一种柔性可拉伸透明导电薄膜及其制备方法和应用

文档序号:26180881发布日期:2021-08-06 18:28阅读:148来源:国知局
一种柔性可拉伸透明导电薄膜及其制备方法和应用

本发明涉及透明导电薄膜技术领域,具体涉及一种柔性可拉伸透明导电薄膜及其制备方法和应用。



背景技术:

透明导电薄膜(transparentconductivefilm,简称tcf)作为下一代可变形光电设备的基本组成部分,在触摸屏面板、有机太阳能电池、有机发光二极管、智能窗户等领域具有重要作用。目前,市面上广泛应用的透明导电材料是氧化铟锡(ito),其缺乏柔性,且制造成本高昂,并不适用于制备新一代的柔性/可拉伸透明导电薄膜。

近些年来,研究人员发现利用一维银纳米线(agnw)形成的导电渗流网络可以制备出性能优异的柔性/可拉伸透明导电薄膜,具有很好的应用前景。然而,由于agnw与柔性/可拉伸基底的模量失配和弱的界面粘合力,导致在弯折、扭曲和拉伸等机械形变下agnw易发生滑移、脱落和断裂,透明导电薄膜的性能不稳定。研究人员试图通过对基底或agnw进行表面改性,或者对agnw导电渗流网络进行封装等方法来提高基于agnw的柔性/可拉伸透明导电薄膜的机械稳定性,但这些方法都是基于“柔性”进行设计,制备的tcf并不具备可拉伸性,且在柔性透明基底(例如:pet薄膜)上进行的表面改性、封装等制备技术也并不适用于可拉伸透明基底(例如:pdms薄膜)。鉴于此,研究人员试图通过对可拉伸基底进行预拉伸来赋予透明导电薄膜可拉伸性,但该操作会进一步增大薄膜的表面粗糙度。可见,相比于弯曲形变,拉伸形变对tcf的材料制备和稳定性的要求更高。

因此,亟需开发一种兼顾柔性、可拉伸性和高透明度的透明导电薄膜。



技术实现要素:

本发明的目的在于提供一种柔性可拉伸透明导电薄膜及其制备方法和应用。

本发明所采取的技术方案是:

一种柔性可拉伸透明导电薄膜,其组成包括依次层叠贴合的可拉伸透明基底、阳离子聚电解质层、银纳米线透明导电网络和弹性体纳米纤维网络。

优选的,所述可拉伸透明基底为聚二甲基硅氧烷(pdms)基底、聚氨酯(tpu)基底、ses/sebs弹性体基底中的一种。

优选的,所述可拉伸透明基底的表面进行过等离子体处理。

优选的,所述阳离子聚电解质为数均分子量100000~350000的聚二烯丙基二甲基氯化铵(pdda)。

优选的,所述银纳米线的长度为20μm~60μm,直径为30nm~70nm。

优选的,所述弹性体纳米纤维为聚氨酯(pu)-聚乙烯吡咯烷酮(pvp)复合纤维,直径为200nm~800nm。

优选的,所述聚氨酯-聚乙烯吡咯烷酮复合纤维中聚氨酯、聚乙烯吡咯烷酮的质量比为1.5:1~3:1。

优选的,所述聚氨酯为聚酯型热塑性聚氨酯弹性体、聚醚型热塑性聚氨酯弹性体中的至少一种。

优选的,所述聚乙烯吡咯烷酮的数均分子量为360000~1300000。

上述柔性可拉伸透明导电薄膜的制备方法包括以下步骤:

1)用阳离子聚电解质水溶液对可拉伸透明基底进行表面改性处理;

2)将银纳米线用溶剂分散后涂覆在步骤1)处理过的基底上,形成银纳米线透明导电网络;

3)通过静电纺丝法在银纳米线透明导电网络上构筑弹性体纳米纤维网络,即得柔性可拉伸透明导电薄膜。

优选的,上述柔性可拉伸透明导电薄膜的制备方法包括以下步骤:

1)用等离子体和阳离子聚电解质水溶液依次对可拉伸透明基底进行表面改性处理;

2)将银纳米线分散在无水乙醇中,再旋涂在步骤1)处理过的基底上,干燥,形成银纳米线透明导电网络;

3)配制弹性体纺丝液,再进行静电纺丝,在银纳米线透明导电网络上构筑弹性体纳米纤维网络,即得柔性可拉伸透明导电薄膜。

优选的,步骤1)所述阳离子聚电解质水溶液的质量分数为0.1%~0.3%。

优选的,步骤2)所述银纳米线、无水乙醇的添加量比为0.3mg:1ml~0.5mg:1ml。

优选的,步骤2)所述旋涂在转速500rpm~2000rpm下进行,旋涂时间为5s~20s,重复操作4次~8次。

优选的,步骤3)所述静电纺丝的工作电压为15kv~20kv,注射速度为0.3ml/h~1ml/h,接收距离为15cm~20cm,纺丝时间为5s~30s。

本发明的有益效果是:本发明的透明导电薄膜兼顾柔性、可拉伸性和高透明度,且导电稳定性优异、方阻小、制备工艺简单,在触摸屏面板、有机太阳能电池、发光二极管、透明薄膜加热器和透明电磁屏蔽薄膜领域具有广阔的应用前景。

具体来说:

1)本发明的透明导电薄膜的方阻小(方阻<10ω/sq)、透明度高(透光率>70%),在10%拉伸应变下进行多次拉伸-回复循环还可以保持导电稳定性;

2)本发明采用阳离子聚电解质作为可拉伸透明基底的表面改性剂,结合等离子体表面处理和改进的旋涂加工工艺得到自组装的聚二烯丙基二甲基氯化铵涂层,该涂层带有阳离子,与银纳米线-弹性体纳米纤维复合网络的结合力强;

3)本发明结合旋涂加工工艺和静电纺丝技术,构筑银纳米线-弹性体纳米纤维双可拉伸透明网络,大大提高了基于银纳米线制备的柔性可拉伸透明导电薄膜的机械稳定性,在没有预拉伸结构设计的情况下,最高实现了15%拉伸应变下的导电稳定性,制得的柔性可拉伸透明导电薄膜在触摸屏面板、有机太阳能电池、发光二极管、透明薄膜加热器和透明电磁屏蔽薄膜领域具有广阔的应用前景。

附图说明

图1为实施例1~3中的弹性体纳米纤维网络的sem图。

图2为实施例1~3制备的柔性可拉伸透明导电薄膜在10%拉伸应变下进行100次拉伸-回复循环的电阻变化率曲线。

图3为实施例1~3制备的柔性可拉伸透明导电薄膜在10%拉伸应变下进行拉伸-回复循环时,前10次循环过程中的电阻变化率曲线。

图4为实施例3制备的柔性可拉伸透明导电薄膜分别在5%、10%和15%拉伸应变下进行100次拉伸-回复循环的电阻变化率曲线。

图5为对比例1制备的透明导电薄膜在5%拉伸应变下进行100次拉伸-回复循环的电阻变化率曲线。

具体实施方式

下面结合具体实施例对本发明作进一步的解释和说明。

实施例1:

一种柔性可拉伸透明导电薄膜,其制备方法包括以下步骤:

1)对大小规格20mm×20mm的pdms基底进行10min(射频功率为18w)等离子体表面处理,再旋涂一层质量分数0.2%的pdda(数均分子量100000~200000)水溶液,单次滴加200μl,600rpm转速下旋涂5s,2000rpm转速下旋涂20s;

2)将银纳米线(长度20μm~60μm,直径30nm~70nm)分散在无水乙醇中配制成浓度0.5mg/ml的银纳米线分散液,再旋涂在步骤1)处理过的基底上,单次滴加100μl,1000rpm转速下旋涂5s,重复操作6次,干燥,形成银纳米线透明导电网络;

3)将质量比为1.5:1的聚氨酯(巴斯夫elastollanc80a)和聚乙烯吡咯烷酮(数均分子量1300000)分散在n,n-二甲基甲酰胺(dmf)中配制成固含量15%的弹性体纺丝液,再进行静电纺丝,静电纺丝的工作电压为15kv,注射速度为0.3ml/h,接收距离为15cm,纺丝时间为5s,在银纳米线透明导电网络上构筑弹性体纳米纤维网络,即得柔性可拉伸透明导电薄膜。

经测试,本实施例制备的柔性可拉伸透明导电薄膜的方阻≈6.6ω/sq,550nm波长处透光率为72%,10%拉伸应变下进行100次拉伸-回复循环后电阻变化率约为2.7。

注:

电阻变化率计算公式为:δ=δr/r0=(r-r0)/r0,其中,δr为拉伸形变过程中薄膜的实时电阻变化量,r0为薄膜的初始电阻,r为拉伸形变过程中薄膜的实时电阻,电阻变化率δ越接近0,说明薄膜的拉伸稳定性越高。

实施例2:

一种柔性可拉伸透明导电薄膜,其制备方法包括以下步骤:

1)对大小规格20mm×20mm的pdms基底进行10min(射频功率为18w)等离子体表面处理,再旋涂一层质量分数0.2%的pdda(数均分子量100000~200000)水溶液,单次滴加200μl,600rpm转速下旋涂5s,2000rpm转速下旋涂20s;

2)将银纳米线(长度20μm~60μm,直径30nm~70nm)分散在无水乙醇中配制成浓度0.5mg/ml的银纳米线分散液,再旋涂在步骤1)处理过的基底上,单次滴加100μl,1000rpm转速下旋涂5s,重复操作6次,干燥,形成银纳米线透明导电网络;

3)将质量比为1.5:1的聚氨酯(巴斯夫elastollanc80a)和聚乙烯吡咯烷酮(数均分子量1300000)分散在n,n-二甲基甲酰胺(dmf)中配制成固含量15%的弹性体纺丝液,再进行静电纺丝,静电纺丝的工作电压为15kv,注射速度为0.3ml/h,接收距离为15cm,纺丝时间为10s,在银纳米线透明导电网络上构筑弹性体纳米纤维网络,即得柔性可拉伸透明导电薄膜。

经测试,本实施例制备的柔性可拉伸透明导电薄膜的方阻≈6.4ω/sq,550nm波长处透光率为64%,10%拉伸应变下进行100次拉伸-回复循环后电阻变化率约为1.8。

实施例3:

一种柔性可拉伸透明导电薄膜,其制备方法包括以下步骤:

1)对大小规格20mm×20mm的pdms基底进行10min(射频功率为18w)等离子体表面处理,再旋涂一层质量分数0.2%的pdda(数均分子量100000~200000)水溶液,单次滴加200μl,600rpm转速下旋涂5s,2000rpm转速下旋涂20s;

2)将银纳米线(长度20μm~60μm,直径30nm~70nm)分散在无水乙醇中配制成浓度0.5mg/ml的银纳米线分散液,再旋涂在步骤1)处理过的基底上,单次滴加100μl,1000rpm转速下旋涂5s,重复操作6次,干燥,形成银纳米线透明导电网络;

3)将质量比为1.5:1的聚氨酯(巴斯夫elastollanc80a)和聚乙烯吡咯烷酮(数均分子量1300000)分散在n,n-二甲基甲酰胺(dmf)中配制成固含量15%的弹性体纺丝液,再进行静电纺丝,静电纺丝的工作电压为15kv,注射速度为0.3ml/h,接收距离为15cm,纺丝时间为15s,在银纳米线透明导电网络上构筑弹性体纳米纤维网络,即得柔性可拉伸透明导电薄膜。

经测试,本实施例制备的柔性可拉伸透明导电薄膜的方阻≈4.6ω/sq,550nm波长处透光率为60%,10%拉伸应变下进行100次拉伸-回复循环后电阻变化率约为1.3,15%拉伸应变下进行100次拉伸-回复循环后电阻变化率约为4。

综合实施例1~3可知:随着纺丝时间的增长,制备的柔性可拉伸透明导电薄膜的透光率逐渐下降,但得益于弹性体纳米纤维网络的空隙可以提供一定的透光率,纺丝15s后薄膜的透光率仍有60%,透明性依旧很好。

对比例1:

一种透明导电薄膜,其制备方法包括以下步骤:

1)对大小规格20mm×20mm的pdms基底进行10min(射频功率为18w)等离子体表面处理,再旋涂一层质量分数0.2%的pdda(数均分子量100000~200000)水溶液,单次滴加200μl,600rpm转速下旋涂5s,2000rpm转速下旋涂20s;

2)将银纳米线(长度20μm~60μm,直径30nm~70nm)分散在无水乙醇中配制成浓度0.5mg/ml的银纳米线分散液,再旋涂在步骤1)处理过的基底上,单次滴加100μl,1000rpm转速下旋涂5s,重复操作6次,干燥,形成银纳米线透明导电网络,即得透明导电薄膜。

经测试,本对比例制备的透明导电薄膜的方阻≈9.7ω/sq,550nm波长处透光率为88.4%,10%拉伸应变下导电性被破坏,5%拉伸应变下进行100次拉伸-回复循环后电阻变化率约为7.7。可见,聚阳离子电解质表面改性适用于可拉伸透明基底,且能够承受较小应变(小于5%)的拉伸形变,而银纳米线-弹性纳米纤维网络的设计才可以显著提升透明导电薄膜的拉伸稳定性。

对比例2:

一种透明导电薄膜,其制备方法包括以下步骤:

1)对大小规格20mm×20mm的pdms基底进行10min(射频功率为18w)等离子体表面处理;

2)将银纳米线(长度20μm~60μm,直径30nm~70nm)分散在无水乙醇中配制成浓度0.5mg/ml的银纳米线分散液,再旋涂在步骤1)处理过的基底上,单次滴加100μl,1000rpm转速下旋涂5s,重复操作6次,干燥,形成银纳米线透明导电网络;

3)将质量比为1.5:1的聚氨酯(巴斯夫elastollanc80a)和聚乙烯吡咯烷酮(数均分子量1300000)分散在n,n-二甲基甲酰胺(dmf)中配制成固含量15%的弹性体纺丝液,再进行静电纺丝,静电纺丝的工作电压为15kv,注射速度为0.3ml/h,接收距离为15cm,纺丝时间为10s,在银纳米线透明导电网络上构筑弹性体纳米纤维网络,即得透明导电薄膜。

经测试,本对比例制备的透明导电薄膜在10%拉伸应变下进行小于20次拉伸-回复循环导电性被破坏,5%拉伸应变下进行100次拉伸-回复循环后电阻变化率接近10。可见,聚阳离子电解质表面改性能够进一步提高透明导电薄膜的拉伸稳定性。

性能测试:

1)实施例1~3中的弹性体纳米纤维网络的扫描电镜(sem)图如图1(图中的5s、10s和15s分别代表实施例1~3的步骤3)在静电纺丝加工条件下制备的弹性体纳米纤维网络)所示。

由图1可知:随着纺丝时间的增长,弹性体纳米纤维网络越来越密集,弹性体纳米纤维的直径为200nm~800nm。

2)实施例1~3制备的柔性可拉伸透明导电薄膜在10%拉伸应变下进行100次拉伸-回复循环的电阻变化率曲线如图2(图中的5s、10s和15s分别代表实施例1~3的柔性可拉伸透明导电薄膜)所示。

由图2可知:实施例1~3的柔性可拉伸透明导电薄膜在100次拉伸-回复循环后,电阻变化率随纺丝时间的增长而减小,纺丝时间5s、10s和15s的样品在100次拉伸-回复循环后(10%拉伸应变),电阻变化率分别为2.7、1.8和1.3。

3)实施例1~3制备的柔性可拉伸透明导电薄膜在10%拉伸应变下进行拉伸-回复循环时,前10次循环过程中的实时电阻变化率曲线如图3(图中的5s、10s和15s分别代表实施例1~3的柔性可拉伸透明导电薄膜)所示。

由图3可知:实施例1~3的柔性可拉伸透明导电薄膜在拉伸-回复过程中,实时电阻变化率随纺丝时间的增长而减小。

4)实施例3制备的柔性可拉伸透明导电薄膜分别在5%、10%和15%拉伸应变下进行100次拉伸-回复循环的电阻变化率曲线如图4所示。

由图4可知:对同一柔性可拉伸透明导电薄膜,100次拉伸-回复循环后的电阻变化率随拉伸应变的增大而增大;实施例3的柔性可拉伸透明导电薄膜在15%拉伸应变下电阻变化率小于4,在低于10%的拉伸应变下导电性只发生轻微的变化,表现出优异的拉伸导电稳定性。

5)对比例1制备的透明导电薄膜在5%拉伸应变下进行100次拉伸-回复循环的电阻变化率曲线如图5所示。

由图5可知:对比例1的透明导电薄膜在5%拉伸应变下进行100次拉伸-回复循环后电阻变化率约为7.7,远高于实施例1~3的柔性可拉伸透明导电薄膜在10%拉伸应变下进行100次拉伸-回复循环后的电阻变化率。

综上可知,阳离子聚电解质表面改性适用于可拉伸透明基底,且能够承受较小应变(小于5%)的拉伸形变,但在10%拉伸应变下导电性易受到破坏。本发明通过一种新型的银纳米线-弹性纳米纤维复合网络的结构设计,得到一种具备高拉伸导电稳定性的柔性可拉伸透明导电薄膜,在15%拉伸应变下进行100次拉伸-回复循环后电阻变化率小于4。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1