Ni-Zn-Cu系铁氧体粒子、树脂组合物及树脂成形体的制作方法

文档序号:17583705发布日期:2019-05-03 21:08阅读:207来源:国知局
Ni-Zn-Cu系铁氧体粒子、树脂组合物及树脂成形体的制作方法

本发明涉及ni-zn-cu系铁氧体粒子、含有该铁氧体粒子的树脂组合物及由该树脂组合物形成的树脂成形体。



背景技术:

以往,作为用于电子设备的线路和电缆等的柔性印刷线路材料,提出了含有平均粒径为1~10μm的氧化硅、氧化钛、氧化铝等填料的树脂膜(例如,参照专利文献1)。

这样的树脂膜例如通过将填料分散在包含树脂和水性溶剂或、包含树脂和溶剂型溶剂的树脂组合物中,然后将含有填料的该树脂组合物涂覆在基材上,让溶剂挥发并使树脂固化的方式而得以形成。然后,通过在树脂膜上层压诸如铜层等的金属层,形成金属线路。此时,在层压金属层时,需要作为基体发挥作用的树脂膜,而在层压金属层之后,需要根据金属线路的形状去除不需要的树脂膜。

因此,为了简便且高效地去除树脂膜,能够想到使用铁氧体粒子作为填料来代替氧化硅等,通过对树脂膜施加磁场来吸附并去除树脂膜。

作为上述铁氧体粒子,例如能够想到使用专利文献2所公开的平均粒径为20~50μm且磁化强度(饱和磁化强度)为约60am2/kg的mn-mg系铁氧体粒子。并且,作为上述铁氧体粒子,例如能够想到使用专利文献3所公开的平均粒径为1~2000nm且具有圆球状的粒子形状的mn-mg系铁氧体粒子。

此外,将含有铁氧体粒子的树脂膜作为柔性印刷线路材料使用时,为了抑制电流泄露的发生且确保耐久性,期望铁氧体粒子具有高电阻。

现有技术文献

专利文献

专利文献1:日本专利申请特开2014-074133号公报

专利文献2:日本专利申请特开2008-216339号公报

专利文献3:日本专利申请国际公开第2016/043051号



技术实现要素:

发明要解决的问题

然而,将专利文献2~3公开的铁氧体粒子用于树脂膜等的树脂成形体时,存在着铁氧体粒子在树脂、溶剂或树脂组合物中无法获得充分的分散性,及铁氧体粒子导致在树脂成形体的表面生成凹凸的问题。

本发明的目的是提供一种饱和磁化强度及电阻高且在树脂、溶剂或树脂组合物中的分散性优异的铁氧体粒子,含有该铁氧体粒子的树脂组合物及由该树脂组合物形成的树脂成形体。

解决问题的方法

本发明的ni-zn-cu系铁氧体粒子,其特征在于,其是平均粒径为1~2000nm的单晶体,且具有多面体状的粒子形状、含有5~10重量%的ni、15~30重量%的zn、1~5重量%的cu及25~50重量%的fe。

上述ni-zn-cu系铁氧体粒子,优选所述zn偏析在其表面上。

上述ni-zn-cu系铁氧体粒子,优选所述cu偏析在其表面上。

本发明的树脂组合物,其特征在于,含有上述ni-zn-cu系铁氧体粒子来作为填料。

本发明的树脂成形体,其特征在于,由上述树脂组合物形成。

发明的效果

本发明的ni-zn-cu系铁氧体粒子通过含有5~10重量%的ni、15~30重量%的zn、1~5重量%的cu、25~50重量%的fe,可以同时获得适当的饱和磁化强度和高电阻,还可以获得低的剩余磁化强度。并且,本发明的ni-zn-cu系铁氧体粒子,由于具有较小的1~2000nm的平均粒径、且剩余磁化强度低,可以减少粒子之间的凝聚,因而可以在树脂、溶剂或树脂组合物中获得优异的分散性。并且,本发明的ni-zn-cu系铁氧体粒子通过含有zn而能够具有多面体状的粒子形状。并且,本发明的ni-zn-cu系铁氧体粒子,虽然磁导率的绝对值低,但是由于其粒径非常小,且为单晶体,因此不仅频率特性优异,且从低频侧到高频侧的宽频带中能够获得基本恒定的磁导率。进而,本发明的ni-zn-cu系铁氧体粒子在适用于含有作为填料的该铁氧体粒子的树脂成形体时,能够防止该铁氧体粒子的凝集并获得平滑的表面。

附图说明

图1是实施例1的铁氧体粒子通过stem观察的二次电子成像(20万倍放大率)的图像。

图2是实施例1的铁氧体粒子的tem像(20万倍放大率)的图像。

图3是示出实施例1的铁氧体粒子的edx分析结果的图。

图4是示出实施例1和比较例1的铁氧体粒子中的复磁导率的实数部μ'的频率依赖性的图。

具体实施方式

以下,对实施本发明的方式进行说明。

本发明的ni-zn-cu系铁氧体粒子

如下所述,本发明的ni-zn-cu系铁氧体粒子(以下,记载为“铁氧体粒子”),由于具有特定的铁氧体组成,因此能够同时获得适度的饱和磁化强度和高电阻,而且能够降低剩余磁化强度。并且,由于本发明的铁氧体粒子具有特定范围内的平均粒径且剩余磁化强度低,因此能够在树脂、溶剂或树脂组合物中获得优异的分散性。并且,本发明的ni-zn-cu系铁氧体粒子,由于含有zn从而能够具有多面体状的粒子形状。并且,本发明的铁氧体粒子,虽然磁导率的绝对值低,但由于其是单晶体从而使得交变磁场产生的磁畴壁不穿过晶界,因此不仅在频率特性方面优异,而且即使可以看到因磁畴壁的共振引起的磁导率的最大值,但在从低频侧到高频侧的宽频带中可以获得基本恒定的磁导率。

平均粒径

本发明的铁氧体粒子的平均粒径为1~2000nm。在平均粒径小于1nm的情况下,即使进行了表面处理,粒子也会凝聚,从而无法在树脂、溶剂或树脂组合物中获得优异的分散性。另一方面,如果平均粒径超过2000nm,则可以确保上述分散性,但是在构成含有铁氧体粒子的成形体时,可能因铁氧体粒子的存在而使成形体的表面产生凹凸。并且,当成形体被用于电子设备的线路和电缆等的柔性印刷线路材料时,形成在其表面的金属线路可能由于上述凹凸而损坏。铁氧体粒子的平均粒径优选为1~800nm,更优选为1~300nm。

结晶形态

本发明的铁氧体粒子的形态为单晶体。当铁氧体粒子为多晶体时,在通过煅烧进行晶体生长的过程中,在一个粒子内的微细结构中会产生晶界。其结果是,由于交变磁场引起的磁畴壁通过晶界时,磁畴壁停在晶界处,因此使得频率特性可能变差。与此相对地,当铁氧体粒子为单晶体时,因交变磁场产生的磁畴壁不穿过晶界,因此不仅在频率特性方面优异,而且即使可以看到因磁畴壁的共振引起的磁导率的最大值,但在从低频侧到高频侧的宽频带中也可以获得基本恒定的磁导率。

粒子形状

本发明的铁氧体粒子,由于含有zn从而具有多面体形状。可以认为这是由于zn的饱和蒸气压高,因此在铁氧体粒子生长时,zn从粒子内部向外部释放,此时由于zn起到助熔剂的作用,因此变成单晶体,且所生成的粒子变成反映晶体结构的多面体形状。

组成

本发明的铁氧体粒子是ni-zn-cu系铁氧体粒子,该铁氧体粒子含有5~10重量%的ni、15~30重量%的zn、1~5重量%的cu、25~50重量%的fe。本发明的铁氧体粒子,由于是具有上述组成的ni-zn-cu系铁氧体粒子,因此如后所述,能够同时获得高饱和磁化强度和低剩余磁化强度,而且,能够在低施加电压~高施加电压的范围内稳定地获得高电阻。

当ni的含量小于5重量%时,由于电阻变低因此不优选。另一方面,当ni的含量超过10重量%时,由于zn的含量变得相对过少,因此不能够提高饱和磁化强度。

当zn的含量小于15重量%时,不能在铁氧体粒子的表面充分地偏析zn、且低施加电压时的电阻变低。而且,可能难以变成多面体形状。另一方面,当zn的含量超过30重量%时,由于ni的含量相对变少,因此不能够提高饱和磁化强度。

当cu的含量小于1重量%时,不能在铁氧体粒子的表面充分地偏析cu、且低施加电压时的电阻变低。另一方面,当cu的含量超过5重量%时,由于ni的含量相对变少,因此不能够提高饱和磁化强度。

当fe的含量小于25重量%时,由于fe的绝对量少,因此不能生成铁氧体成分,不能提高饱和磁化强度。另一方面,当fe的含量超过45重量%时,铁氧体粒子的剩余磁化强度变高,铁氧体粒子之间变得容易凝聚,可能难以使该铁氧体粒子均匀地分散在树脂、溶剂或树脂组合物中。

本发明的铁氧体粒子,优选zn在其表面偏析。虽然zn也存在于铁氧体粒子的内部,但通过zn在表明偏析,因此能够进一步提高后述的电阻。

本发明的铁氧体粒子,优选cu在其表面偏析。虽然cu也存在于铁氧体粒子的内部,但通过cu在表明偏析,因此能够进一步提高电阻。cu的表面偏析既可以发生在表面zn偏析的区域,也可以发生在表面没有zn偏析的区域。

饱和磁化强度

本发明的铁氧体粒子,由于是具有上述组成的ni-zn-cu系铁氧体粒子,因此能够获得适度的饱和磁化强度。由此,使用该铁氧体粒子来构成树脂成形体时,通过施加磁场能够吸附该树脂成形体。该铁氧体粒子的饱和磁化强度优选在20~60am2/kg的范围。在饱和磁化强度小于20am2/kg的情况下,通过施加磁场可能难以吸附上述树脂成形体。另一方面,在具有上述平均粒径的ni-zn-cu系铁氧体粒子中,难以实现超过60am2/kg的饱和磁化强度。

剩余磁化强度

本发明的铁氧体粒子,由于是具有上述组成的ni-zn-cu系铁氧体粒子,因此能够获得低剩余磁化强度。由此,该铁氧体粒子能够在树脂、溶剂或树脂组合物中获得优异的分散性。该铁氧体粒子的剩余磁化强度优选为5am2/kg以下。当剩余磁化强度超过5am2/kg时,铁氧体粒子之间变得容易凝聚,可能难以使该铁氧体粒子均匀地分散在树脂、溶剂或树脂组合物中。

粉体电阻

本发明的铁氧体粒子,由于是具有上述组成的ni-zn-cu系铁氧体粒子,因此能够获得粉体电阻(电阻)。由此,使用包含该铁氧体粒子的树脂成形体来构成印刷线路材料时,能够防止电流泄漏的发生,同时能够确保耐久性。粉末电阻的体积电阻率优选为1×107ω·cm以上。

当在低施加电压下的低电阻时,由于电流容易在铁氧体粒子的粒子表面上流动,因此在含有该铁氧体粒子作为填料的树脂成形体中,电流变得容易在局部的管脚孔或膜厚较薄的区域流动。其结果是,在将含有该铁氧体粒子的树脂膜作为柔性印刷线路材料使用时,存在印刷线路材料周边的部件容易发生电流泄露的问题。并且,当在高施加电压下的高电阻时,由于容易受流入铁氧体粒子的一个粒子整体内的电流的影响,因此存在含有该铁氧体粒子的树脂成形体整体变成过电流、且该树脂成形体变得容易变形的问题。由此,更优选铁氧体粒子的粉体电阻在200~1000v的施加电压范围内,其体积电阻率为1×107ω·cm以上。

bet比表面积

本发明的铁氧体粒子,优选其bet比表面积为1~30m2/g。在bet比表面积小于1m2/g的情况下,当构成含有铁氧体粒子的树脂组合物时,粒子表面与树脂组合物之间的亲和力变得不足,粒子表面存在的树脂组合物可能局部地上升,当使用该树脂组合物来构成成形体时,在成形体的表面可能产生凹凸。

铁氧体粒子的制备方法

下面,对上述铁氧体粒子的制备方法进行说明。

上述铁氧体粒子,可以通过将含有fe、ni、zn及cu的铁氧体原料在大气中热喷涂来进行铁氧体化,继而急冷凝固后,仅回收粒径在指定范围内的粒子的方式来制备。

制备上述铁氧体原料的方法没有特别的限定,可以采用现有公知的方法,也可以使用干法或湿法。

作为铁氧体原料(造粒物)的制备方法的一个例子,称取适量的fe原料、ni原料、zn原料及cu原料来形成指定的铁氧体组成,然后加水并粉碎而制成浆料。将制成的粉碎浆料用喷雾干燥器造粒并分级而制备具有指定粒径的造粒物。考虑到所获得的铁氧体粒子的粒径,造粒物的粒径优选为0.5~10μm大小。并且,作为另一个例子,将成分调制完毕的铁氧体原料混合,并进行干式粉碎,使各原材料粉碎分散,用造粒机将该混合物造粒并分级而制备具有指定粒径的造粒物。

将这样制备而成的造粒物在大气中热喷涂来进行铁氧体化。在热喷涂中可以使用燃烧气体和氧气的混合气体作为可燃气体燃烧火焰,并且燃烧气体和氧气的容量比为1:3.5~6.0。在可燃气体燃烧火焰中的氧气相对于燃烧气体的比例小于3.5的情况下,熔融会不充分。当氧气相对于燃烧气体的比例超过6.0时,铁氧体化困难。例如,相对于10nm3/hr的燃烧气体,可能够以35~60nm3/hr的比例来使用氧气。

作为用于上述热喷涂的燃烧气体,可以使用丙烷气体、丙烯气体、乙炔气体等,可特别优选使用丙烷气体。并且,为了在可燃气体的燃烧过程中输送造粒物,可以使用氮气、氧气或空气作为造粒物载气。被输送的造粒物的流速优选为20~60m/sec。并且,优选在1000~3500℃的温度下进行上述热喷涂,更优选在2000~3500℃的温度下进行。

继而,通过使经热喷涂形成铁氧体的铁氧体粒子搭载空气供气形成的气流进行输送的方式在大气中急冷凝固,然后收集并回收平均粒径为1~2000nm的铁氧体粒子。例如,可以通过如下方式进行所述收集。即,使急冷凝固后的铁氧体粒子搭载空气供气形成的气流进行输送,对于粒径超过上述范围的铁氧体粒子,使其在气流途中落下,通过设置在气流的下游侧的过滤器来收集具备上述粒径范围的铁氧体粒子。

之后,根据需要对回收到的铁氧体粒子进行分级,并调整粒度至指定的粒径。作为分级方法,可以使用已知的的风力分级法、丝网过滤法、沉降法等。并且,也可以用旋风分离器等去除大粒径的粒子。

此外,优选用偶联剂对获得的铁氧体粒子,进行表面处理。通过用偶联剂进行表面处理,可以进一步提高铁氧体粒子在树脂、溶剂或树脂组合物中的分散性。作为偶联剂,可以使用各种硅烷偶联剂、钛酸酯系偶联剂、铝酸酯系偶联剂,更优选可以使用癸基三甲氧基硅烷和正辛基三乙氧基硅烷。表面处理量虽然取决于铁氧体粒子的bet比表面积,但优选以硅烷偶联剂换算相对于铁氧体粒子为0.05~2重量%。

本发明铁氧体粒子的用途

本发明的铁氧体粒子例如可以用于柔性印刷线路材料用的树脂成形体中。首先,通过将铁氧体粒子添加到含有树脂和水性溶剂或、含有树脂和溶剂型溶剂的树脂组合物中,并搅拌、混合,从而使铁氧体粒子分散到树脂组合物中。继而,通过将获得的含有填料的树脂组合物涂覆到基材上,并使溶剂挥发树脂硬化,从而能够制备树脂成形体。

上述铁氧体粒子在上述树脂成形体中作为磁性填料发挥作用。由于铁氧体粒子的饱和磁化强度高且剩余磁化强度低,因此,在树脂成形体上层压金属层并形成金属线路时,通过施加磁场能够吸附并除去不需要的树脂成形体。

上述铁氧体粒子,由于能够在低施加电压~高施加电压的范围稳定地获得高电阻,因此,在将含有该铁氧体粒子的树脂成形体作为柔性印刷线路材料来使用时,能够抑制电流泄露的发生且能够确保耐久性。

此外,本发明的铁氧体粒子,不限于用在柔性印刷线路材料用的树脂成形体中,能够用于各种用途。可以将铁氧体粒子用作填料,特别是用作磁性填料,也可以用作成形体用原料。当将铁氧体粒子用作成形体用原料时,能够进行成形、造粒、涂覆等,也可以进行煅烧。且如上所述,由于该铁氧体粒子的频率特性优异,能够在1mhz~2ghz的频带中获得基本恒定的磁导率,因此也可以用作电磁波屏蔽材料。

以下,基于实施例等对本发明进行具体说明。

实施例

1、铁氧体粒子的制备

实施例1

以摩尔比44.9:16.7:33.4:5.1的比例称取氧化铁(fe2o3)、氧化镍(nio)、氧化锌(zno)及氧化铜(cuo)并进行混合。加水并粉碎以制备固含量为50重量%的浆料。使用喷雾干燥器将制成的浆料造粒并分级以制备平均粒径为5μm的造粒物。

接着,通过将获得的造粒物在丙烷:氧气为10nm3/h:35nm3/hr的可燃性气体的燃烧火焰中、以流速约40m/sec的条件进行热喷涂来进行铁氧体化,继而,通过搭载空气供气形成的气流进行输送,而在大气中迅速冷却。此时,由于在使造粒物连续流动的同时进行了热喷涂,因此,热喷涂并迅速冷却后的粒子不互相粘结而彼此独立。继而,通过气流下游侧设置的过滤器收集冷却后的粒子。此时,由于粒径大的粒子在气流途中落下,因此不被过滤器收集。接着,对收集到的粒子,通过分级除去粒径超过2000nm的粗粉,获得铁氧体粒子。即,获得的铁氧体粒子的最大粒径为2000nm以下。制备条件在表1中示出。

实施例2

在本实施例中,除了使氧化铁、氧化镍、氧化锌及氧化铜的摩尔比为45.6:12.3:35.4:6.8之外,以与实施例1相同的方式制备铁氧体粒子。

比较例1

在本比较例中,除了使氧化铁、氧化镍、氧化锌及氧化铜以摩尔比为43.22:6.17:43.69:6.64加以混合以外,以与实施例1完全相同的方式获得造粒物。继而,除了使用本比较例中获得的造粒物以外,以与实施例1完全相同的方式制备铁氧体粒子。

比较例2

在本比较例中,首先,除了使氧化铁、氧化镍、氧化锌及氧化铜以摩尔比为70.0:12.0:15.0:3.0加以混合之外,以与实施例1完全相同的方式获得造粒物。继而,将获得的造粒物放置于匣钵中,在氧浓度为0体积%的氮气环境下,用1200℃的电炉中煅烧4小时来进行铁氧体化,从而获得与匣钵形状相符的成块的煅烧物。使获得的煅烧物在大气中迅速冷却,并将冷却后的煅烧物用研钵经研磨加以粉碎,来制备铁氧体粒子。

比较例3

在本比较例中,除了使氧化铁、氧化镍、氧化锌及氧化铜以摩尔比为44.9:16.7:38.0:5.1加以混合以外,以与实施例1完全相同的方式获得造粒物。继而,使用本比较例中获得的造粒物,以与实施例1完全相同的方式进行热喷涂,然后,除了没有使冷却后的粒子搭载气流而是直接收集(全部收集)以外,以与实施例1相同的方式制备铁氧体粒子。

比较例4

在本比较例中,除了使氧化铁和二氧化锰(mno2)以摩尔比为80:20加以混合以外,以与实施例1完全相同的方式获得造粒物。继而,除了使用本比较例中获得的造粒物以外,以与实施例1完全相同的方式制备铁氧体粒子。

比较例5

在本比较例中,除了使氧化铁、二氧化锰、氧化镁(mgo)及氧化锶(sro)以摩尔比为50:40:10:1.25加以混合以外,以与实施例1完全相同的方式获得造粒物。继而,除了使用本比较例中获得的造粒物以外,以与实施例1完全相同的方式制备铁氧体粒子。

表1

2、制涂膜用油墨的制备及树脂成形体的制备

为了制备含有作为填料的、在实施例1~2和比较例1~5中获得的铁氧体粒子的树脂成形体,首先,按照如下方式制备作为含有该铁氧体粒子的树脂组合物的制涂膜用油墨。

将实施例1~2及比较例1~5的铁氧体粒子与环氧类树脂混合,制备制涂膜用油墨。制涂膜用油墨的制备,通过将65重量份的铁氧体粒子、以树脂固含量换算的12重量份的环氧类树脂、和48重量份的甲苯混合,并使用均化器使其分散的方式进行。

接着,使用获得的制涂膜用油墨,通过贝氏涂抹器(sa-201,tester产业株式会社)在作为基材的pet膜或玻璃板上形成涂膜。涂膜厚度设为4mil(101.6μm),涂膜宽度设为10cm。之后,通过使溶剂干燥、使树脂固化,从而获得树脂膜。

3、铁氧体粒子的评价方法

对获得的实施例1~2和比较例1~5的铁氧体粒子进行化学分析,同时评价粉体特性(结晶形态、粒子形状、平均粒径、bet比表面积、表面偏析元素)、磁特性(饱和磁化强度、剩余磁化强度)、及电特性(体积电阻率)。各测定方法如下所述。将结果显示在表2中。体积电阻率示出的是施加电压为200v和1000v时的值。

化学分析

按照如下方式测定铁氧体粒子中金属成分的含量。首先,称取0.2g铁氧体粒子,将20ml1n盐酸和20ml1n硝酸加入到60ml纯水中并加热以制备完全溶解了铁氧体粒子的水溶液。将获得的水溶液放入icp分析装置(icps-1000iv,株式会社岛津制作所)中,测定铁氧体粒子中金属成分的含量。并且,表2中记载的“<0.01”意思是指测定误差或存在来自原料或制造工序等的不可避免的杂质。

结晶形态

使用扫描透射电子显微镜hd-2700cs-correctedstem(株式会社日立高新技术制)观察铁氧体粒子的结晶形态。加速电压设为200kv。图1示出了实施例1的铁氧体粒子通过stem观察的二次电子成像(20万倍放大率)的图像。

粒子形状

使用透射电子显微镜hf-2100cold-fe-tem(株式会社日立高新技术制)观察铁氧体粒子的形状。加速电压设为200kv。图2示出了实施例1的铁氧体粒子的tem像(20万倍放大率)的图像。

平均粒径

对于实施例1~2和比较例2~3的铁氧体粒子,将水平费雷特直径作为平均粒径,对于比较例1、4~5的铁氧体粒子,将体积平均粒径作为平均粒径。

水平费雷特直径

对获得的铁氧体粒子,使用扫描电子显微镜fe-sem(su-8020、株式会社日立高新技术制)以20万倍放大率进行拍摄。此时,在能够数出100以上粒子的视野中对铁氧体粒子进行拍摄。使用图像分析软件(image-proplus,媒体控制科学(mediacybernetics)公司)对拍摄到的sem图像进行图像分析。对获得的各粒子的图像通过手动测量来测出各粒子的水平费雷特直径,并将其作为平均粒径。

体积平均粒径

将10g获得的铁氧体粒子与作为分散介质的80ml水一起放入烧杯中,并添加2~3滴作为分散剂的六偏磷酸钠水溶液。其次,对于获得的溶液,通过超声波均化器(uh-150,株式会社smt)以输出级别4振荡20秒,从而使铁氧体粒子分散在溶液中。继而,除去烧杯表面产生的泡沫,然后进行固液分离,回收铁氧体粒子。对回收的铁氧体粒子使用microtrac粒度分析仪(model9320-x100,日机装株式会社)测定体积平均粒径。

bet比表面积

使用比表面积测定装置(macsorbhmmodel-1208,株式会社mountech)测定bet比表面积。首先,将约10g获得的铁氧体粒子置于包药纸上,并用真空干燥器脱气以确认真空度为-0.1mpa以下,然后在200℃下加热2小时,从而除去铁氧体粒子表面附着的水分。继而,将约0.5~4g除去水分的铁氧体粒子放入该装置专用的标准样品池中,并用精密天平精确称量。继而,将称取的铁氧体粒子放置在该装置的测定端口上进行测定。测定通过一点法进行。测定环境为温度10~30℃、2相对湿度0~80%(无结露)。

表面偏析元素

对通过上述扫描透射电子显微镜观察到的铁氧体粒子的图像(stem像)进行能量分散型x射线分析(edx)。分析过程中使用了edaxoctanetultraw(ametek公司制)。图3示出了实施例1的铁氧体粒子的edx分析结果。

磁特性

使用样品振动型磁性测量装置(vsm-c7-10a,东英工业株式会社)进行磁特性的测定。首先,将获得的铁氧体粒子填充到内径5mm、高度2mm的样品池中,放置于上述装置。在上述装置中,施加磁场并扫描到5k·1000/4π·a/m。其次,降低外加磁场以在记录纸上绘制滞后曲线。在该曲线中,将外加磁场为5k·1000/4π·a/m时的磁化强度作为饱和磁化强度,将外加磁场为0k·1000/4π·a/m时的磁化强度作为剩余磁化强度。

粉体电阻

粉体电阻的测定通过如下方式进行。首先,将试样(铁氧体粒子)填充到截面积为4cm2的氟树脂制的圆筒中,使其高度为4mm,然后,在两端安装电极,再从其上面放置1kg的砝码。继而,使用吉时利仪器公司制造的6517a型绝缘电阻测试仪器,给上述电极施加测量电压(200v和1000v),并测定60秒后的电阻,算出体积电阻率。

磁导率

磁导率的测定使用安捷伦科技公司制造的e4991a型rf阻抗/材料分析仪16454a磁性材料测定电极来进行。首先,将9g铁氧体粒子和1g粘合剂树脂(kynar301f:聚氟乙烯)放入100cc的聚乙烯容器中,并通过球磨机以100rpm的转速搅拌30分钟以进行混合。搅拌结束后,将约0.6g获得的混合物填充到内径4.5mm、外径13mm的模具中,并用压机以40mpa的压力压制1分钟。通过热风干燥机将获得的成形体在140℃温度下加热固化2小时,获得测定用样品。然后,将测定用样品放入测定装置,同时将事先测定的测定用样品的外径、内径及高度输入到测定装置。测定过程中,振幅为100mv,以对数刻度扫描1mhz~3ghz的频率范围,对复磁导率的实数部μ'进行了测定。其中,在超过2ghz频率的频带中,测定夹具的影响较大无法测定。将所获得的图形显示在图4中。

表2

*1:5k·1000/4π·a/m时的磁化强度

*2:ok·1000/4π·a/m时的磁化强度

4、制涂膜用油墨和树脂成形体的评价方法

对使用实施例1~2和比较例1~5中获得的铁氧体粒子的制涂膜用油墨、及使用该制涂膜用油墨形成的树脂成形体评价如下。将结果显示在表3中。

分散性

对于使用实施例1~2和比较例1~5中获得的铁氧体粒子的制涂膜用油墨,根据搅拌时直到分散均匀为止所需要的时间来评价铁氧体粒子在树脂组合物中的分散性。表3中各符号的含义如下。另外,通过肉眼观察的方式来判定粒子是否分散均匀。

○:直到分散均匀为止的搅拌时间小于5分钟。

△:直到分散均匀为止的搅拌时间大于5分钟小于30分钟。

×:直到分散均匀为止的搅拌时间为30分钟以上。

表面平滑度

对于使用上述制涂膜用油墨形成的树脂成形体,使用千分尺测定膜厚。用不同的位置测定9次。然后,算出最大膜厚与最小膜厚之间的差值(最大膜厚-最小膜厚),并根据该差值评价树脂膜的表面平滑度。表3中各符号的含义如下。

○:最大膜厚-最小膜厚=10μm以下。

△:最大膜厚-最小膜厚=10~20μm。

×:最大膜厚-最小膜厚=20μm以上。

表3

5、铁氧体粒子的评价结果

如图1所示,可以明显地看出实施例1的铁氧体粒子具有多面体的粒子形状。如图2所示,由于在实施例1的铁氧体粒子的内部没能观察到晶界,因此可以明显地看出实施例1的铁氧体粒子为单晶体。如表1所示,实施例1的铁氧体粒子的平均粒径在1~2000nm的范围内。并且,对于实施例2的铁氧体粒子也得到了与实施例1的铁氧体粒子相同的结果。

如表2所示,实施例1~2的铁氧体粒子的金属成分由fe、ni、zn和cu组成,ni的含量在5~10重量%的范围内,zn的含量在15~30重量%的范围内,cu的含量在1~5重量%的范围内,fe的含量在25~45重量%的范围内。实施例1和实施例2的铁氧体粒子中包含的mn和sr可以认为是来自原料或制造工序等的不可避免的杂质。并且,实施例1~2的铁氧体粒子除了上述金属以外的金属成分在测定限值以下。

此外,实施例1~2的铁氧体粒子的饱和磁化强度为20am2/kg以上,剩余磁化强度在5am2/kg以下,施加电压在200v和1000v时的体积电阻率为1×107ω·cm以上。因此,明确了实施例1~2的铁氧体粒子的饱和磁化强度高,且在低施加电压~高施加电压的范围内能够稳定地获得高电阻,而且剩余磁化强度低。

图3为示出实施例1的铁氧体粒子的edx分析结果的图。横轴表示从粒子外表面向内部扫描的电子束的移动距离(单位:μm),纵轴表示氧气、铁、镍、铜及锌的强度。由于各线在图3的横轴0.004μm附近上升,因此可以认为横轴0.004μm附近相当于铁氧体粒子的表面。如图3所示,表示锌的线,在横轴的范围,强度出现最大值,在0.006μm以上强度减小。根据该结果,可以明显地看出铁氧体粒子外表面的锌含量多于内部,且在铁氧体粒子外表面至0.002μm深的区域偏析锌。并且,表示铜的线,在横轴0.004~0.006μm的范围,强度出现最大值,在0.006μm以上强度减小。根据该结果,可以明显地看出铁氧体粒子外表面的铜含量多于内部,且在铁氧体粒子外表面至0.002μm深的区域偏析铜。对于实施例2的铁氧体粒子也获得与图3相同的结果。

另一方面,可以确认与实施例1~2的铁氧体粒子相同,比较例1的铁氧体粒子是平均粒径为1~2000nm的单晶体,且具有多面体状的粒子形状。并且,与实施例1~2的铁氧体粒子相比,比较例1的铁氧体粒子的饱和磁化强度低,施加电压200v下的体积电阻率低。可以认为这是由于相比于实施例1~2在比较例1中铁的含量少而锌的含量多的缘故。

可以确认比较例2的铁氧体粒子虽然具有多面体状的粒子形状,但与实施例1~2的铁氧体粒子不同,其是平均粒径为0.24μm的大的多晶体。可以认为这是由于在比较例2中用电炉进行煅烧的原因。

比较例3的铁氧体粒子,混合有由单晶体构成的粒子和由多晶体构成的粒子,与实施例1~2的铁氧体粒子相比,其平均粒径大。可以认为这是由于在比较例3中全部收集了热喷涂和冷却后的铁氧体粒子,因此其中包含有大粒径的粒子,平均粒径变大了。

与实施例1~2的铁氧体粒子相同,作为mn系铁氧体粒子的比较例4的铁氧体粒子虽然是平均粒径为1~2000nm的单晶体,但是粒子形状为圆球状。并且,与实施例1~2的铁氧体粒子相比,比较例4的铁氧体粒子的剩余磁化强度高,在施加电压200v和1000v下的体积电阻率低。

与实施例1~2的铁氧体粒子相同,作为mn-mg系铁氧体粒子的比较例5的铁氧体粒子虽然是平均粒径为1~2000nm的单晶体,但是粒子形状为圆球状。并且,与实施例1~2的铁氧体粒子相比,比较例5的铁氧体粒子的剩余磁化强度高,在施加电压1000v下的体积电阻率低。

图4是示出表示实施例1和比较例1的复磁导率的实数部μ'的频率依赖性的图。根据图4,可以明显地看出实施例1的铁氧体粒子,虽然复磁导率的实数部μ'的值本身较低,但在频率波动小的1mhz~2ghz的频带中显示出基本恒定的值。另一方面,可以明显地看出比较例1的铁氧体粒子,虽然与实施例1的铁氧体粒子同样地频率波动小,但复磁导率的实数部μ'的值比实施例1低。

6、制涂膜用油墨及树脂成形体的评价结果

如表3所示,实施例1~2的铁氧体粒子在树脂组合物中的分散性优异。因此,可以认为实施例1~2的铁氧体粒子能够确保制造树脂成形体时的优异的生产性。之所以实施例1~2的铁氧体粒子分散性优异可以认为是由于其平均粒径小且剩余磁化强度低的原因。并且,包含实施例1~2的铁氧体粒子的制涂膜用油墨,能够形成表面凹凸小且表面平滑性优异的树脂成形体。

相反,比较例2~3的铁氧体粒子由于其平均粒径大,因此在树脂组合物中的分散性低,分散所需的时间长。并且,包含实施例2的铁氧体粒子的制涂膜用油墨不能形成涂膜,不能形成树脂成形体。包含比较例3的铁氧体粒子的制涂膜用油墨形成了表面凹凸大且变形的树脂成形体。

比较例4~5的铁氧体粒子由于剩余磁化强度高,因此粒子之间容易凝聚,至分散完全所需的时间长。包含比较例4~5的铁氧体粒子的制涂膜用油墨,能够形成表面凹凸小且表面平滑性优异的树脂成形体。但比较例4~5的铁氧体粒子由于制备制涂膜用油墨时所需的时间长,因此可以认为制备树脂成形体时的生产性较低。

根据以上结果,可以明显地看出实施例1~2的铁氧体粒子兼具高饱和磁化强度和高电阻,同时在树脂组合物中的分散性高。而且,实施例1~2的铁氧体粒子在构成树脂成形体时能形成具备优异的表面平滑性的树脂成形体。

工业实用性

本发明的铁氧体粒子,由于兼具高饱和磁化强度和高电阻,因此适合作为磁性填料和成形体原料。并且,由于该铁氧体粒子的平均粒径小且剩余磁化强度低,因此能够在树脂、溶剂或树脂组合物中获得优异的分散性。由此,该铁氧体粒子在制备含有作为填料的该铁氧体粒子的树脂组合物、及在形成由该树脂组合物组成的树脂膜等的成形体时,能够获得在成形体的表面防止铁氧体粒子凝聚的平滑的表面,且其生产性优异。

此外,在通过将含有作为填料的上述铁氧体粒子的树脂组合物或由该树脂组合物构成的上述树脂成形体用于电子设备的线路和电缆等柔性印刷线路材料来形成金属线路的过程中,能够通过磁场将不需要的上述树脂成形体加以吸附并除去,因此能够简便且高效地形成金属线路。并且,获得的柔性线路材料,由于包含能够在低施加电压~高施加电压的范围稳定地获得高电阻的上述铁氧体粒子,因此,能够抑制电流泄露的发生且能够确保耐久性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1