晶片卡盘、其生产方法和曝光装置与流程

文档序号:24535199发布日期:2021-04-02 10:16阅读:74来源:国知局
晶片卡盘、其生产方法和曝光装置与流程

本发明涉及在制备半导体器件的光刻工艺步骤等中用于支撑基板的晶片卡盘构件。



背景技术:

已知在制备半导体器件的光刻工艺步骤中陶瓷材料例如碳化硅陶瓷和氮化硅陶瓷被用作晶片卡盘构件,该晶片卡盘构件用于支撑基板。其中,碳化硅陶瓷由于其高机械强度从而抵抗耐久性降低,并且由于其高导热性从而温度变化所引起的半导体晶片的定位精度的降低较小。因此,碳化硅陶瓷适合于晶片卡盘构件。然而,当将碳化硅构件研磨或抛光为预定形状以用作晶片卡盘材料时,已知在其表面出现细微裂纹,细碳化硅陶瓷颗粒从细微裂纹分离为粉尘。沉积在半导体器件的电路上的这些粉尘(废料)引起电路绝缘故障、短路或其他问题。

因此,已知在晶片卡盘的表面上形成多晶金刚石膜或硬质碳膜,以防止从晶片卡盘产生粉尘(日本专利公开no.平6-204324)。

在用于马达部件的碳化硅陶瓷中,也已知在空气中或在氧化气氛中在400℃至1400℃的范围内的温度下进行热处理能够减少粉尘的产生(日本专利公开no.2002-47078)。这是因为在空气中或在氧化气氛中的热处理形成含有氧化物的表面膜。

但是,仅在形成有多晶金刚石膜或硬质碳膜的晶片卡盘表面上减少灰尘产生,而在其上未形成这样的膜的侧面或背面上不能减少灰尘产生。

在空气中或在氧化气氛中在400℃至1400℃的范围内的温度下对碳化硅陶瓷进行热处理能够减少粉尘产生。然而,与碳化硅陶瓷相比,由此形成的含有氧化物的表面膜具有更低的机械强度和更高的摩擦系数。尽管这些在马达部件中不是大问题,但在需要纳米级的平坦度的构件例如用于晶片卡盘的构件中,由磨损引起的较低的平坦度以及由磨损引起的粉尘产生导致的晶片卡盘的耐久性较低成为问题。尽管碳化硅陶瓷构件具有高耐磨性,但是在晶片构件上的长时间滑动会导致磨损并损害定位精度或曝光性能(例如分辨率)。



技术实现要素:

本发明的第一方面提供晶片卡盘,其包括由含有碳化硅的陶瓷制成的基底,其中,所述基底具有氧化处理层,并且在所述基底的最外表面上形成有由类金刚石碳(dlc)制成的膜。

本发明的第二方面提供生产晶片卡盘的方法,包括:对由含有碳化硅的陶瓷制成的基底的表面进行氧化处理;以及形成由类金刚石碳(dlc)制成的膜。

通过以下参考附图对例示实施方式的描述,本发明的其他特征将变得清晰。

附图说明

图1是根据本发明的成膜装置的示意图。

图2a是根据本发明的晶片卡盘的示意图。

图2b是根据本发明的晶片卡盘的示意图。

图3a是根据本发明的晶片卡盘的示意图。

图3b是根据本发明的晶片卡盘的示意图。

图3c是根据本发明的晶片卡盘的示意图。

图4是根据本发明的曝光装置中的光刻工艺的示意图。

具体实施方式

下面更具体地描述本发明的实施方式。

晶片卡盘是在半导体设备的光刻工艺装置中保持半导体晶片的构件。晶片卡盘在与半导体晶片接触的晶片卡盘的表面上具有以数百微米至几毫米的间隔形成的突出销部,该突出销部的高度和直径为数十至数百微米。晶片卡盘还具有用于吸附半导体晶片的孔和凹槽。

图2a和2b是用于本发明的晶片卡盘的示意图。图2a是俯视图,图2b是侧视图。晶片卡盘21具有在厚度方向上贯穿晶片卡盘21的抽吸孔22。抽吸孔22用于吸引晶片(未图示)例如硅晶片。图中示出了27个径向配置的抽吸孔22,但可以调节抽吸孔22的大小、个数和配置以适当地将晶片抽吸并固定在卡盘21上。在完成固定到卡盘21的晶片的光刻工艺之后,停止晶片的抽吸,并且通过升降销孔23从卡盘21的背侧升高升降销(未示出)以从卡盘21分离晶片。图中示出了三个周向配置的升降销孔23,但可以调节升降销孔23的尺寸、数量和布置以适当地将晶片与卡盘21分离。将硅晶片保持在晶片卡盘21的上表面24上。在上表面24上形成突出销部(未示出)。晶片卡盘21可以经由晶片卡盘21的凸缘25固定到晶片平台。

图3a至图3c是在基底上形成的类金刚石碳膜和粘合层的示意图。在基底31上形成突出销部32。图3a至图3c示意地示出销部32的形状,并且未按比例示出销部32的高度和宽度以及销部32之间的距离。准备地说,如上所述,销部通常具有数十到数百微米的高度和直径,并且以数百微米至几毫米的间隔配置。在本发明中,如图3b中所示那样,能够在基底31的整个前表面(销部的上表面、侧表面和下表面)上形成由类金刚石碳(dlc)制成的膜(类金刚石碳膜)33。另外,在本发明中,如图3c中所示那样,能够在基底31的前表面上依次形成粘合层34和类金刚石碳膜33。由此,在晶片卡盘的最外表面上形成由类金刚石碳(dlc)制成的膜。

图4是曝光装置中的光刻工艺的示意图,该曝光装置是包括根据本发明的晶片卡盘的装置的示例。在图中,曝光光源41可以是水银灯、激光源(例如krf激光器或arf激光器)、或x射线光源。聚光透镜42能够将来自光源41的发散光转换为平行光。掩模43具有在石英部件等的表面上描绘的晶片的所期望的电路图案。缩小投影透镜44能够使在掩模43上描绘的电路图案缩小并投射在晶片45上。晶片45可以由硅制成。在光刻工艺中在施涂于晶片45的表面的光致抗蚀剂上描绘期望的电路图案。晶片卡盘46放置在晶片平台(未示出)上并且能够支撑晶片45,例如硅晶片。通过晶片平台,能够使晶片45和晶片卡盘46依次移动,能够使晶片45重复地曝光于电路图案。在图4的示意图中,使用光源(光)在光刻工艺中形成电路图案。然而,根据本发明的晶片卡盘也可以用于通过压制原始模具来转印数十纳米或更小的微图案的工艺中,例如纳米压印工艺。

曝光装置中的根据本发明的晶片卡盘能够通过减少磨损从而减少粉尘并改善耐久性。

根据本实施方式的晶片卡盘中使用的基底能够通过例如在与半导体晶片接触的晶片卡盘的表面上形成销状的含有碳化硅的陶瓷材料而具有规定的形状。

本实施方式中使用的含有碳化硅的陶瓷为碳化硅的烧结体或多晶。通过除了碳化硅成分以外还使用铍(be),硼(b),铝(al)和/或其化合物(碳化物,氮化物,氧化物)作为烧结助剂,能够形成致密的烧结体。碳化硅多晶能够通过化学气相沉积(cvd)法形成。更具体地,例如,能够通过采用热cvd法在石墨基底上由四氯化硅气体和甲烷气体形成厚度为几毫米的碳化硅多晶并通过切割或高温下气化去除石墨基底从而生产多晶碳化硅构件的单体。由于不包含烧结助剂,通过cvd法形成的多晶碳化硅构件具有比烧结体更高的纯度,并且对要形成的类金刚石碳膜具有高粘接性。多晶碳化硅构件由于其高机械强度和导热性,因此适于晶片卡盘构件。在本发明中,将主要由碳化硅组成的烧结体以及通过cvd法形成的多晶碳化硅构件称为含有碳化硅的陶瓷(碳化硅陶瓷)。

晶片卡盘应当具有高的平坦度,尤其是在晶片卡盘的与半导体晶片接触的表面上的销状部中。将基底研磨或抛光成预定形状时,在其表面出现细微裂纹,细小的碳化硅陶瓷颗粒从细微裂纹分离为粉尘(废料)。沉积在半导体器件的电路上的这些粉尘有时会引起电路绝缘故障或短路。

为了解决这些问题,在本实施方式中,首先对由含有碳化硅的陶瓷制成的基底的表面进行氧化处理。更具体地,例如,在空气中或在氧气氛中,在300℃至700℃的范围内的温度下将基底加热数十分钟至数十小时。由此氧化表面上的微裂纹部分并形成含有氧化物的膜(氧化处理层)。含有氧化物的膜(氧化处理层)的厚度在约1至100nm的范围内。含有氧化物的膜(氧化处理层)中的氧原子浓度大于25原子%。膜中的氧原子浓度能够通过电子显微镜的元素分析仪进行测定。氧化处理层中的氧原子浓度倾向于随着处理温度和处理时间而增加。

含有碳化硅的陶瓷材料通常具有高的热稳定性,在约300℃至700℃的范围内的温度下几乎不被氧化。然而,研磨或抛光所形成的微裂纹部分由于加工引起的缺陷或变形而具有高的反应性,可在低温下容易地被氧化。在微裂纹部分形成的含有氧化物的膜增加裂纹表面部分的体积,覆盖微裂纹部分,从而减少细颗粒从表面的分离。更高的氧化处理温度通常导致更厚的含有氧化物的膜和更高的防尘效果。然而,例如1000℃以上的氧化处理温度有时引起热变形,导致晶片卡盘的平坦度不足。因此,优选氧化处理温度低至300℃至700℃,并且处理时间更长(优选数小时以上)。含有碳化硅的陶瓷烧结体的最佳氧化处理条件取决于烧结前的粒径、烧结状态、烧结助剂的类型以及研磨或抛光条件。因此,适当地控制这些条件。通过cvd法形成的多晶碳化硅构件的最佳氧化处理条件也取决于多晶的平均粒径和研磨或抛光条件。因此,也适当地控制这些条件。

氧化处理后,形成由类金刚石碳(dlc)制成的膜(类金刚石碳膜)。

已知类金刚石碳膜通常是具有高膜应力并且易于分离的涂层材料,但是类金刚石碳膜对碳化硅构件具有较高的粘附性。

然而,在含有碳化硅的陶瓷烧结体中,在某些氧化处理条件下,在烧结助剂的表面上形成氧化层。这有时引起类金刚石碳膜与含有碳化硅的陶瓷构件之间的粘附性差以及类金刚石碳膜分离的问题。这是因为烧结助剂材料比碳化硅材料更容易被氧化。因此,也为了改善类金刚石碳膜的粘附性,优选氧化处理温度低至300℃至700℃。在这些氧化处理条件下,含有碳化硅的陶瓷烧结体中的烧结助剂的量通常少至按重量计的百分之几或更少,并且与类金刚石碳膜的粘附性处于实用水平。

通过cvd法形成的多晶碳化硅构件不含烧结助剂,免于烧结助剂部分的氧化,由氧化处理产生的与类金刚石碳膜的粘附性的降低较小。这可能是因为氧化处理中裂纹部分的氧化主要是由碳化硅晶粒内的反应引起的,与类金刚石碳膜接触的表面部分很少具有氧化部分。同样在这方面,通过cvd法形成的多晶碳化硅构件适合于基底。

能够在形成至少含有硅或碳的层之后,在至少含有硅或碳的层上形成类金刚石碳膜以改善粘附性。换句话说,能够依次层叠至少含有硅或碳的层和由类金刚石碳制成的膜(类金刚石碳膜)。

也能够在形成含有碳、硅、氧和氢的非晶层之后,在含有碳、硅、氧和氢的非晶层上形成类金刚石碳膜以改善粘附性。换句话说,能够依次层叠含有碳、硅、氧和氢的非晶层和类金刚石碳膜。

至少含有硅或碳的层、或者含有碳、硅、氧和氢的非晶层被称为粘合层。为了进一步改善碳化硅陶瓷构件与类金刚石碳膜之间的粘合性而形成粘合层。

在本发明中,至少含有硅或碳的层包括硅膜、氮化硅膜、或碳化物膜(例如碳化硅膜或氮化碳膜)。尽管至少含有硅或碳的层可以含有氧,但氧含量为25原子%以下,优选为20原子%以下。

含有碳、硅、氧和氢的非晶层由于其对类金刚石碳膜的高粘附性和较小的膜应力而适于粘合层。膜中的碳、硅、氧和氢原子浓度各自可以为5原子%以上,并且氧原子浓度可以为20原子%以下。膜中每种元素的浓度能够用电子显微镜的元素分析仪测量。

图1示出了用于形成粘合层和类金刚石碳膜的成膜装置。图1中所示的成膜装置是高频等离子体化学气相沉积(cvd)装置。本实施方式中使用的成膜装置不限于此,也可以使用已知的离子镀装置或溅射装置。本实施方式中的成膜装置能够依次形成粘合层和类金刚石碳膜,但可以用不同的装置形成粘合层和类金刚石碳膜。例如,粘合层可以用如图1中所示的高频等离子体cvd装置形成,类金刚石碳膜可以用另一装置形成,例如离子镀装置、溅射装置或阴极电弧成膜装置。或者,可以在用溅射装置形成粘合层之后,用图1中所示的高频等离子体cvd装置形成类金刚石碳膜。

在图1中,真空室1配备有真空泵(未示出)和真空阀(未示出),能够被抽真空至1×10-3pa。接地电极2也用作原料气体引入喷头,在图中其下表面上有许多直径约为1毫米的开口。原料气体能够通过该开口引入。适当地确定开口的直径和间距以使待形成的膜的厚度分布均匀。兼作原料气体引入喷头的接地电极2也用作接地电极。原料气体入口3与气阀、气体流量控制器和原料气瓶(均未图示)连接。

为了用该装置形成含有碳、硅、氧和氢的非晶层,例如,能够将液体有机硅化合物用作原料气体。液体有机硅化合物能够通过加热四乙氧基硅烷或六甲基二硅氧烷(例如,约40℃)以气化来使用。这些气体也可用稀有气体(氩气、氦气等)、氮气或氢气稀释。

能够将各种含碳气体和经过气化的液体有机化合物用作类金刚石碳膜的原料气体。含碳气体的实例包括烃气体(例如甲烷、乙烷、乙烯和乙炔)、一氧化碳和卤化碳。液体有机化合物的实例包括:醇,例如甲醇和乙醇;酮,例如丙酮;芳族烃,例如苯和甲苯;醚,例如二甲醚;和有机酸,例如甲酸和乙酸。这些气体也可用稀有气体(氩气、氦气等)、氮气或氢气稀释。通过以规定形状加工由含有碳化硅的陶瓷制成的基底并对该基底进行氧化处理来制备基底4。能够将基底4放置在兼作基板保持器的高频引入电极5上。也能够使用高频引入电极5施加高频电力。高频电源6向兼作基板保持器的高频引入电极5供给高频电力。

为了形成至少含有硅的膜作为粘合层,例如,能够采用已知的溅射方法溅射硅靶以形成硅膜。能够使用氩和氮的混合气体作为溅射气体来形成氮化硅膜。也能够溅射碳化硅靶来形成碳化硅膜。

在用作粘合层的含有碳、硅、氧和氢的非晶层中,碳、硅、氧和氢原子的浓度各自为至少5原子%。氧原子浓度为20原子%以下。含有碳、硅、氧和氢的非晶层也称为c-si-o-h膜。膜的形成中不可避免的杂质可以是约1原子%以下的稀释气体(例如氮或氩)、或腔室和基板支架的金属元素(例如铁或铝)。在本实施方式中,含有碳、硅、氧和氢的非晶层形成在含有碳化硅的陶瓷基底和类金刚石碳膜之间,用作改善粘附性的中间层。该层中的碳和硅改善粘附性,该层中的氢和氧减少膜应力并进一步改善粘附性。氧原子浓度为20原子%以下时,粘附性改善,氧原子浓度超过25原子%时,对类金刚石碳膜的粘附性有时没有改善。含有碳、硅、氧和氢的非晶层可以是不具有结晶性的非晶膜。

粘合层的厚度能够适当地调整,例如为0.01μm以上且1μm以下,优选0.02μm以上且0.4μm以下的范围内。

由类金刚石碳(dlc)制成的膜(类金刚石碳膜)因为基本上是非晶的,具有高硬度,并且在红外区域具有高透明度,因此这样称呼。由类金刚石碳(dlc)制成的膜(类金刚石碳膜)有时称为硬质碳膜、i-c膜(i-碳膜)或ta-c膜(四面体非晶碳膜)。由类金刚石碳(dlc)制成的膜(类金刚石碳膜)仅由碳原子和不可避免的杂质组成、或者含有由原料产生的氢气。有时将含有氢气的膜称为a-c:h膜。根据本发明的类金刚石碳膜包括a-c:h膜。不可避免的杂质可以是约1原子%以下的稀释气体(例如氮、氩或大气中的氧)、或者腔室和基板支架的金属元素(例如铁或铝)。能够适当地调节膜的厚度,例如为0.04μm以上且1μm以下,优选0.05μm以上且0.4μm以下的范围。

实施例

在以下例示实施例中详细描述本发明。

粉尘量的评价

在本例示实施例中,通过以下方法评价晶片卡盘中的粉尘量。将以规定形状研磨的由含有碳化硅的陶瓷制成的基底放在干净的工作台上,通过抽吸将周围的空气引入颗粒计数器以测定尺寸为0.1μm以上的粉尘。粉尘量基于比较例1中的粉尘量,在比较例1中,对由含有碳化硅的陶瓷烧结体制成的基底没有进行氧化处理并且没有形成粘合层和类金刚石碳膜。对例示实施例和其他比较例中的粉尘量进行了比较。

耐久性的评价

在滑动试验中,通过销盘法(pin-on-disk)评价耐久性。通过将与由含有碳化硅的陶瓷制成的基底相当的材料研磨成平坦片状并对该材料进行例示实施例和比较例中记载的各种处理,从而制备样品。将φ8的硅球在50g的载荷下放置在样品上时,以5mm的宽度和1mm/s的滑动速率进行试验。试验后,用光学显微镜或扫描电子显微镜检查滑动部的滑动磨损伤痕。用光学显微镜或扫描电子显微镜检查包括膜的样品的膜的分离。用能够观察表面轮廓的干涉仪确定磨损伤痕的形状。

例示实施例1

首先,将以规定形状研磨的由含有碳化硅的陶瓷烧结体制成的基底放入炉中并进行氧化处理。将基底在空气中以10℃/分钟的加热速率加热至400℃,在400℃下保持5小时,然后历时8小时缓慢冷却至室温。然后,将由含有碳化硅的陶瓷烧结体制成的基底放置在如图1中所示的高频等离子体cvd装置中,用真空泵将其抽真空至1×10-3pa。然后将用于等离子体清洁的氩气引入原料气体引入喷头2中,并且将压力调节为5pa。然后,以450w从高频电源6向基板支架5施加高频电力以产生等离子体,该等离子体用于清洁基底4的表面(以去除水和污染物)。然后停止氩气,并用真空泵将该装置抽真空至1×10-3pa。然后将用于形成类金刚石碳膜的甲苯引入原料气体引入喷头2中,并将压力调节为5pa。然后,以450w从高频电源6向基板支架5施加高频电力以产生等离子体。在基底4的表面上形成100nm的类金刚石碳膜(dlc膜)。

在与本例示实施例相同的条件下,另外在硅基底上形成用于分析评价的类金刚石碳膜。分析表明,类金刚石碳膜由碳和氢组成,基于原子百分比,c:h=75.3:24.7,并且硬度为20gpa。

采用上述规定方法测定晶片卡盘中的粉尘量。以与本例示实施例相同的方式,对含有碳化硅的陶瓷烧结体进行氧化处理,并在该陶瓷烧结体上形成类金刚石碳膜以制备φ60的平坦片状样品。在滑动试验中,采用销盘法测试平坦片状样品。试验后,用光学显微镜和扫描电子显微镜检查了平坦片状样品的滑动磨损伤痕和膜分离。表1示出评价结果。

例示实施例2

将以规定形状研磨的采用cvd法形成的由多晶碳化硅制成的基底在炉中进行氧化处理。将基底在空气中以5℃/分钟的加热速率加热至450℃,在450℃下保持10小时,然后历时12小时缓慢冷却至室温。然后,将采用cvd法形成的由多晶碳化硅制成的基底放置在如图1中所示的高频等离子体cvd装置中,用真空泵将其抽真空至1×10-3pa。然后将用于等离子体清洁的氩气引入原料气体引入喷头2中,并且将压力调节为5pa。然后,以450w从高频电源6向基板支架5施加高频电力以产生等离子体,该等离子体用于清洁基底4的表面。然后将用于形成类金刚石碳膜的甲苯引入原料气体引入喷头2中,并将压力调节为5pa。然后,以600w从高频电源6向基板支架5施加高频电力以产生等离子体。在基底4的表面上形成150nm的类金刚石碳膜(dlc膜)。

在与本例示实施例相同的条件下,另外在硅基底上形成用于分析评价的类金刚石碳膜。分析表明,类金刚石碳膜由碳和氢组成,基于原子百分比,c:h=80.5:19.5,并且硬度为22gpa。

采用上述规定方法测定晶片卡盘中的粉尘量。以与本例示实施例相同的方式,在由cvd多晶碳化硅制成的φ60平坦片状样品上形成类金刚石碳膜以制备样品。在滑动试验中,采用销盘法测试平坦片状样品。试验后,用光学显微镜和扫描电子显微镜检查了平坦片状样品的滑动磨损伤痕和膜分离。表1示出粉尘试验和滑动评价结果。

例示实施例3

首先,将以规定形状研磨的由含有碳化硅的陶瓷烧结体制成的基底放入炉中并进行氧化处理。将基底在空气中以10℃/分钟的加热速率加热至400℃,在400℃下保持5小时,然后历时8小时缓慢冷却至室温。然后,将由含有碳化硅的陶瓷制成的基底放置在如图1中所示的高频等离子体cvd装置中,用真空泵将其抽真空至1×10-3pa。然后将用于等离子体清洁的氩气引入原料气体引入喷头2中,并且将压力调节为5pa。然后,以450w从高频电源6向基板支架5施加高频电力以产生等离子体,该等离子体用于清洁基底4的表面。为了形成含有碳、硅、氧和氢的非晶层,将原料气体六甲基二硅氧烷通过原料气体引入喷头2引入真空室1中,并将压力调节为5pa。然后,以450w从高频电源6向基板支架5施加高频电力以产生等离子体。在基底4的表面上形成80nm的含有碳、硅、氧和氢的非晶层。然后停止六甲基二硅氧烷的引入。用真空泵将真空室1抽真空至1×10-3pa后,将用于形成类金刚石碳膜的甲苯引入原料气体引入喷头2中。将压力调节为5pa。然后,以450w从高频电源6向基板支架5施加高频电力以产生等离子体。在含有碳、硅、氧和氢的非晶层上形成100nm的类金刚石碳膜(dlc膜)。

在与本例示实施例相同的条件下,另外在硅基底上形成含有碳、硅、氧和氢的非晶单层和类金刚石碳单层用于分析评价。分析表明,基于原子百分比,含有碳、硅、氧和氢的非晶层具有c:si:o:h=40.5:13.0:11.1:35.4的组成。分析还表明,类金刚石碳膜由碳和氢组成,基于原子百分比,c:h=75.3:24.7,并且硬度为20gpa。

采用上述规定方法测定晶片卡盘中的粉尘量。以与本例示实施例相同的方式,对含有碳化硅的陶瓷进行氧化处理,并在该陶瓷上形成含有碳、硅、氧和氢的非晶层和类金刚石碳膜以制备φ60的平坦片状样品。在滑动试验中,采用销盘法测试平坦片状样品。试验后,用光学显微镜和扫描电子显微镜检查了平坦片状样品的滑动磨损伤痕和膜分离。表1示出评价结果。

例示实施例4

首先,将以规定形状研磨的由含有碳化硅的陶瓷烧结体制成的基底放入炉中,并且为了氧化处理,将基底在空气中以10℃/分钟的加热速率加热至600℃,在600℃下保持3小时,然后历时8小时缓慢冷却至室温。然后,将由含有碳化硅的陶瓷烧结体制成的基底放置在如图1中所示的高频等离子体cvd装置中,用真空泵将其抽真空至1×10-3pa。为了形成含有碳、硅、氧和氢的非晶层,将原料气体六甲基二硅氧烷和氩气以1:5的比例通过原料气体引入喷头2引入真空室1中,并将压力调整为6pa。然后,以600w从高频电源6向基板支架5施加高频电力以产生等离子体。在基底4的表面上形成50nm的含有碳、硅、氧和氢的非晶层。然后停止六甲基二硅氧烷和氩气的引入。用真空泵将装置抽真空至1×10-3pa后,将用于形成类金刚石碳膜的1:5的比例的甲苯和氩气引入原料气体引入喷头2中,并将压力调节为4pa。然后,以650w从高频电源6向基板支架5施加高频电力以产生等离子体。在含有碳、硅、氧和氢的非晶层上形成100nm的类金刚石碳膜(dlc膜)。

在与本例示实施例相同的条件下,另外在硅基底上形成含有碳、硅、氧和氢的非晶层和类金刚石碳膜用于分析评价。分析表明,基于原子百分比,含有碳、硅、氧和氢的非晶层具有c:si:o:h=35.4:20.6:9.0:35.0的组成。分析表明,类金刚石碳膜由碳和氢组成,基于原子百分比,c:h=78.0:22.0,并且硬度为21gpa。

采用上述规定方法测定晶片卡盘中的粉尘量。以与本例示实施例相同的方式,对含有碳化硅的陶瓷进行氧化处理,并在该陶瓷上形成含有碳、硅、氧和氢的非晶层和类金刚石碳膜以制备φ60的平坦片状样品。在滑动试验中,采用销盘法测试平坦片状样品。试验后,用光学显微镜和扫描电子显微镜检查了平坦片状样品的滑动磨损伤痕和膜分离。表1示出评价结果。

比较例1

对以与例示实施例1相同的方式以规定形状研磨的由含有碳化硅的陶瓷烧结体制成的基底没有进行氧化处理,在该基底上没有形成粘合层和类金刚石碳膜。采用规定方法测定基体中的粉尘量。制备未经氧化处理并且未形成粘合层和类金刚石碳膜的含有碳化硅的陶瓷的φ60平坦片状样品。在滑动试验中,采用销盘法测试样品。试验后,用光学显微镜和扫描电子显微镜检查了样品的滑动磨损伤痕。表1示出评价结果。

比较例2

在比较例2中,以与例示实施例1中相同的方式对以与例示实施例1中相同的方式以规定的形状研磨的由含有碳化硅的陶瓷烧结体制成的基底进行热处理(400℃)。在本比较例中没有形成粘合层和类金刚石碳膜(dlc膜)。以与例示实施例1中相同的方式采用规定的方法测定粉尘量。制备仅经氧化处理的碳化硅陶瓷的φ60平坦片状样品,并在滑动试验中通过销盘法进行测试。试验后,用光学显微镜和扫描电子显微镜检查了φ60平坦片状样品的滑动磨损伤痕。表1示出评价结果。

表1

评价

本发明的例示实施例1-4表明,大幅地减少了粉尘的量,在滑动试验中没有观察到滑动磨损伤痕,并且滑动耐久性良好,并且类金刚石碳膜没有分离。更具体地,在例示实施例1(其中在进行了氧化处理的由含有碳化硅的陶瓷烧结基底制成的晶片卡盘上形成了类金刚石碳膜)中,粉尘量大幅地降低(比较例1的1/100)。尽管在滑动试验中类金刚石碳膜在烧结助剂部分中部分地分离,但是在其他部分中未观察到滑动磨损伤痕。因此,滑动试验处于实用上可接受的水平。

例示实施例2表明,在滑动试验中采用cvd法形成的多晶碳化硅构件上的类金刚石碳膜没有分离,因此显示出良好的粘附性。这是因为在没有烧结助剂的情况下采用cvd法形成的多晶碳化硅构件比烧结体更耐热氧化处理并且对类金刚石碳膜的粘附性更高。在包括由含有碳化硅的陶瓷制成的基底的晶片卡盘中,粘合层的形成(例示实施例3和4)进一步减少了粉尘产生和膜分离。

而在比较例1(其中没有对卡盘基底进行氧化处理并且没有形成粘合层和类金刚石碳膜)中,粉尘量增加,并且在滑动试验中观察到滑动磨损伤痕,这表明滑动耐久性差。在比较例2(其中只进行了氧化处理)中,粉尘量大幅减少,但在滑动试验中观察到滑动磨损伤痕,这表明滑动耐久性差。

例示实施例5和6

在以与例示实施例1中相同的方式进行了加工和氧化处理的由采用cvd法形成的多晶碳化硅制成的φ60平坦片状样品上采用已知的溅射法形成了硅膜或氮化硅膜作为粘合层。在与例示实施例3中相同的条件下在样品上形成了类金刚石碳膜。对于这些样品,采用销盘法的滑动试验中的载荷条件变为两倍(100g)。试验后,用光学显微镜和扫描电子显微镜检查了样品的滑动磨损伤痕和膜分离。评价结果表明,包括硅膜或氮化硅膜作为粘合层的两个样品没有膜分离并且没有滑动磨损伤痕。

例示实施例7

在以与例示实施例1中相同的方式进行了加工和氧化处理的由采用cvd法形成的多晶碳化硅制成的φ60平坦片状样品上用如图1中所示的高频等离子体cvd装置形成了含有碳、硅、氧和氢的非晶层作为粘合层。在与例示实施例1中相同的条件下在样品上形成了类金刚石碳膜。对于这些样品,滑动试验中销盘法的载荷条件变为两倍(100g)。试验后,用光学显微镜和扫描电子显微镜检查了样品的滑动磨损伤痕和膜分离。评价结果表明,没有膜分离并且没有滑动磨损伤痕。

尽管已经参照例示实施例描述了本发明,但应当理解,本发明不限于所公开的例示实施例。下面的权利要求的范围应给予最宽泛的解释,以包括所有这样的修改以及等同的结构和功能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1