发光二极管的制作方法

文档序号:11516603阅读:225来源:国知局
发光二极管的制造方法与工艺

本发明涉及一种发光二极管,更具体地讲,涉及一种包括在单个基底上通过互连件彼此连接的多个发光单元的发光二极管。



背景技术:

氮化镓(gan)基发光二极管(led)已经用在包括全彩色led显示器、led交通信号灯板、白色led等的广泛的应用产品中。近年来,具有比现有荧光灯的发光效率更高的发光效率的白色发光二极管在普通照明领域有望超越现有荧光灯。

发光二极管可以在大约2v至大约4v的低正向电压下并且需要供应直流电流的情况下被驱动以发射光。因此,当发光二极管直接连接到交流(ac)电源时,发光二极管根据电流的方向而重复开/关操作,所以不能持续地发射光,并且可能易于被反向电流损坏。

为了解决发光二极管的这样的问题,sakai等人的wo2004/023568(a1)(名称为“light-emittingdevicehavinglight-emittingelements”)公开了一种可以通过直接连接到高压ac电源而被使用的发光二极管。

wo2004/023568(a1)的ac发光二极管包括通过空气桥互连件彼此连接以被ac电源驱动的多个发光元件。这样的空气桥互连件会容易被外力损坏并且会因外力变形而引起短路。

为了解决空气桥互连件的这样的缺点,例如,在韩国专利第10-069023号和第10-1186684号中公开了ac发光二极管。

图1是包括多个发光单元的典型的发光二极管的示意性平面图,图2和图3是沿着图1的线a-a截取的剖视图。

参照图1和图2,发光二极管包括基底21、包括s1、s2的多个发光单元26、透明电极层31、绝缘层33和互连件35。另外,发光单元26中的每个包括下半导体层25、活性层27和上半导体层29,并且缓冲层23可以设置在基底21和发光单元26之间。

发光单元26通过使生长在基底21上的下半导体层25、活性层27和上半导体层29图案化来形成,透明电极层31形成在发光单元s1、s2中的每个上。在每个发光单元26中,下半导体层25的上表面通过部分地去除活性层27和上半导体层29而被部分地暴露,以连接到互连件35。

接着,绝缘层33形成为覆盖发光单元26。绝缘层33包括覆盖发光单元26的侧表面的侧绝缘层33a和覆盖透明电极层31的绝缘保护层33b。绝缘层33形成有通过其暴露透明电极层31的一部分的开口和通过其暴露下半导体层25的开口。然后,互连件35形成在绝缘层33上,其中,互连件35的第一互连部分35p通过绝缘层33的开口连接到一个发光单元s1的透明电极层31,互连件35的第二互连部分35n通过绝缘层33的另一开口连接到与所述一个发光单元s1相邻的另一发光单元s2的下半导体层25。第二互连部分35n连接到下半导体层25的通过部分地去除活性层27和上半导体层29而暴露的上表面。

在传统技术中,互连件35形成在绝缘层33上,因此可以防止由于外力引起变形。另外,由于互连件35通过侧绝缘层33a与发光单元26分开,所以能够防止因互连件35导致发光单元26短路。

然而,在发光单元26的区域中的电流扩散方面,这样的传统发光二极管可能具有局限性。具体地讲,电流可能聚集在互连件35的连接到透明电极层31的一端下面,而并非均匀地在发光单元26的区域中扩散。电流拥挤可能随着电流密度增大而变得严重。

另外,透明电极层31限制性地放置在上半导体层29的区域中。结果,透明电极层31具有相对窄的面积并增加了发光二极管的电阻,从而引起发光二极管的正向电压(vf)增加。随着发光单元26的数量增加,透明电极层31的电阻变得相当大。

另一方面,为了防止电流拥挤,电流阻挡层30可以设置在透明电极层31和发光单元26之间以防止在互连件35的第一互连部分35p下面的电流拥挤。

图3是在现有技术中包括电流阻挡层30的发光二极管的剖视图。

参照图1和图3,电流阻挡层30放置在互连件35的第一互连部分35p的下面。电流阻挡层30阻挡电流从第一互连部分35p流动到位于第一互连部分35p正下方的上半导体层29。因此,电流阻挡层30可以防止在互连件35的第一互连部分35p下面的电流拥挤。另外,电流阻挡层30可以形成为诸如分布式布拉格反射器(distributedbraggreflector)的反射器以防止活性层27中产生的光被吸收到互连件35的第一互连部分35p中。

然而,当发光二极管还包括电流阻挡层30时,如在图3中所示,则需要通过光刻和蚀刻来形成电流阻挡层30的额外的工艺,从而难以确保工艺稳定性,同时提高了制造成本。具体地讲,当电流阻挡层30暴露在透明电极层31外部时,电流阻挡层30可能在后续工艺中由于boe等而被损坏。因此,在现有技术中,为了防止在后续工艺中对电流阻挡层30造成损坏,电流阻挡层30被透明电极层31覆盖,如在图3中所示。

此外,由于透明电极层31限制性地放置在上半导体层29的区域中,所以难以在整个上半导体层29上实现均匀的电流扩散,并且发光二极管由于透明电极层31的小面积而仍然具有电阻过大的问题。



技术实现要素:

本发明的一个目的在于提供一种发光二极管。

本发明的另一目的在于提供一种能够解决上述技术问题中的至少一个的发光二极管。

本发明提供了一种发光二极管,所述发光二极管包括:多个发光单元;以及互连件,使发光单元彼此连接,其中,互连件中的至少一个可以包括共同电连接到两个发光单元的共阴极;每个发光单元可以包括第一导电型半导体层、第二导电型半导体层以及设置在第一导电型半导体层和第二导电型半导体层之间的活性层;所述两个发光单元可以共用第一导电型半导体层;其中,透明电极层可以连续地设置在所述两个发光单元之间,并且共阴极可以通过透明电极层电连接到所述两个发光单元。

本发明还提供了一种发光二极管,所述发光二极管包括:第一发光单元和第二发光单元,在基底上彼此分开;第一透明电极层,电连接到第一发光单元;互连件,使第一发光单元电连接到第二发光单元;以及第一绝缘层,其中,第一透明电极层可以设置在第一发光单元的上表面上以连接到第一发光单元,同时至少部分地覆盖第一发光单元的侧表面,第一绝缘层可以使第一透明电极层与第一发光单元的侧表面分开。

附图说明

包括附图以提供对本发明的进一步理解,附图并入到本说明书中,并构成本说明书的一部分,附图示出了本发明的实施例,并且与描述一起用于解释本发明的原理。

图1是在现有技术中的发光二极管的示意性平面图。

图2是沿着图1的a-a线截取的剖视图。

图3是在现有技术中包括电流阻挡层30的发光二极管的剖视图。

图4是根据本发明的示例性实施例的发光二极管的示意性平面图,图5是沿着图4的b-b线截取的示意性剖视图。

图6至图10是示出制造根据图4的示例性实施例的发光二极管的方法的示意性剖视图。

图11是根据本发明的另一示例性实施例的发光二极管的示意性平面图,图12是沿着图11的线b-b截取的剖视图。

图13是根据本发明的示例性实施例的发光二极管的示意性平面图。

图14中的(a)和(b)分别是沿着图13的线a-a和线b-b截取的剖视图。

图15是图13的发光二极管的示意性电路图。

图16是示出根据本发明的又一实施例的发光二极管的示意性电路图。

具体实施方式

在下文中参照附图更充分地描述本发明,在附图中示出了本发明的实施例。然而,本发明可以以许多不同的形式来实施,并且不应该被解释为局限于在此阐述的实施例。而是,提供这些实施例使得本公开是彻底的,并将把本发明的范围充分地传达给本领域的技术人员。在附图中,为了清楚起见,可能夸大了层和区域的尺寸和相对尺寸。同样的附图标记在附图中指示同样的元件。

将理解的是,当元件或层被称作“在”另一元件或层“上”或“连接到”另一元件或层时,该元件或层可以直接在所述另一元件或层上或直接连接到所述另一元件或层,或者可以存在中间元件或中间层。相反,当元件被称作“直接在”另一元件或层“上”或“直接连接到”另一元件或层时,不存在中间元件或中间层。将理解的是,出于本公开的目的,“x、y和z中的至少一个(种)”可以被解释为只有x、只有y、只有z或x、y和z中的两项或更多个项的任意组合(例如,xyz、xyy、yz、zz)。

为了便于描述,在这里可使用空间相对术语,如“在……之下”、“在……下方”、“下面的”、“在……上方”和“上面的”等来描述如在图中示出的一个元件或特征与另一元件或特征的关系。将理解的是,空间相对术语意在包含除了在图中描述的方位之外的装置在使用或操作中的不同方位。例如,如果在图中的装置被翻转,则描述为“在”其它元件或特征“下方”或“之下”的元件将被定位为“在”其它元件或特征“上方”。因此,示例性术语“在…下方”可包括“在…上方”和“在…下方”两种方位。所述装置可以被另外定位(旋转90度或者在其它方位),并相应地解释这里使用的空间相对描述语。

图4是根据本发明的示例性实施例的发光二极管的示意性平面图,图5是沿着图4的b-b线截取的示意性剖视图。

参照图4和图5,发光二极管包括基底151、发光单元s1、发光单元s2、第一绝缘层160a、第二绝缘层160b、透明电极层161和互连件165。发光二极管还可以包括缓冲层153。

基底151可以是绝缘基底或导电基底。例如,基底151可以是蓝宝石基底、氮化镓基底、碳化硅(sic)基底或硅基底。另外,基底151可以是在其上表面上具有凹凸图案(未示出)的基底,例如,图案化的蓝宝石基底。

在单个基底151上,第一发光单元s1和第二发光单元s2彼此分开。第一发光单元s1和第二发光单元s2可以由氮化镓半导体构成。第一发光单元s1和第二发光单元s2中的每个具有堆叠结构156,堆叠结构156包括下半导体层155、设置在下半导体层155的一个区域上的上半导体层159以及设置在下半导体层155和上半导体层159之间的活性层157。这里,下半导体层155和上半导体层159可以分别是p型半导体层和n型半导体层,反之亦可。

下半导体层155、活性层157和上半导体层159中的每个可以由氮化镓基材料(例如,(al,in,ga)n)形成。活性层157可以由具有能够发射期望波长范围内的光(例如,uv光或蓝光)的组成的材料形成,下半导体层155和上半导体层159由具有比活性层157的带隙更宽的带隙的材料形成。

如图所示,下半导体层155和/或上半导体层159可以由单层或多层形成。另外,活性层157可以具有单量子阱结构或多量子阱结构。

第一发光单元s1和第二发光单元s2中的每个可以具有倾斜的侧表面,其相对于基底151的上表面的倾角范围为15°至80°。

如在图5中所示,活性层157和上半导体层159可以放置在下半导体层155的一些区域上,下半导体层155的其它区域可以被暴露。可选择地,下半导体层155的上表面可以被活性层157完全覆盖,从而下半导体层155的侧表面被暴露。

在图5中,部分地示出了第一发光单元s1和第二发光单元s2。然而,应该注意的是,第一发光单元s1和第二发光单元s2可以具有相似或相同的结构,如在图4中所示。具体地讲,第一发光单元s1和第二发光单元s2可以具有相同的氮化镓基半导体堆叠结构,并且可以具有相同结构的倾斜侧表面。

缓冲层153可以设置在发光单元s1、s2与基底151之间。当基底151为生长基底时,缓冲层153被用于缓解基底151和形成在其上的下半导体层155之间的晶格失配。

透明电极层161设置在发光单元s1、s2中的每个上。具体地讲,第一透明电极层161设置在第一发光单元s1上,第二透明电极层161设置在第二发光单元s2上。透明电极层161可以设置在上半导体层159的上表面上以被连接到上半导体层159。

第一透明电极层161和/或第二透明电极层161可以覆盖第一发光单元s1和/或第二发光单元s2的侧表面的一部分,并且可以覆盖第一发光单元s1和/或第二发光单元s2的至少三个表面。在图4中示出的实施例中,第一透明电极层161和第二透明电极层161中的每个覆盖第一发光单元s1或第二发光单元s2的四个侧表面。

因此,透明电极层161可以具有比对应的发光单元s1或s2的上部区域宽的区域。另外,透明电极层161可以覆盖上半导体层159的整个上表面。透明电极层161具有比对应的发光单元s1或s2的区域(或面积)宽的区域(或面积),从而能够减小透明电极层161的电阻。放置在第二发光单元s2上的透明电极层161与第二发光单元s2的上半导体层159邻接,并且通过第一绝缘层160a与第二发光单元s2的下半导体层155绝缘。即,透明电极层161可以与上半导体层159的暴露区域邻接并且可以放置在覆盖下半导体层155的暴露区域的第一绝缘层160a上。

第一绝缘层160a使透明电极层161与对应的发光单元s1或s2的侧表面分开,以防止发光单元s1或s2与透明电极层161电连接。第一绝缘层160a可以沿着对应的发光单元的边缘覆盖对应的发光单元s1或s2的侧表面。另外,第一绝缘层160a可以围绕发光单元s1、s2覆盖基底151的上表面。另一方面,第一绝缘层160a具有暴露下半导体层155的开口160hn和暴露上半导体层159的开口160hp。透明电极层161通过形成在发光单元s1、s2中的每个的上表面上的开口160hp连接到上半导体层159。由于第一绝缘层160a沿着上半导体层159的上表面的边缘形成,所以透明电极层161可以从上半导体层159的边缘凹进以连接到上半导体层159。因此,根据本实施例的发光二极管能够通过发光单元s1、s2的侧壁来防止在上半导体层159的边缘处的电流拥挤。

第二绝缘层160b可以形成在发光单元s1、s2中的每个上以使它被放置在透明电极层161和发光单元s1、s2之间。透明电极层161的一部分放置在第二绝缘层160b上。第二绝缘层160b可以被设置成靠近发光单元s1、s2中的每个的边缘,而不限于此。可选择地,第二绝缘层160b可以设置在发光单元s1、s2中的每个的中心区域处。第二绝缘层160b可以由与第一绝缘层160a的材料相同的材料(例如,氧化硅或氮化硅)形成。

互连件165使第一发光单元s1电连接到第二发光单元s2。互连件165包括第一连接部分(一端)165p和第二连接部分(另一端)165n。第一连接部分165p电连接到在第一发光单元s1上的透明电极层161,第二连接部分165n电连接到第二发光单元s2的下半导体层155。具体地讲,第二连接部分165n可以通过第一绝缘层160a的开口160hn连接到下半导体层155。第一发光单元s1通过互连件165的第一连接部分165p和第二连接部分165n串联连接到第二发光单元s2。

另一方面,第一连接部分165p可以被设置成靠近第一发光单元s1的一个边缘,而不限于此。可选择地,第一连接部分165p可以设置在第一发光单元s1的中心区域处。

互连件165可以在互连件165和透明电极层161之间的整个叠置区域上与透明电极层161接触。在现有技术中,绝缘层33的一部分设置在透明电极层31和互连件35之间。然而,在该实施例中,互连件165与透明电极层161直接接触而没有在它们之间设置任何绝缘材料。

另外,第二绝缘层160b可以设置在第一发光单元s1上的互连件165和透明电极层161之间的整个叠置区域上。

在该实施例中,第二连接部分165n连接到下半导体层155的暴露的上侧。可选择地,第二连接部分165n可以连接到第二发光单元s2的倾斜的侧表面,具体地讲,连接到第二发光单元s2的下半导体层155的倾斜的侧表面。在这种情况下,不必暴露下半导体层155的上表面,并且第一绝缘层160a形成为暴露下半导体层155的倾斜的侧表面。

在该实施例中,发光二极管被示出为包括两个发光单元,即,第一发光单元s1和第二发光单元s2。然而,本发明不限于此,更多个发光单元可以通过互连件165彼此电连接。例如,互连件165可以使相邻的发光单元的下半导体层155电连接到它们的透明电极层161以形成发光单元的串联阵列。虽然发光二极管可以具有形成在单个基底151上的单个串联阵列,但是本发明不限于此。可选择地,发光二极管可以包括彼此并联或反并联连接的多个串联阵列。另外,发光二极管可以设置有连接到发光单元的串联阵列的桥式整流器(未示出),从而使发光单元可以被ac电源驱动。桥式整流器可以利用互连件165连接具有与发光单元s1、s2的结构相同的结构的发光单元来形成。

图6至图10是示出制造根据图4的示例性实施例的发光二极管的方法的剖视图。

参照图6,在基底151上形成半导体堆叠结构156,半导体堆叠结构156包括下半导体层155、活性层157和上半导体层159。另外,在形成下半导体层155之前,可以在基底151上形成缓冲层153。

基底151可以是蓝宝石(al2o3)基底、碳化硅(sic)基底、氧化锌(zno)基底、硅(si)基底、砷化镓(gaas)基底、磷化镓(gap)基底、氧化锂铝(lial2o3)基底、氮化硼(bn)基底、氮化铝(aln)基底或氮化镓(gan)基底,而不限于此。即,基底151可以由根据将要形成在基底151上的半导体层的材料而从各种材料中选择的材料形成。另外,基底151可以是在其上表面上具有凹凸图案的基底,例如,图案化的蓝宝石基底。

缓冲层153形成为缓解基底151和形成在其上的下半导体层155之间的晶格失配,并且缓冲层153可以由例如氮化镓(gan)或氮化铝(aln)形成。当基底151为导电基底时,缓冲层153可以形成为绝缘层或半绝缘层,例如,aln或半绝缘gan。

下半导体层155、活性层157和上半导体层159中的每个可以由例如(al,in,ga)n的氮化镓基半导体材料形成。可以通过金属有机化学气相沉积(mocvd)、分子束外延和氢化物气相外延(hvpe)等间断地或连续地形成下半导体层155、上半导体层159和活性层157。

这里,下半导体层155和上半导体层159可以分别是n型半导体层和p型半导体层,反之亦可。n型半导体层可以通过用例如硅(si)杂质对氮化镓基化合物半导体层进行掺杂来形成,p型半导体层可以通过用例如镁(mg)杂质对氮化镓基化合物半导体层进行掺杂来形成。

参照图7,多个发光单元s1、s2形成为通过光刻和蚀刻彼此分开。发光单元s1、s2中的每个可以形成为具有倾斜的侧表面,并且发光单元s1、s2中的每个的下半导体层155的上表面被部分地暴露。

在发光单元s1、s2中的每个中,通过台面蚀刻首先暴露下半导体层155,通过单元隔离工艺使发光单元彼此分开。可选择地,可以通过单元隔离工艺首先使发光单元s1、s2彼此分开,然后经过台面蚀刻以暴露发光单元s1、s2的下半导体层155。

当互连件连接到倾斜的侧表面时,可以省略用于暴露下半导体层155的上表面的台面蚀刻。

参照图8,覆盖第一发光单元s1的一些区域的第二绝缘层160b与覆盖第一发光单元s1的侧表面的第二绝缘层160b一起形成。第一绝缘层160a可以延伸以覆盖第一发光单元s1和第二发光单元s2之间的区域。第一绝缘层160a具有暴露上半导体层159的开口160hp和暴露下半导体层155的开口160hn。另一方面,第一绝缘层160a可以连接到第二绝缘层160b,但是本发明不限于此。在一些实施例中,第一绝缘层160a可以与第二绝缘层160b分开。

第一绝缘层160a和第二绝缘层160b可以通过同一工艺由氧化硅或氮化硅同时形成。例如,第一绝缘层160a和第二绝缘层160b可以通过沉积绝缘材料,然后通过光刻和蚀刻进行图案化来形成。

接下来,参照图9,在第一发光单元s1和第二发光单元s2上形成透明电极层161。透明电极层161由诸如氧化铟锡(ito)或氧化锌的导电氧化物或诸如ni/au的金属层来形成。透明电极层161通过开口160hp连接到上半导体层159并且透明电极层161覆盖第二绝缘层160b。

另外,透明电极层161覆盖发光单元s1、s2的侧表面。透明电极层161也可以覆盖对应的发光单元s1或s2的至少三个侧表面。这里,透明电极层161形成在开口160hn的外侧,使得下半导体层155被暴露。

另一方面,透明电极层161通过第一绝缘层160a与发光单元s1或s2的侧表面分开。另外,位于第一发光单元s1上的第一透明电极层161与位于第二发光单元s2上的第二透明电极层161分开,并且位于第一发光单元s1上的第一透明电极层161可以与第二发光单元s2分开。

可以通过剥离(lift-off)工艺形成透明电极层161,而不限于此。可选择地,可以通过光刻和蚀刻形成透明电极层161。

参照图10,在透明电极层161上形成互连件165。互连件165包括第一连接部分165p和第二连接部分165n,其中,第一连接部分165p连接到第一发光单元s1的第一透明电极层161,第二连接部分165n连接到第二发光单元s2的下半导体层155。可以通过剥离(lift-off)工艺形成互连件165。

根据该实施例,第一绝缘层160a和第二绝缘层160b可以同时形成,从而简化制造工艺。此外,根据本实施例的方法不包括在形成第一绝缘层160a和第二绝缘层160b之后利用boe的蚀刻工艺,从而防止了在利用boe等的后续工艺中对第一绝缘层160a和第二绝缘层160b的损坏。

图11是根据本发明的另一示例性实施例的发光二极管的平面图,图12是沿着图11的线b-b截取的剖视图。

参照图11和图12,除了透明电极层161的位置以外,根据该实施例的发光二极管与参照图4和图5说明的发光二极管大体相似。

即,在图4和图5中示出的实施例中,透明电极层161形成为覆盖对应的发光单元s1或s2的四个侧表面,并且与相邻的发光单元分开。相反,在该实施例中,第一透明电极层161覆盖第一发光单元s1的三个侧表面,同时延伸以覆盖第二发光单元s2的侧表面的一部分。

第一透明电极层161可以连接到第二发光单元s2的下半导体层155。然而,第一透明电极层161与第二透明电极层分开并且也与第二发光单元s2的上半导体层159分开。

根据本实施例,在相邻的发光单元s1、s2之间可以利用透明电极层161来供应电流,从而进一步减小发光二极管的正向电压。

为避免重复,将省略制造根据本发明的该实施例的发光二极管的方法的描述。

虽然以上已经描述了各种实施例,但是本发明不限于此,并且在不脱离本发明的范围的情况下,可以进行各种修改、改变和替换。

图13是根据本发明的示例性实施例的发光二极管的示意性平面图,图14中的(a)和(b)分别是沿着图13的线a-a和线b-b截取的剖视图,图15是图13的发光二极管的示意性电路图。

参照图13至图15,发光二极管包括基底221、多个发光单元lec、电流阻挡层229、透明电极层231、绝缘保护层233、第一互连件235、第二互连件237、第一电极焊盘239a和第二电极焊盘239b。

基底221用于支撑发光单元lec,并且可以是用来生长氮化物半导体层的生长基底,例如蓝宝石基底、硅基底、gan基底,而不限于此。基底221通常指在发光二极管芯片中的基底。

多个发光单元lec布置在基底221上。如在图14中的(a)和(b)中所示,每个发光单元lec包括第一导电型半导体层223、活性层225和第二导电型半导体层227。这里,第一导电型半导体层223和第二导电型半导体层227可以分别是n型半导体层和p型半导体层,反之亦可。活性层225放置在第一导电型半导体层223和第二导电型半导体层227之间,并且可以具有单量子阱结构或多量子阱结构。根据期望波长的光来确定活性层225的材料和组成。例如,活性层225可以由alingan基化合物半导体(例如,ingan)形成。第一导电型半导体层223和第二导电型半导体层227由具有比活性层225的带隙宽的带隙的alingan基化合物半导体(例如,gan)构成。另一方面,缓冲层(未示出)可以设置在第一导电型半导体层223和基底221之间。

第一导电型半导体层223、活性层225和第二导电型半导体层227可以通过金属有机化学气相沉积在基底221上生长,然后通过光刻和蚀刻进行图案化。

如在图13和图14中的(a)中所示,活性层225和第二导电型半导体层227可以在单个第一导电型半导体层223上彼此划分开。即,两个发光单元lec可以共用第一导电型半导体层223。

互连件(即,第一互连件235和第二互连件237)使发光单元lec彼此电连接。第一互连件235和第二互连件237使放置在不同的第一导电型半导体层223上的发光单元lec彼此串联连接。第一互连件235使一个发光单元的第一导电型半导体层223电连接到相邻的发光单元lec的第二导电型半导体层227。

第一互连件235包括:第一连接部分235a(阳极),连接到第一导电型半导体层223;第二连接部分235b(阴极),放置在第二导电型半导体层227上以电连接到第二导电型半导体层227;以及互连部分235c,使第一连接部分235a和第二连接部分235b互连。

第二互连件237包括:第一连接部分237a(公共阳极),连接到第一导电型半导体层223;第二连接部分237b(公共阴极),放置在第二导电型半导体层227上以电连接到第二导电型半导体层227;以及互连部分237c,使第一连接部分237a和第二连接部分237b互连。

公共阳极237a公共地连接到两个发光单元lec。例如,公共阳极237a电连接到例如由两个发光单元lec共用的第一导电型半导体层223。另一方面,公共阴极237b公共地连接到两个发光单元2lec。例如,公共阴极237b电连接到放置在共用的第一导电型半导体层223上的第二导电型半导体层227。公共阴极237b放置在两个发光单元2lec之间的区域上。

虽然上面已经描述了第一互连件235和第二互连件237,但是应该理解的是,发光单元lec可以通过各种类型的互连件彼此连接。例如,与在图13中的使第一发光单元连接到与第一发光单元相邻的两个发光单元的互连件相似,连接到一个发光单元lec的第一连接部分235a可以通过互连部分连接到公共阴极237b,公共阴极237b公共地连接到两个发光单元lec。另外,公共阳极237a可以连接到两个第二连接部分235b,并且两个第一连接部分235a可以连接到公共阴极237b。

多个串联阵列通过互连件235、237形成,并且多个串联阵列彼此并联连接。

另一方面,透明电极层231连接到发光单元lec的第二导电型半导体层227。虽然一些透明电极层231限制性地放置在对应的发光单元上,但是其它透明电极层231可以连续放置在两个发光单元lec上。

阴极235b、237b可以通过透明电极层231电连接到第二导电型半导体层227。具体地讲,公共阴极237b可以通过连续地放置在两个发光单元上的透明电极层231同时电连接到两个发光单元lec。

电流阻挡层229放置在公共阴极237b下方。具体地讲,电流阻挡层229放置在透明电极层231下面以使透明电极层231与发光单元2lec的侧表面分开,尤其是与第一导电型半导体层223分开。电流阻挡层229可以具有比公共阴极237b的宽度大的宽度。此外,电流阻挡层229可以部分地覆盖发光单元lec的上部区域。另外,电流阻挡层(未示出)可以放置在阴极235b下面。

电流阻挡层229由绝缘层形成以防止在阴极235b、237b下面的电流拥挤。此外,电流阻挡层229可以包括分布式布拉格反射器。反射从活性层225发射的光的分布式布拉格反射器可以通过重复地堆叠具有不同折射率的层(例如,tio2/sio2)来形成。由于电流阻挡层229包括分布式布拉格反射器,所以能够防止从活性层225产生的光被吸收到互连件235、237中。

如在图13中所示,电流阻挡层229的一部分可以延伸到第一导电型半导体层223的外侧。互连部分237c的一部分可以放置在电流阻挡层229的延伸部分上,因此,该延伸部分将反射朝互连部分237c行进的光。另一方面,透明电极层231可以延伸以覆盖电流阻挡层229的延伸部分。另外,透明电极层231还可以延伸以覆盖相邻的第一导电型半导体层223的一部分。

第一电极焊盘239a和第二电极焊盘239b放置在串联阵列的相对的端部处。第一电极焊盘239a和第二电极焊盘239b可以分别放置在串联阵列的相对侧处的发光单元lec上。

除了将要形成互连件235、237和电极焊盘239a、239b的区域之外,绝缘保护层233可以基本覆盖整个发光二极管。绝缘保护层233可以形成为保护发光二极管免受外部湿气或外力的影响。

根据该实施例,如在图15中所示,发光单元lec的两个串联阵列可以形成在第一电极焊盘239a和第二电极焊盘239b之间。在图15中,一个发光单元放置在串联阵列的放置有第二电极焊盘239b的一端处,两个发光单元放置在串联阵列的放置有第一电极焊盘239a的另一端处。然而,本发明不限于发光单元lec的这种布置。例如,一个或两个发光单元可以放置在这些阵列的任一端处。

另外,根据该实施例,如在图15中用虚线所指示的,公共阴极237b或包括公共阴极237b的互连件237被设置到彼此并联连接的互连阵列。结果,连接到公共阴极237b的发光单元具有相同的电位,从而减轻了在特定阵列上的电流拥挤。

虽然该实施例已经示出为在串联阵列中具有四个发光单元,但是在串联阵列中的发光单元的数量没有具体限制,只要串联阵列包括一个或更多个发光单元即可。另外,发光单元的数量可以以各种方式根据需要或考虑到可用电压来确定。

另外,该实施例已经示出为具有串并联结构,在该串并联结构中两个串联阵列通过互连件形成在基底221上并且所述两个串联阵列彼此并联连接。然而,应该理解的是,形成在基底221上的串联阵列的数量不限于此,并且可以有更多个串联阵列形成在基底221上。

图16是示出根据本发明的又一实施例的其中形成有四个串联阵列的发光二极管的示意性电路图。

参照图16,发光单元lec通过互连件彼此连接以形成四个串联阵列,所述四个串联阵列在第一电极焊盘239a和第二电极焊盘239b之间彼此并联连接。具有比在串联阵列内的发光单元的面积大的面积的发光单元可以设置在串联阵列的相对的端部处。在该实施例中,两个发光单元被设置到第一电极焊盘239a,一个发光单元被设置到第二电极焊盘239b。然而,应该理解的是,本发明不限于此,并且各种数量的发光单元可以被设置到串联阵列的相对的端部。

另一方面,在相邻的串联阵列内的发光单元lec中的一些发光单元通过公共阴极237b彼此连接,并且发光单元中的一些发光单元通过公共阳极237a彼此连接。另外,包括公共阴极237b和公共阳极237a的互连件237可以使相邻的发光单元彼此连接。用虚线来指示公共阴极237b和公共阳极237a的位置。如参照图13所描述,包括公共阴极237b或公共阳极237a的发光单元2lec可以共用第一导电型半导体层223。此外,在各个串联阵列之间的所有相邻的发光单元可以共用第一导电型半导体层223。例如,在该实施例中,在各个串联阵列中的第一发光单元、第二发光单元和第三发光单元可以共用第一导电型半导体层223。

虽然该实施例已经示出为具有布置在每个串联阵列中的三个发光单元,但是在串联阵列中的发光单元的数量没有具体限制,只要串联阵列包括一个或更多个发光单元即可。

虽然已经结合附图参照一些实施例示出了本发明,但是对本领域技术人员来说将明显的是,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改和改变。另外,应该理解的是,特定实施例的一些特征也可以应用到其它实施例而不脱离本发明的精神和范围。因此,应该理解的是,实施例仅通过举例说明的方式来提供,并且给出实施例以提供本发明的完整的公开,并且为本领域技术人员提供对本发明的透彻的理解。因此,其意在使本发明覆盖修改和变化,只要它们落入权利要求和它们的等同物的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1