CuO纳米颗粒修饰ZnO纳米线阵列的光电材料、制备及应用的制作方法

文档序号:18905626发布日期:2019-10-18 22:37阅读:714来源:国知局
CuO纳米颗粒修饰ZnO纳米线阵列的光电材料、制备及应用的制作方法

本发明属于纳米材料技术领域,具体涉及一种cuo纳米颗粒修饰zno纳米线阵列的光电材料、制备及应用。



背景技术:

zno是一种环境友好型的n-型半导体,并且相比于其他能带隙较宽的金属氧化物具有更好的电子迁移性能、稳定的光腐蚀性和良好的光电化学性质而被认为是最具有吸引力的光电、在太阳能存储和利用、光电转化中具有广泛应用。过渡金属氧化物由于储存量大,使用成本低,且在很多领域中表现出的特性而逐渐成为科研工作者研究的热点。其中,氧化铜(cuo,eg=1.2-1.8ev)是典型的窄禁带的p-型半导体,在地球上可大量获得,是公知的多功能材料,其被广泛地用于能量转换过程,如染料敏化太阳能电池。目前,科研工作者对zno和cuo纳米材料的研究主要集中在单一材料的制备和研究其光电性能上,并取得了一定得进展。但迄今为止,研究工作仍有很多问题还没有解决或有待深入研究。zno和cuo氧化物半导体在实际使用中还存在的一些问题,比如,在光电方面,由于zno氧化物型半导体带隙比较宽,光谱响应范围小,只能吸收太阳光中的紫外光部分,大约占太阳能总能量的4%,因此太阳能的利用率很低,在应用上受到限制。同时,由于它的光生载流子的复合几率过大,所以单独使用zno作为光电极是远远不够的。cuo具有相对较高的载流子浓度和低电阻率,但其空穴迁移率和导电性较差,这将限制纳米cuo在很多领域的应用。cuo作为窄带隙半导体材料,可见光易将其电子激发,但同时造成了光生载流子易复合的缺陷,降低cuo光电性能。将cuo和zno纳米材料进行复合来构建p-n型结构的纳米材料,这样改变了样品中电子的能带结构和电子与空穴的复合速度,增加了样品的有效光生电荷数量,从而提高了样品的光电转换效率。

目前已经有大量科研工作者从事cuo和zno的复合并取得了一定的成果,但是他们在制备cuo的阶段所采用的的合成方法一般是电化学方法、热蒸方法,这些方法所合成的cuo材料是封闭式的包裹在zno材料的表面,那么在光电测试的过程中,承载光吸收的材料为cuo材料,这种结构减小的光吸收的利用率。除此之外,这些方法需要较高环境的要求,设备贵重,且不易大面积沉积,实现不了工业化生产。



技术实现要素:

针对现有技术的缺陷和不足,本发明的目的是提供一种cuo纳米颗粒修饰zno纳米线阵列的光电材料、制备及应用,解决现有的cuo和zno合成的复合材料光吸收利用率低的问题。

为了实现上述目的,本发明采用如下技术方案予以实现:

一种cuo纳米颗粒修饰zno纳米线阵列的光电材料,包括zno纳米线和附着于zno纳米线上的cuo纳米颗粒。

具体的,所述的zno纳米线的长度为3~5μm,直径为60~200nm,cuo纳米颗粒的直径为10~30nm。

本发明还公开了上述cuo纳米颗粒修饰zno纳米线阵列的光电材料的制备方法,具体包括:采用溶胶凝胶法制备zno溶胶和cuo溶胶;将zno溶胶沉积到导电膜衬底上形成zno种子层薄膜,采用水热法在zno种子层薄膜上生长zno纳米线阵列;再将cuo溶胶沉积到zno纳米线上,加热后,获得表面附着有cuo纳米颗粒的zno纳米线。

具体的,所述的zno种子层的制备过程为:将乙酸锌溶于乙醇中搅拌,再加入乙醇胺,得到透明溶液,将透明溶液在70~75℃下陈化5~12h,形成溶胶;将制备的溶胶旋涂在透明导电膜衬底上,然后在350~400℃下保温时间90min,在ito衬底表面沉积zno种子层薄膜。

优选的,所述的乙酸锌浓度为0.20~0.35mol/l;乙醇胺和乙酸锌的摩尔比为1:1;在衬底旋涂溶胶的转速为3000~3500转/秒,旋涂的次数为3~5次,优选4次。

具体的,所述的zno纳米线阵列的生长过程为:将乙酸锌和氢氧化钠混合搅拌得到前驱体溶液,将沉积有zno种子层薄膜的衬底放入前驱体溶液中,在90~110℃下反应时间为4~6h,烘干,得到生长在衬底上的zno纳米线阵列。

优选的,所述的乙酸锌溶液的浓度0.06~0.08mol/l,前驱体溶液中锌离子和氢氧根离子浓度之比为1:20。

具体的,在zno纳米线上粘附cuo纳米颗粒的具体过程包括:

将醋酸铜溶于乙醇中搅拌后,加入乙二胺,得到蓝色透明的溶液,将该透明溶液在70~75℃下陈化5~12h,得到蓝色透明溶胶;

将制备的溶胶旋涂在zno纳米线阵列上,然后在300~400℃下保温时间90min,得到zno纳米线上附着有cuo纳米颗粒的材料。

优选的,所述的醋酸铜的浓度为0.20~0.30mol/l;乙二胺和醋酸铜的摩尔比为1:1~2:1;所述的溶胶的旋涂转速为500~1500转/秒,旋涂的次数为2~6次。

本发明还公开了上述cuo纳米颗粒修饰zno纳米线阵列的光电材料用于光电探测器的应用。

与现有技术相比,本发明的有益效果是:

(1)本发明制备的cuo纳米颗粒修饰zno纳米线阵列复合材料中,zno纳米线的直径为60~200nm,cuo纳米颗粒的平均直径大小为10~30nm,cuo纳米颗粒的形态均一,均匀分散在zno纳米线表面。从微观结构上,该复合材料具有很大的比表面积;该复合材料存在大量的异质结,光生载流子复合减少,电子空穴对有效分离,从而增加了载流子的寿命和载流子浓度;从物性融合上看,该复合材料既具有zno纳米线对光吸收的能力,也具有cuo纳米颗粒对光吸收的能力,是一种优异光电材料,在光电器件的应用中具有很大的前景。

(2)本发明的制备过程无需任何的模板和催化剂,工艺简单,产率高,且成本低廉,适合批量生产。

附图说明

图1是实施例1的zno纳米材料的xrd图谱。

图2是实施例1最终产物的xrd图谱。

图3是实施例1的zno纳米材料的sem照片。

图4是实施例1最终产物的sem照片。

图5是实施例1最终产物的的raman测试图谱。

图6是对比例1最终产物的sem照片。

以下结合说明书附图和具体实施方式对本发明做具体说明。

具体实施方式

本发明中“纳米线”是指横向尺寸(直径)在纳米尺度上的线。

本发明中“溶胶凝胶法”就是将原料在液相下混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,将溶胶经陈化胶粒间缓慢聚合形成凝胶。

本发明中的cuo纳米颗粒修饰zno纳米线阵列的光电材料的制备方法,首先采用溶胶凝胶法制备zno溶胶和cuo溶胶;将zno溶胶沉积到导电膜衬底上形成zno种子层薄膜,采用水热法在zno种子层薄膜上生长zno纳米线阵列;再采用旋涂的方式将cuo溶胶沉积到zno纳米线上,加热后,获得表面附着有cuo纳米颗粒的zno纳米线。通过具体实施例中的扫描图可以看出,本发明的光电材料包括zno纳米线和附着于zno纳米线上的cuo纳米颗粒,形成zno纳米线阵列为初级结构,cuo纳米颗粒为次级结构的分级结构材料。本发明制备的cuo纳米颗粒均匀分散在zno纳米线表面,使得该复合材料具有很大的比表面积,由于cuo以纳米颗粒的形式分散zno的表面,从物性融合上看,该光电复合材料既具有zno纳米线对光吸收的能力,也具有cuo纳米颗粒对光吸收的能力。

本发明的具体制备过程包括:

步骤1,制备zno种子层:

用丙酮和四氯化碳混合液、乙醇、去离子水超声清洗透明导电膜衬底,分别清洗3~5次,每次30min,之后烘干以备使用;其中,本发明中的透明导电膜衬底可选ito衬底和sto衬底,优选ito衬底。

将乙酸锌溶于乙醇中均匀搅拌,再逐滴滴入稳定剂乙醇胺,得到均匀透明的溶液;再将其放入70~75℃的烘箱中陈化5~12h,形成具有一定粘度的均匀透明的溶胶。其中,乙酸锌浓度为0.20~0.35mol/l;乙醇胺和乙酸锌的摩尔比为1:1。

将制备的溶胶旋涂在清洗后的衬底上,在350~400℃下保温时间90min,在ito导电层表面沉积一层zno种子层薄膜。其中,旋涂转速为3000~3500转/秒,旋涂的次数优选4次,每旋涂一层都在将衬底放在80℃的烘箱中进行热处理15min。其中,本发明中的“旋涂”是指旋转zno纳米线阵列,把液态涂覆材料涂覆在zno纳米线阵列上的工艺。

步骤2,制备zno纳米线阵列:

将乙酸锌和氢氧化钠混合搅拌得到前驱体溶液,其中,乙酸锌溶液的浓度0.06~0.08mol/l,前驱体溶液中锌离子和氢氧根离子浓度之比为1:20。

将沉积有zno种子层薄膜的衬底放入前驱体溶液中,在90~110℃下反应时间为4~6h,清洗、烘干,得到生长在ito衬底上的zno纳米线阵列。

步骤3,制备光电复合材料:

将醋酸铜溶于乙醇中搅拌后,加入乙二胺,得到蓝色透明的溶液,将该透明溶液在70~75℃下陈化5~12h,形成具有一定粘度的均匀蓝色透明的溶胶。其中,醋酸铜的浓度为0.20~0.30mol/l;乙二胺和醋酸铜的摩尔比为1:1~2:1。本发明还选择硫酸铜溶液作为原料,实验结果发现硫酸铜不溶解。

将所得的溶胶以500~1500转/秒的转速旋涂在步骤5制备的zno纳米线阵列上,旋涂2~6次,每旋涂一层都在将衬底放在80℃的烘箱中进行热处理15min;然后在300~400℃下保温时间90min,得到zno纳米线上附着有cuo纳米颗粒的复合光电材料。

通过本发明的制备方法制备的的cuo纳米颗粒修饰zno纳米线阵列的光电材料可用于光电探测器,还可以应用在气敏传感器、光催化、显示器件、压电和摩擦生电器件上。

以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例中,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。

实施例1

步骤1:制备zno种子层:

称取3.8413g、0.35mol/l的zn(ch3cooh)2·2h2o倒进烧杯,再倒入50ml的乙醇,在室温下搅拌30min后,量取1.2ml乙醇胺缓慢加入溶液中,继续搅拌约30min以上,形成透明均匀溶液,将所得溶液放入75℃的烘箱中沉化5h,得到透明均匀的溶胶。之后再对ito衬底依次以800转/秒、2000转/秒、3500转/秒的渐变速度旋涂镀膜,每个转速下旋涂时间大约为5秒,重复4次,每旋涂一层都在将ito衬底放在80℃的烘箱中进行热处理5h。旋涂结束后将ito衬底放入马弗炉中退火,升温到400℃,保温90min,制备zno种子层。

步骤2:制备zno纳米线阵列:

称取0.6208g的zn(ch3cooh)2·h2o粉体加入到20ml的去离子水中,充分搅拌形成zn(ch3cooh)2·h2o溶液,将2.3333g的naoh粉体加入到15ml的去离子水中,充分搅拌形成naoh溶液,再将zn(ch3cooh)2·h2o溶液慢慢加入到naoh溶液中,形成均匀的前驱体溶液;再将镀有zno种子层的ito衬底放入装有所得前驱体溶液的反应釜进行水热反应(内衬的容积为50ml),将其密封放置于100℃烘箱中反应4h,待反应结束后将ito用去离子水洗涤多次,然后将ito置于70℃烘箱中烘干,得到zno纳米线阵列。如图1和图3所示为步骤2制备的产物的x射线衍射(xrd)图谱和扫描电子显微镜(sem)照片,可以看出,制备的产物为zno纳米材料。

步骤3:制备光电复合材料:

称取1.9965g、0.20mol/l的cu(ch3cooh)2·h2o倒进烧杯,再倒入50ml的乙醇,在室温下搅拌30min后,量取3.4ml乙二胺缓慢加入溶液中,继续搅拌约30min以上,形成蓝色透明均匀溶液,将所得溶液放入75℃的烘箱中沉化5h,得到蓝色透明均匀的溶胶;使用该溶胶对生长zno纳米线阵列的ito进行旋涂镀膜,依次以500转/秒、1000转/秒、1500转/秒的渐变速度旋涂镀膜,每个转速下旋涂时间大约为5秒,重复2次,每旋涂一层都在将ito衬底放在80℃的烘箱中进行热处理15min。旋涂结束后将ito衬底放入马弗炉中退火,升温到300℃,保温90min,制备cuo纳米颗粒修饰zno纳米线阵列复合材料。

图2和图4所示分别为本实施例制备的最终产物的x射线衍射(xrd)图谱和扫描电子显微镜(sem)照片,可以看出,该产物是zno和cuo纳米复合材料,zno表面沉积的是cuo纳米颗粒;根据sem)照片,zno纳米线的长度为3~5μm,直径为60~200nm,cuo纳米颗粒的平均尺寸大小为10~30nm。

图5所示为本实施例的产物的拉曼(raman)测试图谱,通过该图谱可知,本实施例的产物是zno纳米材料和cuo纳米颗粒修饰zno纳米线阵列复合材料。

图6为本实施例的光电材料和在zno纳米材料在黑暗和光照条件下的电流值,其中zno纳米阵列的光电流密度大约为0.015macm-2,而cuo纳米颗粒修饰zno纳米线阵列复合材料的光电流密度大约为0.06macm-2。可以看出,本实施例的光电材料具有更好的光电相应特性,可用于光电探测器。

实施例2

本实施例与实施例1的区别在于:所述的步骤1中ito衬底放入马弗炉中退火温度为350℃。

本实施例制备的光电复合材料的形貌和性能同与实施例1。

实施例3

本实施例与实施例1的区别在于:所述的步骤3中生长zno纳米线阵列的ito衬底在马弗炉中退火温度为300℃。

本实施例制备的光电复合材料的形貌和性能同实施例1。

对比例1

本对比为例与是实施例1的区别在于:将得到的蓝色透明均匀溶液在75℃的烘箱中沉化5h后,再在常温下沉化24h,得到相对粘稠的蓝色透明均匀的溶胶。

如图6所示为最终得到的产物的扫描电子显微镜照片,可以看出,其为大量的cuo纳米颗粒覆盖在zno纳米线阵列的上方。显然,在本案例中,cuo纳米颗粒修饰zno纳米线阵列复合材料不能在较粘稠的cuo溶胶下形成。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1