具有等离子体限制特征的基板支撑基座的制作方法

文档序号:16808704发布日期:2019-02-10 13:21阅读:177来源:国知局
具有等离子体限制特征的基板支撑基座的制作方法

本文中所公开的实施例总体上涉及具有等离子体限制特征的基板支撑基座。



背景技术:

半导体处理涉及能够在基板上产生微小集成电路的许多不同的化学及物理工艺。构成集成电路的材料层是由化学气相沉积、物理气相沉积、外延成长等等所产生的。使用光刻胶掩模及湿或干蚀刻技术来图案化材料层的某些部分。用以形成集成电路的基板可以是硅、砷化镓、磷化铟、玻璃或其他适当材料。

在制造集成电路时,等离子体工艺通常用于沉积或蚀刻各种材料层。等离子体处理相对于热处理提供了许多优点。例如,与类似的热工艺所能实现的相比,等离子体增强的化学气相沉积(pecvd)允许在较低温下且以较高的沉积速率执行沉积工艺。因此,pecvd对于具有严格热预算的集成电路制造而言(例如对于非常大规模或超大规模集成电路(vlsi或ulsi)设备制造而言)是有利的。

用在这些工艺中的处理腔室一般包括安置于其中以在处理期间支撑基板的基板支撑件或基座,以及具有用于将工艺气体引进处理腔室的面板的喷淋头。等离子体由两个rf电极所产生的,其中面板用作顶电极。在某些工艺中,基座可包括嵌入式加热器及嵌入式金属网以充当底电极。工艺气体流过喷淋头,且等离子体在两个电极之间产生。在传统的系统中,rf电流穿过等离子体从喷淋头顶电极流至加热器底电极。rf电流将经过基座中的镍rf杆,且通过基座结构在内腔室壁中返回。长的rf路径导致rf功率损失。然而,更重要的是,长的镍rf杆具有高电感,这造成高的底电极电势,该高的底电极电势进而可能促进底腔室点燃(即寄生等离子体产生)。

因此,存在等离子体处理腔室中的改良的rf返回路径的需要。



技术实现要素:

提供了一种用于加热的基板支撑基座的方法及装置。在一个实施例中,该加热的基板支撑基座包括:主体,包括陶瓷材料;多个加热元件,封装在该主体内。柱耦合至该主体的底面。多个加热器元件、顶电极及屏蔽电极安置在该主体内。该顶电极安置在该主体的顶面附近,而该屏蔽电极安置在该主体的该底面附近。导电杆被安置穿过该柱且耦合至该顶电极。

附图说明

为了可详细理解本公开的上述特征的方式,可参照实施例获得上文所简要概括的更具体的描述,实施例中的一些绘示于所附附图中。然而,要注意的是,所附附图仅绘示典型的实施例,且因此不要被视为其范围的限制,因为本文中所公开的实施例可接纳其他同等有效的实施例。

图1为等离子体系统的一个实施例的部分横截面图。

图2为多区加热器的一个实施例的示意俯视图,该多区加热器可用作图1的等离子体系统中的基座。

图3为接地件的一个实施例的示意侧视图,该接地件可用在图1的等离子体系统中的基座中。

图4a为多区加热器的一个实施例的横截面示意图,该多区加热器可用在图1的等离子体系统中。

图4b为多区加热器的第二实施例的横截面示意图,该多区加热器可用在图1的等离子体系统中。

图5为多区加热器的一个实施例的横截面示意图,该多区加热器具有用于具有顶部rf馈送的等离子体系统的缩短的rf杆。

图6为具有顶部rf馈送路径的多区加热器的一个实施例的横截面示意图。

图7为具有底部rf馈送路径的多区加热器的一个实施例的横截面示意图。

图8a-8d绘示顶电极多区加热器的各种实施例。

图9为具有底部网rf路径的多区加热器的一个实施例的横截面示意图。

图10为多区加热器的又另一实施例的横截面示意图,该多区加热器具有底部网rf路径的第二实施例。

图11为多区加热器的又另一实施例的横截面示意图,该多区加热器具有底部网rf路径的第三实施例。

为了促进了解,已使用了相同参考标号(于可能处)以指定附图中共有的相同元件。可以预期的是,于一个实施例中所公开的元件可有益地利用在其他实施例上而不用特别记载。

具体实施方式

本公开的实施例参照等离子体腔室而说明性地描述于下文,但是本文中所述的实施例可用在其他腔室类型中及多重工艺中。在一个实施例中,等离子体腔室用在等离子体增强的化学气相沉积(pecvd)系统中。尽管示例性实施例包括两个处理区域,设想的是,本文中所公开的实施例可用于在具有单一处理区域或多于两个处理区域的系统中得利。也设想的是,本文中所公开的实施例可用于在包括物理气相沉积(pvd)腔室、原子层沉积(ald)腔室、蚀刻腔室等的其他等离子体腔室中得利。

图1为处理腔室100的部分横截面图。处理腔室100一般包括处理腔室主体102,该处理腔室主体具有定义一对处理区域120a及120b的腔室侧壁112、底壁116及共享的内侧壁101。处理区域120a-b中的每一个被类似地配置,且为了简要起见,仅将描述处理区域120b中的组件。

基座128通过通路122安置在处理区域120b中,该通路形成于处理腔室100中的底壁116中。基座128提供加热器,该加热器被适配为将基板(未示出)支撑在其上表面上。基座128可包括加热元件(例如电阻式加热元件)以将基板温度加热且控制到期望的工艺温度。或者,可由远程加热元件(例如灯组件)加热基座128。

基座128由凸缘133耦合至柱126。柱126将基座128耦合至电力出口或电箱103。电箱103可包括驱动系统,该驱动系统控制处理区域120b内的基座128的高度及移动。柱126也包含电力接口以向基座128提供电力。例如,柱126可具有用于从电箱103向安置在基座128中的一个或更多个加热器提供电力的电气接口。柱126也可包括被适配为可分离地耦合至电箱103的基底组件129。圆周环135被图示为在电箱103上方。在一个实施例中,圆周环135为被适配作为机械止动件或连接盘(land)的肩部,所述机械止动件或连接盘被配置为提供基底组件129与电箱103的上表面之间的机械接口。

杆130被安置穿过形成于处理区域120b的底壁116中的通路124,且用于定位被安置穿过基座128的基板升降销161。基板升降销161选择性地将基板与基座隔开,以促进用机器人(未示出)进行基板的交换,该机器人用于通过基板传输端口160将基板传输进出处理区域120b。

腔室盖104耦合至腔室主体102的顶端部分。盖104接纳耦合至其的一个或更多个气体分布系统108。气体分布系统108包括气体入口通路140,该气体入口通路将反应物及清洁气体穿过喷淋头组件142递送到处理区域120b中。喷淋头组件142包括环状基底板148,该环状基底板具有相对于面板146安置在中间的区隔板144。

射频(rf)源165耦合至喷淋头组件142。此配置称为rf馈送路径的顶部馈送。面板146可充当rf源165的顶电极。rf源165向喷淋头组件142供电以促进在喷淋头组件142的面板146与加热的基座128之间产生等离子体。在一个实施例中,rf源165可以是高频射频(hfrf)电源,例如13.56mhzrf产生器。在另一实施例中,rf源165可包括hfrf电源及低频射频(lfrf)电源,例如300khzrf产生器。或者,rf源可耦合至处理腔室主体102的其他部分(例如基座128)以促进等离子体产生。

介电绝缘体158安置在盖104与喷淋头组件142之间,以防止将rf电力传导至盖104。遮蔽环106可安置在基座128的周边上,该遮蔽环106在基座128的期望高度处接合基板。

可选地,冷却通道147形成于气体分布系统108的环状基底板148中以在操作期间冷却环状基底板148。热传输流体(例如水、乙烯二醇、气体等等)可循环通过冷却通道147,使得基底板148被维持在预定义的温度下。

腔室衬垫组件127与腔室主体102的腔室侧壁101、112非常紧邻地安置在处理区域120b内,以防止将腔室侧壁101、112暴露于处理区域120b内的处理环境。衬垫组件127包括圆周泵送腔125,该圆周泵送腔耦合至泵送系统164,该泵送系统被配置为从处理区域120b排出气体及副产物并且控制处理区域120b内的压力。多个排气口131可形成于腔室衬垫组件127上。排气口131被配置为以促进处理腔室100内的处理的方式允许气体从处理区域120b流至圆周泵送腔125。

图2为多区加热器(即基座200)的一个实施例的示意俯视图,该多区加热器可用作图1的处理腔室100中的基座128。基座200可具有外周边284及中心202。基座200包括多个区,该多个区可被个别加热,使得基座200的各区的温度可被独立控制。在一个实施例中,可依需要针对温度度量个别监控和/或调整基座200的多个加热区,以获取需要的温度分布。

形成于基座200中的区的数量可依需要而变化。在图2中所描绘的实施例中,基座200具有六个区,例如内区210、中间区220及外区280,外区280进一步被分成四个外区230、240、250、260。在一个实施例中,区210、220及280中的各者为同心的。作为示例,内区210可包括从基座200的中心202延伸的从约0到约85毫米(mm)的内半径204。中间区220可包括内部半径,该内部半径基本上与内区210的内半径204类似,例如约从0至约85毫米。中间区220可从内半径204延伸至约123mm的外半径206。外区280可包括基本上与中间区220的外半径206相同的内周边。外区280可从外半径206延伸至约150mm或更大的外周边半径208,例如约170mm,例如约165mm。

尽管基座200的外区280被图示为分成四个外区230、240、250、260,区的数量可大或小于四。在一个实施例中,基座200具有四个外区230、240、250、260。因此,制成基座200和六加热器区基座。外区230、240、250、260可被成形为环状区段,且围绕内区210及中间区220分布。四个外区230、240、250、260中的各者可基本上在形状及尺寸上彼此类似。或者,四个外区230、240、250、260中的各者的形状尺寸可被配置为与腔室100的处理环境中的不对称性对准。或者,四个外区230、240、250、260在形状上可以是圆形,且从中间区220向外周边284同心地布置。

为了控制基座200的各区210、220、230、240、250、260中的温度,各区与一个或更多个可独立控制的加热器相关联。于下文进一步论述可独立控制的加热器。

图3为接地件的一个实施例的示意侧视图,该接地件可用在图1的等离子体系统中的基座中。接地件可适用于包含rf能量或允许rf能量穿过该接地件。接地件可以是导电板、网或其他合适电极的形式,于下文中称为接地网320。接地网320可安置在基座128内的各种位置下,且将参照以下图来论述接地网320的若干示例性位置。接地件额外具有接地块331。接地块331可耦合至直接接地,或通过rf源165的rf匹配来耦合至接地。接地块331、接地网320可以由铝、钼、钨或其他适当导电的材料形成。

接地网320可通过接地管375耦合至接地块331。或者,接地网320可具有多个传输引线,例如安置在接地块331与接地网320之间的第一传输引线370及第二传输引线371。接地网320可包括用于允许rf传导杆372穿过接地网320的通路。接地管375、传输引线370、371及rf传导杆372可以由铝、钛、镍或其他适当导电的材料形成,且将接地网320电耦合至接地块331。接地管375在形状上可以是具有内中空部分的圆柱形,腔室组件(例如rf阳极、阴极、加热器电源、冷却线路等等)可穿过该内中空部分。传输引线370可以围绕上述腔室组件的方式类似地布置。

图4a为依据一个实施例的多区加热器(即基座128)的横截面示意图,该多区加热器可用在图1的等离子体系统中。图4a中所绘示的基座128具有底部rf馈送。然而,应理解的是,基座128可容易地重新配置用于顶部rf馈送,而顶部rf馈送与底部rf馈送之间的差异绘示于图6及7中。基座128具有介电主体415。介电主体415可以由陶瓷材料(例如aln或其他合适的陶瓷)形成。介电主体415具有顶面482,该顶面被配置为将基板支撑在其上。介电主体415具有与顶面482相对的底面484。基座128包括附接至介电主体415的底面484的柱126。柱126被配置为管状构件,例如中空介电轴417。柱126将基座128耦合至处理腔室100。

基座128被配置为多区加热器,具有中心加热器400a、中间加热器400b及一个或更多个外加热器(说明性地在图4a中绘示为400c-f)。中心加热器400a、中间加热器400b及外加热器400c-f可用以提供基座128内的多个独立控制的加热区。例如,基座128可包括被配置为具有中心加热器400a的中心区、被配置为具有中间加热器400b的中间区及被配置为具有外加热器400c-f的一个或更多个外区,使得各加热器与基座的加热区(例如图2中所示的基座200的区210、220、230、240、250、260)对准且定义这些加热区。

介电主体415也可在其中包括电极410,以供在基座128上方的相邻处理区域中进行等离子体产生时使用。电极410可以是嵌在基座128的介电主体415中的导电板或网材料。同样地,加热器400a、400b、400c-f中的各者可以是嵌在基座128的介电主体415中的导线或其他导电体。介电主体415可额外包括接地网320。接地网320可提供加热器400a-f的接地罩。

可通过柱126提供加热器400a、400b、400c-f的电引线(例如导线)以及电极410及接地网320。温度监测设备(未示出)(例如柔性热电耦)可布线穿过柱126至介电主体415,以监测基座128的各种区。电源464可通过滤波器462耦合至电引线。电源464可向基座128提供交流电。滤波器462可以是用于过滤来自电源464的腔室100中的rf频率的单一频率(例如约13.56mhz)滤波器或其他合适的滤波器。可以利用光通信控制加热器400a-f以防止rf电力通过光连接传出以及损伤腔室100外的装备。

接地网320用以减少或防止寄生等离子体在基座128的底面484下方形成。接地管375也可被配置为沿基座128的柱126抑制寄生等离子体形成。例如,等离子体产生时所使用的电极410可具有在柱126中心的电源引线412。rf电源引线412延伸穿过腔室的接地块331而通过匹配电路414来到rf电源416。电源416可提供用于驱动等离子体的直流电。接地网320提供接地板,且将电源416和电极410与腔室100在基座128的底面484下方的部分隔离,由此减少基座128下方的等离子体形成的可能性,基座128下方的等离子体形成可能对于腔室组件造成不想要的沉积或损伤。

rf电源引线412安置在接地管375之间以防止耦合至基座128的柱126附近的等离子体。电引线额外包括多个加热器电力供应线路450a-f及加热器电力返回线路451a-f。加热器电力线路450a-f提供来自电源464的电力以便在一个或多个区中加热基座128。例如,加热器电力供应线路450a及加热器电力返回线路451a(统称加热器传输线路450、451)将中心加热器400a连接至电源464。同样地,加热器电力供应线路450b、450c-f及加热器电力返回线路451b、451c-f可向中间加热器400b及外加热器400c-f提供来自电源464的电力。传输引线370或接地管375可安置在rf电源引线412(例如图3中所绘示的杆372)与加热器电力线路450a-f两者之间。因此,加热器电力线路阴极450a-f可与rf电源引线412隔离。

用以制造先进图案化膜(apf)的许多材料对于基板的温度分布是非常敏感的,且偏离期望的因素温度分布可能造成沉积的膜的属性及性能的偏斜及其他不均匀性。为了增强温度分布的控制,基座128可被配置为具有六或更多个加热器400a-f,各加热器相关联且定义基座168的相应的加热区,以针对基座128的顶面482提供高度灵活且可调的温度分布控制,且因此允许跨基板的工艺结果的优异控制,由此控制工艺偏斜。接地网320以及接地管375提供接地罩以屏蔽rf能量并且将等离子体限制在基板的平面上方,基本上防止了沿基座128的底面484及相邻的柱126的寄生等离子体形成。

图4b为依据第二实施例的多区加热器(即基座128)的横截面示意图,该多区加热器可用在图1的等离子体系统中。基座128被配置为具有安置在介电主体415中的第一区加热器401a、第二区加热器401b及第三区加热器401c-f。基座128额外具有电耦合至介电主体415中的电极310的rf管413(安置在柱126中)。接地管375及接地网320也安置在基座128中。可光学地控制加热器401a-f。温度探针(未示出)也可安置在介电主体415中以提供反馈以供控制加热器401a-f。

第一区加热器401a被配置为向基座128的整个顶面482提供加热源。第一区加热器401a可操作为将基座从约室温或室温以下加热至约400摄氏度或更多,例如450摄氏度。第一区加热器401a可以是电阻式加热器。第一区加热器401a的电阻可以是温度相关的,且随着温度增加而增加。第一区加热器401a可具有大于约2ω(欧姆)的电阻,例如在约6ω至约7ω之间。电源464通过电源引线452a、453a耦合以将第一区加热器401a通电。例如,电源464可向第一区加热器401a中的电阻提供208伏特以产生热。

第二区加热器401b与介电主体415中的第一区加热器401a隔开。在一个实施例中,第二区加热器401b在第一区加热器401a上方隔开。第二区加热器401b可以是电阻加热器,且具有大于约2ω(欧姆)的电阻,例如在约5ω至约6ω之间。第二区加热器401b可以按如下方式延伸自及穿过介电主体415:使得从第二区加热器401b提供的热沿基座128的整个顶面482传输。电源464通过电源引线452b、453b耦合以将第二区加热器401b通电。电源464可向第二区加热器401b中的电阻提供208伏特以产生额外的热,以将介电主体415的温度升高至450摄氏度以上,例如550摄氏度或更多。第二区加热器401b可在第一区加热器401a或介电主体415达到预定温度之后开始操作。例如,第二区加热器401b可在介电主体415达到大于约400摄氏度或更多的温度(例如450摄氏度)之后开启。

第三区加热器401c-f与介电主体415中的第二区加热器401b隔开,例如第一及第二区加热器401a、401b上方隔开。第三区加热器401c-f可基本上与图4a中的外加热器400c-f类似,且被配置为在图2中所描绘的介电主体415的四个外区230、240、250、260中操作。第三区加热器401c-f可以是电阻加热器,且具有大于约2ω(欧姆)的电阻,例如在约5ω至约6ω之间。第三区加热器401c-f在介电主体415的周边上操作,且可调谐基座128的顶面482的温度分布。电源464通过电源引线452c-f、453c-f耦合以将第二区加热器401b通电。电源464可向第三区加热器401c-f中的电阻提供208伏特以产生额外的热,以调整介电主体415的顶面482的温度分布。加热器401a-f的操作有利地利用较少的电力来加热基座的顶面482。

rf电源引线412(耦合至电极310)被缩短了,且不延伸穿过柱126。rf管413耦合至rf电源引线412。例如,rf管413可通过硬焊、焊接、压接及3d打印或通过其他适当导电的技术耦合至rf电源引线412。rf管413可由铝、不锈钢、镍或其他适当导电的材料形成,且将电极310电耦合至rf电源416。

rf管413在形状上可以是圆柱形的。rf管413具有内区域431及外区域432。腔室组件、电源引线452a-f、453a-f等等可在从rf管413到腔室组件的最小rf能量转移的情况下穿过rf管413的内区域431。rf管413的外区域431可以由接地管475为界。安置在电源引线452a-f、453a-f周围的rf管413防止加热器401a-f及它们各自的电源引线452a-f、453a-f变成rf天线。接地管475防止来自rf管413的rf能量点燃与柱相邻的基座外的等离子体。有利地,rf管413在最小寄生功率损失的情况下针对rf能量提供短的传导路径,同时防止加热器变成rf天线并且点燃与基座128相邻的等离子体。

图5为多区加热器基座128(绘示于图2及4中)的一个实施例的横截面示意图,该多区加热器基座具有较传统系统中所使用的更短的rf杆512。rf杆512可由镍或其他适当导电的材料形成。rf杆512具有末端514。可选电容器540可安置在rf杆512的末端514附近或处。电容器540可替代性地定位在不同位置中。电容器540用以与加热器电感有效地产生共振以最小化基板处的电势,并且因此形成虚接地以供减少底部寄生等离子体。

rf电流穿过等离子体从喷淋头顶电极(即图1中的面板146)流向安置在基座128中的电极510。rf电流将从电极510传递到rf杆512。rf杆512将rf能量传回rf阳极(即腔室侧壁112、衬垫组件127或接地)。rf能量可从rf杆512穿过基座波纹管、接地条带或其他导电路径到达rf阳极。其为长的rf路径,导致rf功率损失、与不同rf频率相关联的传输线路损耗。长的传统rf杆在高频rf等离子体中形成高电感,这造成导致底部腔室点燃及寄生等离子体产生的高的底部电极电势。rf杆512相较于较长的传统rf杆被缩短了。例如,rf杆512可被缩短至传统rf杆的长度的约1/2至约1/3之间。例如,rf杆512可具有约2英寸与约5英寸之间的长度,例如约2.85英寸。缩短rf杆512的效果是,相较于传统的rf杆戏剧性地减少了rf杆512的阻抗。例如,rf杆512的阻抗可以是约3欧姆(ω)至约7.5ω,例如约4.5ω。接地网320的电势可被控制为具有非常低的电势,这针对腔室100的底部产生了虚接地。柱126可被额外冷却以允许在高温应用期间由o形环进行真空密封。

图6为具有顶部rf馈送路径的多区加热器的一个实施例的横截面示意图。腔室600绘示顶部rf馈送路径。在rf电路中,喷淋头组件142是热点(hot)(即阴极),而电极510是接地件(即阳极)。基座128被提供在处理腔室600中。处理腔室600可基本上在用途及配置上与腔室100类似或甚至相同。基座128被提供为具有接地盖626。基座128可任选地具有等离子体屏624。在存在等离子体屏624的实施例中,间隙625可形成在等离子体屏624与腔室侧壁112之间。等离子体611可被限制在安置在基座128上的基板618上方以供处理基板618。

等离子体屏624具有开口或孔洞,该等开口或孔洞允许工艺气体递送,同时提供rf接地路径流以防止等离子体穿透至底部腔室环境650。其结果是,等离子体611被限制于基板618的顶部且改良了基板618的位准上方的膜沉积。等离子体屏624可以由与下文论述的接地盖626类似的材料(例如al)形成以提供导电性。等离子体屏624可电耦合至腔室阳极,例如接地盖626或腔室侧壁112。等离子体屏624可以接地板或由其他合适的技术(例如将间隙625最小化至约零)来电耦合至腔室侧壁112。在一个实施例中,等离子体屏距腔室侧壁112约10密耳(mil)。在另一实施例中,等离子体屏624触碰腔室侧壁112,即间隙为0.0密耳。

接地盖626通过产生短的rf流动路径来优化返回的rf流。接地盖626将嵌入式rf电极510与处理腔室600的底部腔室环境650屏蔽。接地盖626为覆盖陶瓷加热器(即基座128)的导电屏蔽罩。接地盖626可以不锈钢、铝、导电陶瓷(像是碳化硅(sic))或适用于高温的其他导电材料形成。接地盖626在rf返回回路的情况下充当rf接地件。接地盖626可额外连接至等离子体屏624,相较于布线通过基座及处理腔室的底部而言形成有益地短的rf流动路径。

接地盖626可由适用于高温环境中的厚的al层形成。此外,接地盖626可任选地具有嵌在其中的冷却剂通道(未示出)。或者,接地盖626可由适用于非常高温中的碳化硅(sic)(非常导电的陶瓷)形成。在某些实施例中,接地盖626的表面可涂布有高氟耐腐蚀材料,像是钇铝石榴石(yag)、氧化铝/硅/镁/钇(asmy)等等。接地盖626可触碰基座128或在其间具有小的间隙,例如约5密耳至约30密耳。在接地盖626与基座128之间维持实质小的间隙防止间隙里的等离子体产生。在一个实施例中,整体底部加热器表面涂布有金属层,例如镍。有利地,接地盖626提供短的rf返回路径,且基本上消除了底部及侧寄生等离子体两者。与接地盖626结合使用的等离子体屏624进一步缩短了rf返回路径,且将等离子体限制在基座128上方。

图7为具有底部rf馈送路径的多区加热器的一个实施例的横截面示意图。腔室700基本上与腔室600类似,除了rf馈送位置以外。腔室700绘示顶部rf馈送路径。基座128中的电极410由电源引线412耦合穿过匹配电路414到达rf电源416。电极410向等离子体611提供rf能量以供维持等离子体611。从电极410处的阴极穿过等离子体611到喷淋头组件142处的阳极形成rf电路。在rf电路中,喷淋头组件142为接地(即阳极),而电极410为rf热点(即阴极)。图7的rf电路是图6中所公开的rf电路的倒转。

基座128可以其他方式类似地被配置为具有接地盖626及等离子体屏624。等离子体屏624将等离子体维持在基座128上方。接地盖626防止来自电源引线412及电极410的rf能量点燃与柱126相邻的气体及形成寄生等离子体。图6及7绘示以有成本效益的方式有利地抑制寄生等离子体的形成的实施例,该方式并不涉及添加(即改变)基座128的介电主体415中的接地。

图8a-8d绘示顶电极多区加热器基座的各种实施例。图8a绘示具有嵌在基座128a中的电极510的顶部受驱动rf电路。电极510由接地杆512直接耦合至接地块331。图8b绘示具有嵌在基座128b中的电极510的顶部驱动rf电路。电极510耦合至接地杆512,该接地杆具有电容器540以供改变阻抗。其他电路元件(例如电感)可放置在电极510与接地之间以供控制阻抗以调谐电极510的性能。图8c绘示具有嵌在基座128c中的电极410的底部驱动rf电路。图8d绘示具有嵌在基座128d中的电极510的顶部驱动rf电路。电极510具有杆512,该杆穿过接地块331。第二rf接地网320嵌在基座128d中。终端可被焊进第二rf接地网320。安置在柱126中的中空套管812可连接至第二rf接地网320。套管812可由铝(al)或其他合适的导电材料形成。套管812围绕rf杆512,且因此将屏蔽高压rf应用中的电场。以此方式,可实质防止寄生等离子体形成在柱126周围。此外,接地管375在不连接至接地网320的情况下从接地块332延伸。此配置允许将沿柱126的接地与耦合至杆512或加热器传输线路450、451的rf能量进一步隔离。

可关联于图9到11中所公开的用于屏蔽的配置来进一步论述基座128a-128d的益处及操作。图9为具有底部网rf路径的多区加热器的一个实施例的横截面示意图。图10为多区加热器的又另一实施例的横截面示意图,该多区加热器具有底部网rf路径的第二实施例。图11为多区加热器的又另一实施例的横截面示意图,该多区加热器具有底部网rf路径的第三实施例。图9到图11绘示包含rf传输线路结构及由接地网320所提供的底部罩的替代实施例的基座928、1028、1128(即加热器)。基座928、1028、1128具有多个加热器400且此外还配备有电极410。在一个实施例中,针对9个加热区而配置加热器400,如图2及4中所绘示。然而,应理解的是,加热器400的配置可具有一个加热元件、两个加热元件或多个加热元件。这些配置导致了允许高度灵活的温度控制的单区加热器、双区加热器及多区加热器。并且,以rf可以是顶部驱动或底部驱动的方式绘示基座928、1028、1128。因此,尽管实施例的论述是针对底部驱动的rf,图9-11中所公开的实施例同等适用于顶部或底部驱动的rf等离子体系统两者。

以下论述是针对图9中所示的基座928。基座928具有第二层的金属网920。金属网920安置在基座928的介电主体415的加热器400与电极410之间。金属网920具有传输线路970、971。传输线路970、971可以是连接至金属网920的金属套管(例如导电圆柱)。传输线路970、971安置在rf电源引线412与加热器阳极451和阴极450之间。金属套管(即传输线路970、971)可围绕rf电源引线412。在金属网920上方,电极410(第一层的金属网)充当rf热点。此双层的rf网(金属网920及电极410)形成rf信号的传输线路结构。传输线路的长度可用以调整基板处的电压驻波比(vswr)和/或电势。传输线路970、971充当rf接地屏蔽罩以有利地控制与柱126相邻的寄生等离子体形成。

以下论述是针对图10中所示的基座1028。基座1028具有第二层的金属网1020。金属网1020具有传输线路1070、1071。金属网1020安置在基座1028的介电主体415的加热器400与电极410两者下方。此金属网1020可烧结在介电主体415的底部中。传输线路1070、1071可以是连接至金属网1020的金属套管(例如导电圆柱)。传输线路1070、1071安置在rf电源引线412和加热器阳极451与阴极450(即加热器传输线路)两者外面。金属套管(即传输线路1070、1071)可围绕rf电源引线412和加热器阳极451与阴极450两者。因此,来自rf电源引线412及电极410的rf能量由金属网1020和传输线路1070、1071两者所包含。此外,将rf能量耦合至加热器阳极451和阴极450以及加热器400的任何耦合被包含在金属网1020及传输线路1070、1071。此配置允许传输线路的长度可用以调整基板处的电压驻波比和/或电势,同时防止寄生等离子体。

以下论述是针对图11中所示的基座1128。基座1128具有第二层的金属网1120。金属网1120具有传输线路1170、1171。金属网1120安置在基座1128的介电主体415中的加热器400与电极410两者下方。传输线路1170、1171可以是连接至金属网1120的金属套管(例如导电圆柱)。传输线路1170、1171安置在rf电源引线412和加热器阳极451与阴极450之间。金属套管(即传输线路1170、1171)可围绕rf电源引线412且防止rf电源引线412与加热器阳极451及阴极450耦合或在柱126附近形成寄生等离子体。rf能量由金属网1020及传输线路1070、1071两者所包含。再次地,传输线路的长度可用以调整基板处的电压驻波比和/或电势,同时防止寄生等离子体。此外,制造了可用于加热器400控制器布线的空间。

本文中所公开的实施例公开了用以将rf等离子体限制在处理腔室(例如pecvd腔室)中的基板上方的方法及装置。该装置包括加热器基座及其允许优化rf性能及rf一致性的rf屏蔽罩配置及rf返回回路。在某些实施例中,rf电流穿过等离子体从喷淋头顶电极流至加热器底电极,其中底电极耦合至缩短的镍rf杆以完成rf电路且在内腔室壁中将rf返回回来。所公开的用于缩短rf接地路径的技术(例如短的rf杆、导电涂层、等离子体屏蔽罩)基本上防止了rf功率损失。此外,所公开的技术形成较低的底电极电势,防止了底部腔室点燃及寄生等离子体产生。因此,方法及装置将等离子体限制在面板与基板之间,消除了底部的寄生等离子体。

尽管前述内容针对本公开的实施例,可设计本公开的其他的及进一步的实施例而不背离本公开的基本范围,且本公开的范围由所附权利要求书确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1