理的示例的局部示意性剖视图。图11A例示了接合之前的状态的示例。图11B例示了接合时的状态的示例。图11C例示了接合之后的状态的示例。

根据图11A至图11C中例示的第三实施例的电子部件接合处理不同于根据上面的第二实施例的电子部件接合处理之处在于具有确定热容量的构件70B布置在电路板40上方。

在第三实施例中,如图11A中所例示的,首先,制备了半导体封装50和其上方布置了构件70B的电路板40,作为要接合的电子部件。

电路板40具有在表面40a上方形成的端子41。端子41包括通过使用Cu等形成的电极层41a和通过使用例如Ni和Au形成的电极层41b。接合材料60b(例如,其是Sn-Ag-Cu焊料)预先放置在电路板40的端子41(电极层41b)上。

具有确定热容量的构件70B布置在电路板40的与其上方形成了端子41的表面40a相对的表面(下表面)40b上方。如后面描述的,具有这样的热容量的材料用作构件70B,该热容量使得,当通过加热来熔化接合材料60a和接合材料60b并且然后通过冷却固化它们时,布置了构件70B的电路板40的温度高于半导体封装50的温度。为了使构件70B具有确定的热容量,选择材料(特定热)并且设置其平面尺寸和厚度。Cu、Al等的板用作构件70B。

构件70B直接布置在电路板40的下表面40b上。可替换地,构件70B通过使用粘合剂例如树脂(在图11A、图11B或图11C中未示出)可布置在电路板40的下表面40b下面。将在后面描述在电路板40下面的构件70B的布置。

半导体封装50与电路板40相对布置并且具有在表面50a上方形成的端子51。端子51包括通过使用Cu等形成的电极层51a和通过使用例如Ni和Au形成的电极层51b。接合材料60a(例如,其是Sn-Ag-Cu焊料)预先放置在半导体封装50的端子51(电极层51b)上。

如图11A中所例示,其上方放置有接合材料60b并且其下面布置有构件70B的电路板40的端子41(接合材料60b)与其上方放置有接合材料60a的半导体封装50的端子51(接合材料60a)对准,以将它们布置成彼此相对。

如图11B所例示的,然后,在半导体封装50的端子51上的接合材料60a通过加热被熔化并且连接至在电路板40的端子41上也被熔化的接合材料60b。接合材料60a和接合材料60b以这种方式熔化并连接并且彼此成一体。通过使接合材料60a和接合材料60b彼此成一体形成的接合部60c通过冷却而固化。

如上所述,具有确定热容量的构件70B布置在电路板40下面。接合材料60a和接合材料60b在加热之后进行冷却的处理中,通过构件70B进行调节使得例如在从接合部60c的固化开始至结束的时段期间,电路板40的温度高于半导体封装50的温度。

与其下面未布置构件70B的电路板40相比,其下面布置了构件70B的电路板40的热容量大。因此,当通过熔化接合材料60a和接合材料60b并且通过使它们彼此成一体而形成的接合部60c进行冷却以固化时,其下面布置有构件70B的电路板40的冷却速率低于其下面未布置构件70B的电路板40的冷却速率。也就是说,构件70B的布置使得更难以冷却电路板40。例如,其下面布置有构件70B的电路板40的冷却速率是1℃/分钟或更低。

当接合部60c进行冷却以固化时,不仅电路板40,而且半导体封装50进行冷却。此时,由于构件70B的存在,电路板40的冷却速率下降。与其下面未布置构件70B的电路板40相比,其下面布置有构件70B的电路板40冷却缓慢。同时,半导体封装50进行冷却。结果,其下面布置有构件70B的电路板40的温度会变成高于半导体封装50的温度。具有确定热容量的构件70B布置成例如在从接合部60c的固化开始至结束的时段期间,以这种方式使其下面布置有构件70B的电路板的温度高于半导体封装50的温度。

布置以上构件70B,并且使电路板40的温度高于半导体封装50的温度。通过这样做,在固化时在接合部60c中产生了使电路板40侧的温度高于半导体封装50侧的温度的温度梯度。产生了这样的温度梯度,因此,接合部60c的固化通常从处于更低温度的半导体封装50侧向处于更高温度的电路板40侧进行。

固化以这种方式进行。因此,如图11C所例示的,在接合部60c中形成了极状化合物61(其是Ag3Sn),使得极状化合物在固化进行方向上延伸,也就是说,在电路板40的端子41与半导体封装50的端子51彼此相对的方向上延伸。在图11C的示例中,例示了多个极状化合物61。然而,化合物61的数量或布置不限于图11C中例示的化合物61的数量或布置。极状化合物61(其是Ag3Sn)被部分62覆盖,部分62包含接合材料60a和接合材料60b中所包含的Sn、Ag和Cu。随着固化的进行,包含极状化合物61的接合部60在部分62内形成。结果,如图11C中所例示的,获得了其中电路板40和半导体封装50通过接合部60接合的电子设备1B。

如已经描述的,即使具有确定热容量的构件70B布置在电路板40下面,在电路板40的端子41与半导体封装50的端子51通过其相接合的接合部60中形成在电路板40的端子41和半导体封装50的端子51彼此相对的方向上延伸的极状化合物61。结果,获得了其中接合部60对抗外部力或热所产生的应力的强度提高的电子设备1B。在电子设备1B中,例如,接合部60对抗在与极状化合物61延伸的方向相交的方向上所产生的应力的强度提高。通过在接合部60中形成极状化合物61,例如,在重复弯曲试验或温度循环试验中,接合部60的寿命是其中未形成极状化合物61的接合部60的寿命的两倍或更长。

现在将描述具有确定热容量的构件70B在电路板40下面的布置。

将电路板40放置在构件70B上有可能作为用于将构件70B布置在电路板40下面的方法之一。在这种情况下,电路板40仅仅是放置在构件70B上。不需要例如通过使用粘合剂附接电路板40来将电路板40固定在构件70B上。如图11A至图11C中所例示的,通过利用接合材料60a和接合材料60b,半导体封装50接合至以这种方式放置在构件70B上方的电路板40。从构件70B取走接合之后的结构。结果,获得了其中电路板40与半导体封装50通过接合部60接合的无构件70B的电子设备1B。

此外,构件70B可以通过使用粘合剂布置在电路板40的下面。这样的方法将参考图12、图13A和图13B来描述。

图12例示了根据第三实施例的电子设备的结构的第一示例。图12是根据第三实施例的电子设备的结构的第一示例的局部示意性剖视图。

如果电路板40是单面电路板并且在下表面40b上不具有电路图案或用于外部连接的端子,则构件70B可通过使用如图12中例示的粘合剂80a诸如树脂材料或金属膏材料布置在电路板40的下表面40b的下面。制备通过使用粘合剂80a预先附接了构件70B的电路板40。如图11A至图11C中所例示的,通过使用接合材料60a和接合材料60b来接合所制备的电路板40和半导体封装50。结果,如图12中所例示的,获得了其中半导体封装50与通过使用粘合剂80a附接了构件70B的电路板40经由包含极状化合物61的接合部60接合的电子设备1Ba。电子设备1Ba中附接至电路板40的构件70B用作热辐射构件,用于向外部辐射在使用电子设备1Ba时传导至电路板40的热。

图13A和图13B例示了根据第三实施例的电子设备的结构的第二示例。图13A和图13B中的每一个是根据第三实施例的电子设备的结构的第二示例的局部示意性剖视图。

在此示例中,如图13A中所例示的,粘合剂80b(其是紫外线固化树脂)用于将构件70B附接至电路板40的下表面40b。制备通过使用以上粘合剂80b预先附接(暂时附接)了构件70B的电路板40并且将该电路板40使用接合材料60a和接合材料60b如图11A至图11C中所例示的接合至半导体封装50。结果,如图13A所例示的,获得了其中半导体封装50与通过使用粘合剂80b暂时附接了构件70B的电路板40经由包含极状化合物61的接合部60接合的结构。之后,用紫外线照射粘合剂80b,并且从电路板40的下面去除构件70B和粘合剂80b,并且获得了图13B中例示的电子设备1Bb。如已经描述的,构件70B在电路板40与半导体封装50接合时暂时附接至电路板40,并且可在电路板40与半导体封装50接合之后被去除。

在第三实施例中,Sn-Ag焊料用于形成接合材料60a和接合材料60b(接合部60c)和接合部60的情况作为示例。然而,这同样适用于使用Sn-Ni焊料、Sn-Cu焊料、Sn-Au焊料、Sn-Pd焊料等的情况。此外,还可能在半导体封装50上方形成以上接合材料60b,在电路板40上方形成以上接合材料60a,以及将半导体封装50与电路板40接合。

在第三实施例中,电路板40与半导体封装50接合的情况作为示例来给出描述。然而,使用以上构件70B的技术还适用于将各种电子部件进行接合的情况。

现在将描述第四实施例。

在第四实施例中,将针对如下情况给出描述:其中,要接合的电子部件中的一个是电路板,其中另一个电子部件是半导体封装,并且其中,它们通过使用作为示例的Sn-Ag焊料来接合。这与上面的第二实施例或第三实施例相同。

图14A、图14B和图14C例示了根据第四实施例的电子部件接合处理的示例。图14A、图14B和图14C中的每一个均是根据第四实施例的电子部件接合处理的示例的局部示意性剖视图。图14A例示了接合之前的状态的示例。图14B例示了接合时的状态的示例。图14C例示了接合之后的状态的示例。

在此示例中,如图14A中所例示的,首先制备电路板40和半导体封装50,作为要接合的电子部件。

电路板40具有在表面40a上方形成的端子41。端子41包括通过使用Cu等形成的电极层41a和通过使用例如Ni和Au形成的电极层41b。接合材料60b(例如,其是Sn-Ag-Cu焊料)预先放置在电路板40的端子41(电极层41b)上。

半导体封装50与电路板40相对布置并且具有在表面50a上方形成的端子51。端子51包括通过使用Cu等形成的电极层51a和通过使用例如Ni和Au形成的电极层51b。接合材料60a(例如,其是Sn-Ag-Cu焊料)预先放置在半导体封装50的端子51(电极层51b)上。

如图14A中所例示,电路板40的其上方放置有接合材料60b的端子41(接合材料60b)与半导体封装50的其上方放置有接合材料60a的端子51(接合材料60a)对准,以将它们布置成彼此相对。

如图14B中所例示,然后,在半导体封装50的端子51上的接合材料60a通过加热被熔化并且连接至在电路板40的端子41上也被熔化的接合材料60b。接合材料60a和接合材料60b以这种方式熔化并连接并且彼此成一体。通过使接合材料60a和接合材料60b彼此成一体形成的接合部60c通过冷却来固化。

当接合部60c进行冷却时,电路板40和半导体封装50中的一个选择性地冷却。在这种情况下,例如,选择性地冷却半导体封装50。如图14C中所例示的,例如,通过使用风扇等将空气91选择性地吹送至半导体封装50,以冷却半导体封装50。以这种方式通过吹送空气91至半导体封装50来冷却半导体封装50,以提高其冷却速率。

当接合部60c进行冷却以固化时,电路板40和半导体封装50两者都冷却。此时,空气91选择性地吹送至半导体封装50,以提高半导体封装50的冷却速率。结果,电路板40的温度会变成高于半导体封装50的温度。以这种方式通过吹送空气91至半导体封装50来冷却半导体封装50。通过这样做,进行了调节使得例如在从接合材料60a的固化的开始至结束的时段期间,电路板40的温度高于半导体封装50的温度。

使电路板40的温度高于半导体封装50的温度。通过这样做,在固化时在接合部60c中产生了使电路板40侧的温度高于半导体封装50侧的温度的温度梯度。产生了这样的温度梯度,因此,接合部60c的固化通常从处于更低温度的半导体封装50侧向处于更高温度的电路板40侧进行。

固化以这种方式进行。因此,如图14C所例示的,在接合部60c中形成了极状化合物61(其是Ag3Sn),使得极状化合物在电路板40的端子41与半导体封装50的端子51彼此相对的方向上延伸。在图14C的示例中,例示了多个极状化合物61。然而,化合物61的数量或布置不限于图14C中例示的化合物61的数量或布置。极状化合物61(其是Ag3Sn)被部分62覆盖,部分62包含接合材料60a和接合材料60b中所包含的Sn、Ag和Cu。随着固化的进行,包含极状化合物61的接合部60在部分62内形成。结果,如图14C中所例示的,获得了电路板40和半导体封装50通过接合部60接合的电子设备1C。

如已描述的,通过将空气91选择性地吹送至半导体封装50的方法,在电路板40与半导体封装50之间的接合部60中也形成了在电路板40的端子41和半导体封装50的端子51彼此相对的方向上延伸的极状化合物61。结果,获得了其中接合部60对抗外部力或热产生的应力的强度提高的电子设备1C。在电子设备1C中,例如,接合部60对抗在与极状化合物61延伸的方向相交的方向上所产生的应力的强度改善。

图15至图17中的每一个是用于描述根据第四实施例的电子部件接合处理的另一示例的视图。图15至图17中的每一个是根据第四实施例的电子部件接合处理的另一示例的局部示意性剖视图。

图14C例示了如下情形作为示例,其中,在图14B中例示的接合部60c进行冷却以固化时,将空气91选择性地吹送至半导体封装50,用于冷却半导体封装50,并且使电路板40的温度高于半导体封装50的温度。

另外,为了在图14B中例示的接合部60c冷却以固化时使电路板40的温度高于半导体封装50的温度,可以采用如图15中所例示的通过使用加热器等向电路板40选择性地施加热92的方法。通过施加热92,电路板40被加热并且其冷却速度降低。该方法用于在固化时在接合部60c中产生电路板40侧的温度高于半导体封装50侧的温度的温度梯度。通过这样做,接合部60c的固化通常向电路板40侧进行。结果,形成了以上极状化合物61,其是Ag3Sn。

图14C例示了将空气91选择性地吹送至半导体封装50的情况作为示例。然而,如图16中所例示的,可将空气91选择性地吹送至电路板40,用于使半导体封装50的温度高于电路板40的温度。在这种情况下,如图14A和图14B中所例示的,首先电路板40和半导体封装50彼此相对布置,接合材料60a和接合材料60b被熔化并且连接,并且形成接合部60c。之后,通过冷却固化接合部60c。在冷却时,通过使用风扇等将空气91选择性地吹送至电路板40,以冷却电路板40。以这种方式通过将空气91吹送至电路板40来冷却电路板40,以提高其冷却速度。通过这样做,例如,在从接合材料60a的固化的开始至结束的时段期间,使半导体封装50的温度高于电路板40的温度。该方法用于在固化时在接合部60c中产生半导体封装50侧的温度高于电路板40侧的温度的温度梯度。结果,接合部60c的固化通常向半导体封装50侧进行,并且形成了以上极状化合物61,其是Ag3Sn。

如图17中所例示,为了使半导体封装50侧的温度高于电路板40侧的温度,可以采用通过使用加热器等向半导体封装50选择性地施加热92的方法。通过将热92施加于半导体封装50,半导体封装50被加热并且其冷却速度降低。该方法用于在固化时在接合部60c中产生半导体封装50侧的温度高于电路板40侧的温度的温度梯度。结果,形成了以上极状化合物,其是Ag3Sn。

在第四实施例中,Sn-Ag焊料用于形成接合材料60a和接合材料60b(接合部60c)和接合部60的情况作为示例。然而,这同样适用于使用Sn-Ni焊料、Sn-Cu焊料、Sn-Au焊料、Sn-Pd焊料等的情况。此外,还可能在半导体封装50上方形成以上接合材料60b,在电路板40上方形成以上接合材料60a,以及将半导体封装50与电路板40接合。

在第四实施例中,电路板40与半导体封装50接合的情况作为示例来给出描述。然而,吹送空气91或施加热92的技术还适用于各种电子部件进行接合的情况。

例如,通过使用下列制造设备分别制造根据以上第一实施例至第四实施例的电子设备1、1A(1Aa和1Ab)、1B(1Ba和1Bb)以及1C。现在将对其中要接合的电子部件中的一个是电路板40并且另一个是半导体封装50的情况作为示例给出描述。

图18例示了制造电子设备的设备的示例。

图18中例示的制造设备1000包括布置部1100、加热部1200、以及冷却部1300。

首先,将所制备的电路板40和半导体封装50传送至布置部1100,并且在布置部1100中彼此对准,并且在那里彼此相对布置。所制备的电路板40和半导体封装50例如是电路板40和其上方布置有构件70A的半导体封装50。否则,所制备的电路板40和半导体封装50可以是例如其下面布置有构件70B的电路板40和半导体封装50。否则,所制备的电路板40和半导体封装50可以是例如其下面未布置有构件70B的电路板40和其上方未布置有构件70A的半导体封装50。为了方便,在图18中未例示构件70A或构件70B。

彼此对准的电路板40与半导体封装50被传送至位于布置部1100后面的加热部1200,并且在与分别在电路板40和半导体封装50上方形成的接合材料60b和接合材料60a的类型对应的温度下加热。该加热在惰性气体的气氛中执行。在加热部1200中,在电路板40上方形成的接合材料60b和在半导体封装50上方形成的接合材料60a被熔化并且相连接,并且彼此成一体,以形成接合部60c。在加热部1200中,可以分阶段地升高加热温度。也就是说,可以执行在较低温下的加热(预热)和在较高温下的加热(主加热)。

其之间通过加热形成了接合部60c的电路板40和半导体封装50被传送至位于加热部1200后面的冷却部1300,并且通过冷却固化接合部60c。此冷却在惰性气体的气氛中执行。

冷却部1300包括温度控制器1310,其通过用于冷却电路板40、半导体封装50以及接合部60c的换气(purge)等来控制内部气氛的整个温度。除了以上温度控制器1310,冷却部1300还包括位于电路板40侧的温度控制器1320和位于半导体封装50侧的温度控制器1330。温度控制器1320具有例如空气吹送功能、加热功能、或这两个功能。温度控制器1330具有例如空气吹送功能、加热功能、或这两个功能。

如果所制备的电路板40和半导体封装50是其下面布置有构件70B的电路板40和其上方布置有构件70A的半导体封装50,则温度控制器1310用于执行在上面的第二实施例和第三实施例中描述的接合部60的冷却和形成。在这种情况下,不需要使用温度控制器1320或温度控制器1330。

如果所制备的电路板40和半导体封装50是其下面未布置有构件70B的电路板40和其上方未布置有构件70A的半导体封装50,则使用温度控制器1310以及温度控制器1320或温度控制器1330。也就是说,温度控制器1320或温度控制器1330用于选择性地加热或冷却电路板40和半导体封装50中的一个。结果,执行在上面的第四实施例中所描述的接合部60的冷却和形成。

例如,其结构在图18中例示的制造设备1000用于制造分别根据以上第一实施例至第四实施例的电子设备1、1A(1Aa和1Ab)、1B(1Ba和1Bb)以及1C。

示例如下。

(示例1)

Cu板(构件)布置在其平面尺寸是35mm×35mm的半导体封装的背面上方。Cu板尺寸等于半导体封装的尺寸。然后,其背面上方布置有Cu板的半导体封装与电路板通过使用Sn-3.0Ag-0.5Cu(3.0wt%的Ag和0.5wt%的Cu)焊料球相接合。该接合在基本上是217℃并且不超过245℃的温度下在氮气的气氛(O2浓度为100ppm或更少)中执行2分钟。

在确定了通过以这种方式结合电路板和半导体封装而获得的电子设备的接合部的连续性没有问题之后,估计接合部的可靠性。在从-40℃至125℃的温度循环测试的1000个循环之后,电阻上升率是10%或更少,并且获得了好的结果。此外,在电子设备置于其中温度是121℃并且其中湿度是85%的环境中1000小时之后,电阻上升率是10%或更少,并且获得了好的结果。这与温度循环测试相同。通过使用电子显微镜来观察接合部的部分。结果,确定了在电路板和半导体封装的端子彼此相对的方向上延伸的极状化合物(其是Ag3Sn)在电路板和半导体封装的端子之间形成。

(示例2)

Al板(构件)布置在平面尺寸是35mm×35mm的半导体封装的背面上方。Al板尺寸等于半导体封装的尺寸。然后,其背面上方布置有Al板的半导体封装与电路板通过使用Sn-3.0Ag-0.5Cu(3.0wt%的Ag和0.5wt%的Cu)焊料球相接合。该接合在基本上是217℃并且不超过245℃的温度下在氮气的气氛(O2浓度为100ppm或更少)中执行2分钟。

在确定了通过以这种方式结合电路板和半导体封装而获得的电子设备的接合部的连续性没有问题之后,估计接合部的可靠性。在从-40℃至125℃的温度循环测试的1000个循环之后,电阻上升率是10%或更少,并且获得了好的结果。此外,在电子设备置于其中温度是121℃并且其中湿度是85%的环境中1000小时之后,电阻上升率是10%或更少,并且获得了好的结果。这与温度循环测试相同。通过使用电子显微镜来观察接合部的部分。结果,确定了在电路板和半导体封装的端子彼此相对的方向上延伸的极状化合物(其是Ag3Sn)在电路板和半导体封装的端子之间形成。

(示例3)

Cu板(构件)布置在其平面尺寸是35mm×35mm的半导体封装的背面上方。Cu板尺寸等于半导体封装的尺寸。然后,其背面上方布置有Cu板的半导体封装与电路板通过使用Sn-57Bi-1.0Ag(57wt%的Bi和1.0wt%的Ag)焊料球相接合。该接合在基本上是139℃并且不超过210℃的温度下在氮气的气氛(O2浓度为100ppm或更少)中执行3分钟。

在确定了通过以这种方式结合电路板和半导体封装而获得的电子设备的接合部的连续性没有问题之后,估计接合部的可靠性。在从-40℃至125℃的温度循环测试的1000个循环之后,电阻上升率是10%或更少,并且获得了好的结果。此外,在电子设备置于其中温度是121℃并且其中湿度是85%的环境中1000小时之后,电阻上升率是10%或更少,并且获得了好的结果。这与温度循环测试相同。通过使用电子显微镜来观察接合部的部分。结果,确定了在电路板和半导体封装的端子彼此相对的方向上延伸的极状化合物(其是Ag3Sn)在电路板和半导体封装的端子之间形成。

(示例4)

Cu板(构件)布置在电路板的背面下面。Cu板尺寸等于电路板的尺寸。然后,其背面下面布置有Cu板的电路板与其平面尺寸是35mm×35mm的半导体封装通过使用Sn-57Bi-1.0Ag(57wt%的Bi和1.0wt%的Ag)焊料球相接合。该接合在基本上是139℃并且不超过210℃的温度下在氮气的气氛(O2浓度为100ppm或更少)中执行3分钟。

在确定了通过以这种方式结合电路板和半导体封装而获得的电子设备的接合部的连续性没有问题之后,估计接合部的可靠性。在从-40℃至125℃的温度循环测试的1000个循环之后,电阻上升率是10%或更少,并且获得了好的结果。此外,在电子设备置于其中温度是121℃并且其中湿度是85%的环境中1000小时之后,电阻上升率是10%或更少,并且获得了好的结果。这与温度循环测试相同。通过使用电子显微镜来观察接合部的部分。结果,确定了在电路板和半导体封装的端子彼此相对的方向上延伸的极状化合物(其是Ag3Sn)在电路板和半导体封装的端子之间形成。

(示例5)

电路板与其平面尺寸是35mm×35mm的半导体封装通过使用Sn-57Bi-1.0Ag(57wt%的Bi和1.0wt%的Ag)焊料球相接合。该接合在基本上是139℃并且不超过210℃的温度下在氮气的气氛(O2浓度为100ppm或更少)中执行3分钟。在冷却时,N2选择性地吹在半导体封装上。

在确定了通过以这种方式结合电路板和半导体封装而获得的电子设备的接合部的连续性没有问题之后,估计接合部的可靠性。在从-40℃至125℃的温度循环测试的1000个循环之后,电阻上升率是10%或更少,并且获得了好的结果。此外,在电子设备置于其中温度是121℃并且其中湿度是85%的环境中1000小时之后,电阻上升率是10%或更少,并且获得了好的结果。这与温度循环测试相同。通过使用电子显微镜来观察接合部的部分。结果,确定了在电路板和半导体封装的端子彼此相对的方向上延伸的极状化合物(其是Ag3Sn)在电路板和半导体封装的端子之间形成。

根据所公开的技术,电子部件之间的接合部的强度增大,并且实现了包括具有高可靠性的接合部的电子部件。

附记:

1.一种电子设备,包括:

第一电子部件,所述第一电子部件具有第一端子;

第二电子部件,所述第二电子部件具有与所述第一端子相对的第二端子;以及

接合部,所述接合部将所述第一端子与所述第二端子相接合,并且所述接合部包含在所述第一端子和所述第二端子彼此相对的方向上延伸的第一极状化合物。

2.根据附记1所述的电子设备,其中,所述接合部包括覆盖所述第一化合物的部分,所述部分包含第一元素和不同于第一元素的第二元素,所述第一化合物是包含所述第一元素和所述第二元素的金属间化合物。

3.根据附记1所述的电子设备,其中,所述接合部包含第一化合物和第二极状化合物,所述第二极状化合物在所述第一端子与所述第二端子彼此相对的方向上延伸。

4.根据附记3所述的电子设备,其中,所述接合部包括覆盖所述第一化合物和所述第二化合物的部分,所述部分包含第一元素和不同于所述第一元素的第二元素,所述第一化合物和所述第二化合物中的每一个是包含所述第一元素和所述第二元素的金属间化合物。

5.根据附记1至4中任意一项所述的电子设备,还包括第一构件,所述第一构件布置在所述第一电子部件上方并且具有第一热容量。

6.根据附记5所述的电子设备,其中,所述第一构件与所述第二电子部件分开。

7.根据附记5所述的电子设备,其中,其上方布置了所述第一构件的所述第一电子部件的热容量大于所述第二电子部件的热容量。

8.一种电子设备制造方法,包括:

制备具有第一端子的第一电子部件;

制备具有第二端子的第二电子部件;以及

使所述第一端子与所述第二端子彼此相对并且通过使用接合材料将所述第一端子与所述第二端子接合,

所述通过使用接合材料将所述第一端子与所述第二端子接合包括:

加热并且熔化所述接合材料;以及

在使所述第一电子部件的温度高于所述第二电子部件的温度的状态中冷却并且固化所述接合材料。

9.根据附记8所述的电子设备制造方法,还包括:在制备了具有所述第一端子的所述第一电子部件之后,在所述第一电子部件上方布置具有第一热容量的第一构件,其中,所述通过使用接合材料将所述第一端子与所述第二端子接合包括:将其上方布置了所述第一构件的所述第一电子部件的第一端子与所述第二电子部件的第二端子接合。

10.根据附记9所述的电子设备制造方法,还包括:在通过使用接合材料将所述第一端子与所述第二端子接合之后去除所述第一构件。

11.根据附记10所述的电子设备制造方法,其中,

所述在所述第一电子部件上方布置所述第一构件包括:通过使用粘合剂将所述第一构件附接至所述第一电子部件;以及

所述去除所述第一构件包括:减弱所述粘合剂的附接力并且从所述第一电子部件去除所述第一构件。

12.根据附记8所述的电子设备制造方法,其中,所述冷却并且固化所述接合材料包括:选择性地冷却所述第一电子部件和所述第二电子部件中的所述第二电子部件,从而使所述第一电子部件的温度高于所述第二电子部件的温度。

13.根据附记8所述的电子设备制造方法,其中,所述冷却并且固化所述接合材料包括:选择性地加热所述第一电子部件和所述第二电子部件中的所述第一电子部件,从而使所述第一电子部件的温度高于所述第二电子部件的温度。

14.一种用于制造电子设备的设备,所述设备包括:

布置部,在所述布置部中,布置具有第一端子的第一电子部件和具有第二端子的第二电子部件,所述第一端子与所述第二端子彼此相对,接合材料在所述第一端子与所述第二端子之间;

加热部,所述加热部位于所述布置部的后面,在所述加热部中,所述第一端子与所述第二端子之间的接合材料通过加热熔化,并且所述第一端子与所述第二端子通过熔化的接合材料连接;以及

冷却部,所述冷却部位于所述加热部的后面,在所述冷却部中,在所述第一端子与所述第二端子之间熔化的接合材料通过冷却来固化,其中,所述冷却部包括:

第一温度控制器,所述第一温度控制器控制所述冷却部中的气氛的温度;以及

第二温度控制器,所述第二温度控制器能够选择性地控制所述第一电子部件和所述第二电子部件中的一个的温度。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1