整片串联和并联的光电组件的制作方法

文档序号:6800182阅读:351来源:国知局
专利名称:整片串联和并联的光电组件的制作方法
技术领域
本发明属于光电池领域,特别是关于制造一种整片内联的光电池组件的装置和方法。
众所周知,在薄膜半导体技术领域中,将太阳能转变成电能的光电池可以通过在两个电极之间夹一层半导体结构,例如非晶硅PIN结构,而制成,就如美国专利4,064,521中所公开那样。其中的一个电极的典型的结构应是透明的,以便太阳光可照到半导体材料上。这个“前”电极(或称“接触电极”)可以用一层透明的导电氧化物薄膜材料,如氧化锡,(其厚度小于10微米)所组成,而且通常是构成在由玻璃或塑料所制得的透明支承基底和光电半导体材料之间。“后”电极(或接触电极)是制做在与前电极相反的那一面的半导体材料的表面上。通常是由金属薄膜,如铝所组成。后电极也可以用诸如氧化锡那样的透明材料制成。
然而,对于大多数用途来说,跨接在单个光电池的电极上而产生的电压是不够的。为了在光电半导体器件上获得足够的功率、就必须把单个光电池串联而成一个列阵,在此称为光电组件,图一表示一种串联光电池的典型安排。


图1所示的光电组件10是由许多光电池12串联而形成的,这些光电池12都被制作为基底14上,而太阳光16也通过这层基底16照射到光电池上。每个光电池包括一个由透明的导电氧化物制成的前电极18,一个由半导体材料,如非晶硅氢化物制成的光电元件20,以及一个由金属材料,如铝或透明材料,如氧化锡制成的后电极22。光电元件20可以包括一个PIN结构。相临的前电极18是被充填满了半导体材料光电元件20的第一凹槽所隔开。在第一凹槽中的半导体介电材料将相临的前电极18在电气上互相绝缘开。而填满了金属以作为后电极的第二凹槽又把相临的光电元件20互相隔开。这样就使一个光电元件的前电极和另一个相临光电元件的后电极互相串联起来了。而相临的后电极22则被第三凹槽28,在电气上互相绝缘开的。
如图1所示的薄膜光电组件的典型制造方法是掩模沉积方法,一种适当的技术就是在硅烷气氛中用辉光放电将半导体材料沉积在基底上,就如美国专利4,064,521所述。常规的用于制作凹槽以隔开相临光电池的工艺是采用正负抗蚀剂的抗蚀掩模丝网光刻方法以及机械放电或激光划刻法。激光划刻和丝网光刻法是包括非晶硅光电组件在内的薄膜半导体器件的经济实用和高效率的生产方法。激光划刻法比之与丝网光刻法具有优越性,因为激光划刻法的附加优点是把相临光电元件隔开而成为多个光电池的凹槽的宽度只有25微米以下,大大小于典型的丝网刻法制出的凹槽宽度380-500微米。所以由激光划刻法制造出来的光电组件具有更高的有效产电面积百分比,从而比由丝网光刻法制造的组件具有更高的效率。美国专利4,292,092公开了激光划刻法划刻光电组件层的方法。
参见图1,一种使用激光划刻法制造多个光电池组件的方法包括在透明的基底14上沉积透明导电的氧化物连续薄膜,划刻第一凹槽24,把透明导电的氧化物薄膜分离成前电极18,在前电极的顶部和第一凹槽24中制作一层连续的半导薄膜,在临近第一个凹槽24处平行地划刻出第二凹槽以便将半导体材料分隔成独立的光电元件20(或称为“光电段”)并将前电极18的一部分暴露出来而成为第二凹槽的底部,在光电元件20上和在第二凹槽26中制成一层连续的金属薄膜以使该金属与前电极之间构成电连接,然而在临近第二凹槽26处与之相平行地划刻出第三凹槽28以便将相临的后电极22分隔并互相绝缘开。
到目前为止,已有技术中光电组件的显著缺点是大的光电组件不具有产生任何所要求的电压输出。所谓“大的光电组件”即意味着数量级为1平方英尺以上的组件,所谓“小的电压输出”即意味着电压为12-15伏以下的输出。
众所周知,光电组件的电压输出直接和所串联的光电元件的数量有关。亦即元件数量愈多划电压愈高。在一个大的光电组件中,一种控制电压输出的方法就是减少在组件中的单个光电池的数量的同时增加每个光电池的尺寸,主要是增加其宽度,这类组件已由美国专利4,542,255(Tanner等人所发明)中公开。但这份专利中的不足之处就是元件宽度增加时单个光电元件的填充系数就下降了。于是光电元件的效率和输出功率就将随着光电池的尺寸的增加而降低。
本发明的目的就是提供一种光电组件及其制造方法,使大的光电组件可以具有最佳的单个光电元件的宽度以获得最大的功率输出。
也希望在某些应用中,比如汽车顶盖上的组合光电池组件中,增加通过光电组件的透光性。这可以用前后两个接触面电极都做成透明的方法来实现。这种透明电极(接触面)可以用氧化锡来制成。增加光电组件的透明性也可以用减少组件上每一个光电池的宽度,亦即增加组件上划刻线的数目而增加光的透明性。
本发明的又一个目的是提供一种具有宽度较小的单个光电元件的光电组件以便保持光电组件的输出电压获得任何所希望的数值。
本发明还涉及一种沉积窄长导电带的方法,在已有技术中,如Tanner等人的专利中,是由丝网印刷光刻法来沉积导电带的。但是丝网光刻法用来制作导电带会消耗很多导电液,而且不易自动化,重复率也差。还难于控制膜层的厚度。
本发明公术提供一种沉积窄长导电带的方法,但不浪费导电液,易于用计算机来控制所产生膜型的重复性,而且还易于控制膜的厚度。
本发明的所有附加的优点中的一部分是由下面的说明书中加以描述的,另一部分也在说明书中可以显而易见地看到的,或者是从本发明的实施中可以获得的。本发明的优点也可以从所申请的权利要求所提出的方法中获得和理解到。
为了克服已有技术中所存在的问题,并且作为本发明的目的,在此加以详细描述的是一种薄膜半导体器件,包括一块基底,和沉积在基底上的一层被第一划刻线隔成许多段的前接触层,多个段组成一个子组件,至少一个子组件组成一个组件。
第一条母线用于将子组件并联相联。在前接触层上布置一层半导体薄膜,再在这层半导体薄膜上布置一层后接触导。沿着靠近第一划刻线的第二划刻线,划刻出后接触层,互连线用于将前接触层和后接触层之间的相临区域互相连通。
根据本发明提供的一种在半导体基底上沉积狭长固体导电带的方法,本方法包括将含有导电金属或含有有机金属组分的导电液沉积在这块基底上,并使之固化而在该基底上制成一条固体的窄长条带,而其布线圈则与导电液所构成的图型完全相同。
本发明进一步提供一种在半导体基底上沉积出一条窄长的导电条带布线图的方法,本方法包括在半导体基底上沉积上一种含有导电金属或组分和载液的导电液,然后从沉积在基底上的导电液中除去载液以便在该基底上形成相对固定的导电金属或金属有机化合物组成的固态布线图。
作为本说明书的一部分的附图表明了本发明的一个实施例,并与说明书一起解释本发明的原理。
图1是按照已有技术方法制造已有技术光电组件的透视图。
图2(a)-2(g)表示子采用激光光刻布线法制作光电组件的方法的各个步骤的草图。
图3表示了一块基底的顶视图,该基层上沉积有一层被划刻后的前导电层和沉积在前导电层上的连接条。
图4表示了一块基底的顶视图,该基底上沉积有一层被划刻后的前导电层和沉积在前导电层上的连接条和母线。
图5表示了一块基底的顶视图,该基底上沉积有被划刻后的前导电层和沉积在前导电层上的连接条。
图6表示了一块基底的顶视图,该基底上沉积有一层被划刻后的前导电层和沉积在前导电层上的连接条和和母线。
图7表示了在前导电层上布置公共母线和连接条的沉积方法步骤的流程图。
图8表示实现图7方法所用的装置的方框图。
现将详细叙述本发明的最佳实施例,并结合附图予以阐明。
图2(g)是一个由多个光电池组成的薄膜光电组件的剖面图,以标号110来表示该组件。光电组件110是在平坦、透明的基底上,由很多串联连接的是光电池112所组成。在工作中,由于阳光116通过由玻璃制成的基底114而产生电能。每一个光电池112包括一个由透明导电氧化物制成的前电极段118,一个由如氢化非晶硅等半导体材料制成的光电元件120,以及一个由如铝、或如氧化锡等导电材料所制成的后电极122。相临的各前电极段被第一凹槽124所分隔开,而第一凹槽中又被用作光电元件120的半导体材料所充满。相临的各个光电元件120又被第二凹槽126和第三凹槽128所分隔开。在第二凹槽126和第三凹槽128之间有一块不起作用的非活性部分,这块非活性部分对于将太阳光转变成电能来说是不起作用的。第二凹槽126中充满了后电极122的材料以便将一个光电池的前电极和其相临的光电池的后电极互相串联起来。在第三凹槽128的顶部的缝隙129把相临的两个后电极122相互在电气上绝缘开。
现在将制作光电组件110的方法结合图2(a)-2(g)加以描述。
按照本发明,在透明基底114上,如图2(a)所示制造一层实际上是连续的透明导电氧化物薄膜132,最好是氟处理的氧化锡。导电氧化物薄膜132可以用已有技术,如用化学蒸发沉积的方法制成。透明导电氧化物的厚度可以按光电组件的应用的要求而定。
然而,使用激光将导电氧化物膜132沿着预定的布线圈上的线条互相并行地加以划刻以便将薄膜132用第一凹槽124分隔成互相并行的前电极118。如图2(b)所示。美国专利4,292,092公开了一种虽不是唯一的但却是适用的激光划刻技术。相对于基底移动激光束或者相于固定的激光束移动位于X-Y工作台上的基底都可以完成划割工艺。最好是(通过基底114)从前面进行划刻,也可以从背面(直接在氧化物薄膜132上)进行划刻。第一凹槽124的宽度最佳值约为25微米。
如图3所示的是本发明的布置在基底上的前接触层的实施例。按照本发明,前接触层包括由第一划刻线条124分隔开后而形成的许多段118。每一个用虚线(如图3所示)分隔出来的划片301是独立的以保证相临的段不致互相短路。如图3所示,各个段118被第一划刻线124所分隔开并互相定向。很多段118集合在一起组成一个子组件304。至少一个子组件304集合在一起组成一个光电组件。显然,如果在一个组件中只有一个子组件304时,如像在图3中那样,则两个子组件就成为互为延伸的了。
在本发明的一个实施例中,如图3所示,两个子组件304和304′并排地布置在基底上。每个子组件304和304′都有很多平排布置并被第一划刻线124所分隔开的段118。众所周知,光电组件在使用中必须将每一串光电组件的头连接在一起。按照本发明,器件中的这种连接是由连接条306所实现。连接条306上装有焊片308,这样可以用焊接将导线焊到焊片上以便把光电组件和驱动装置相联结。(驱动装置在图中示未表明)。
这两个子组件304和304′可以沿着割线311把它俩切割开。
在本发明的另一个实施例中,如图4所示,两个子组件304′和304″并排布置在一块基底上。每一个子组件都包括很多并排而又被划刻线124分开了的段118;对这一点而言图4的实施例是与图3一样的。但是,本实施例中有一条第一公共母线310将子组件304′和304″互相连接起来。第一公共母线应制作得足够长以便使第一和第二子组件可以互相并联连接。也就是说,子组件304′和304″的正边之间或其负边之间分别互相连接起来而形成一个组件314。在这种方式中,所成的组件的输出电压和每个构成它的子组件的输出电压是相同的。而这个组件的输出电流则是构成它的两个子组件的输出电流之和。
图5表示了本发明的另一个实施例,其中每块基底上有四个子组件304-304″所组成,每个子组件包括了被划刻线124所分隔开的许多段118。每个子组件的两个端点上各有连接条306,以提供一个收集和连接点用于每个子组件的功率输出。每个子组件还可以沿着划线311和311′被切开而成为独立的组件。
图6表示了本发明的又一个实施例。每块基底上布置有四个子组件304-304。每个子组件包括了被划刻线124分隔开的并排着的很多段118。关于这一点,图6的实施例是和图5的实施例是一样的。但是在图6的实施例中,第一公共母线310是将子组件304和304′并联起来以组成组件314,而又将子组件304″和304并联起来以组成组件314′。
下面的实施例是用来描述按照本发明制作光电组件的方法。
实施例一本实施例是在一块2英尺×4英尺的基底上制作两个独立的子组件的方法。这种子组件表示在图3中。经过计算,各具28个段的两个子组件可以布置在一块基底上。每一段的尺寸应是0.375英寸×47英寸(即0.953厘米×119.38厘米)。这样一来,每个段的面积应是114厘米2。经过计算得出每个子组件的VLD就是15伏而ILD应是1.200安,其中LD的下标是指负载值。
每个子组件可以沿着割线310划割分开实施例二本实施例是制作一个包括两个子组件的组件,如图44所示。经过计算,两个子组件可以布置在一块2英尺×4英尺的基底上。每一个子组件包括28个尺寸为0.388英寸(0.985厘米)×46.50英寸(118.11厘米)的段。这些段的面积是116.33厘米2,而一个子组件的面积为3257.24厘米2,计算得出VLD是15伏,ILD则是1.233安。用一条公共母线将两个子组件并联在一起所组成的组件的电压VLD是15伏,电流ILD是2.466安。
实施例三本实施例是在一块2英尺×4英尺的基底上制作四个子组件,如图5所示。经过计算,布置在基底上的四个子组件,每个子组件有28个段。每个段的尺寸是0.375英寸(0.953厘米)×23英寸(58.42厘米),每个子组件的面积是55.67厘米2,每个组件的面积是1559厘米2。经过计算,每个子组件的VLD是15伏,ILD是590毫安。
每个子组件都可被分成独立的子组件,如图5所示,沿着切割线311和311″可以把四个子组件互相分割开。
实施例四本实施例是在一块2英尺×4英尺的基底上制作两个组件,每个组件包含两个子组件,如图6所示。经过计算,布置在2英尺×4英尺基底上的四个子组件,每个子组件包括28个段,每个段的尺寸是0.388英寸(0.985厘米)×22.5英寸(57.15厘米)。每个段的面积是56.32厘米2。而每个子组件的面积是1577厘米2。经过计算VLD为15伏,ILD为0.597安。用一条公共母线将子组件并联后,组件上可获得VLD为15伏,ILD为1.190安。如图6所示。沿着切割线可以切割成两个组件,314和314′,每个组件部包括两个互相并联相连的子组件。
按照本发明的方法,第一公共母线是在基底上沉积一条窄长的条带。本发明的导电条带包括连接条和公共母线,都是用导电材料制作的。
导电条带通常是把导电液沉积在基底上制成,导电液包括导电金属或有机金属组分,例如,银、铜、镍、铝、金、铂、钯或其混合物,导电液中最好包含一种载液,它可以帮助导电金属或有机金属组分的传递。导电液应该是相当均匀并且有适当的粘滞度。以便可以沉积成所要求的图形。该粘滞度也不能太低而成为流淌的液体以致难于成形,或者离析出各种组分出来。当然粘滞性又不能太高以致将沉积装置阻塞住。或者难于形成均匀的布线。载体从导电液中被除掉的条件不应非常苛刻,也不应使导电材料或基底的性能变坏。最好采用短时适度的加热就可以将载液从导电液中除去。
导电液中最好包含有玻璃原料以便改善导电材料的机械强度和对基底的附着力。采用玻璃原料时,在导电液沉积在基底上之后,将导电液加热一段时间烧结玻璃原料、形成所要求性能的导电材料。此步骤所需的温度和时间是依含有玻璃原料的导电液的性质的不同而定,但一般的范围是500℃到700℃左右。
美国宾夕法尼西州埃尔温森(Elerson)有限公司的曼德克(Metech)制造的曼德克3221(Meteeb 3221)是处理上述过程中一种适用的导电液。这是一种在其粘合剂和溶剂中含有银粒和玻璃原料的软膏。制造商提供的这种材料含有65%重量比的银,具有电阻率小于2.0毫欧姆/和粘滞度为4-8千厘泊(Kcps)。
按照本发明的方法,如图7的流程图所示,导电的氧化锡(CTO)沉积在基底上(步骤400),(基底可以是玻璃)以便构成前接触层132。随后的导电材料,最好是银,再沉积在CTO层132上(步骤402)。如上所述,最好采用曼德克3221M(Metech 3221M)作导电液,并用电子聚合器件公司(Electronic Fusion Devices)制造的带有725D阀门的布线装置进行布线,采用阿塞姆特克402B(Asymtek 402B)定位装置进行定位。
沉积导电材料的最好条件如下沉积速度加速度 50英寸/秒/秒速度 7.0英寸/秒阶跃设定值 0.008英寸薄膜厚度 0.0005英寸-0.0100英寸薄膜长度 - 根据要求而定导电材料沉积之后,即进行加热固化(步骤404),这最好在多室系统中完成。在皮带速率为12英寸/分(皮带连续转动)下用200℃烘干1分钟,再550℃高温下烧5分钟。
加热固化以后,用激光将前接触层132划刻而形成划刻线124(步骤406)。这是按前面所述的方式进行的。完成了划刻线124之后的其余步骤如图2(c)-2(g)所示那样制作出先电组件的各个步骤描述如下。
图8就是表示了用于完成如图7的流程图的装置。已经沉积上一层132的基底114(如图2(a)所示)放在传送带500上。贮存容器504中的导电液502通过导管506流到泵508中。泵508最好是正向旋转泵,并使导电液502的压力提高以沿着导管510流向喷咀512。导电液502从喷咀512中喷出并成喷流514流向已涂有导电层132的基底114上,喷咀512是由X-Y-Z定位仪513和机械连接515来定位的。喷咀512的运动和定位就可以在导电层132上实现布线516。布出的条带可以是,例如,导电条306,焊片308和第一公共母线310等如图4和图6所示。
然后,传送带500启动而使带有导电层132和布线516的基底114运动而进入第一加热炉518中。如果,导电液502采用曼德克3211M(Metech 3211M)则如上所述在第一加热炉中用200℃加热一分钟。而后,传送带再启动并将基底114送进第二加热炉519中,以便再用550℃高温加热5分钟左右。
应该指出,在图2(a)-2(g)中表示出了前接触层132但没有表示出公共母线。但是,应该知道;上面所描述的公共母线制作在前接触层132上的过程是在图2(c)-2(g)之前进行的。
按照本发明,然后就如图2(c)那样,在前电极118上和第一凹槽124中制作一层实质上是半导体材料连续薄膜134所组成的光电区,半导体材料将第一凹槽124充满使相邻的前电极118在电气上互相绝缘开。光电区最好是用氢化非晶硅制成传统的PIN结构(图中未表明),厚度约为6000A,由100A的P层、5200-5500A的I层、和500A的N层所组成,最好用硅烷中的辉光放电来进行沉积,就如美国专利4,064,521所述那样。而半导体材料可以用Cds/CuInSe2和CdTe。
按照本发明的第一个实施例的方法,半导体薄膜134可以用激光沿着布线图上的第二条预定的线划刻出第二凹槽126来,它使半导体薄膜134分成很多光电元件120,如图2(d)所示。前电极118现在就暴露在第二凹槽126的底部。可以仍然采用划刻透明导电氧化物层132一样的激光束进行划刻,但是功率密度则要减少到只将半导体材料划刻掉而不能损伤前电极118上的导电氧化物。当然,可以从基底114中的任何一面的方向上对半导体薄膜134进行划刻。第二凹槽126最好靠近且并行于第一凹槽124进行划刻,宽度最好约为100微米。
按照本发明第一实施例的方法,再用导电材料,如金属,最好是铝,或者是像氧化锡那样的透明导体组成的导电薄膜136制作在光电元件120上和第二凹槽126中,如图2(e)所示。充填第二凹槽126中的导电材料就将薄膜136和露出在第二凹槽126底部的前电极118在电气上连接起来了,导电薄膜136可以用溅射线其边已有技术来制作,薄膜136的厚度和组件应用对象有关。比如,对于用作12伏蓄电池充电用的组件而言,其金属薄膜136,典型的是用铝制作的,厚度大约为7000A。
采用激光划刻法的已有技术进行的下一个步骤是将金属薄膜136沿着布线圈的线条划出一系列凹槽来把薄膜136分割成许多后电极。这种方法,如美国专利4,292,092所教导的那种方法。已经证明是很不实用的。因为铝和其它传统的用于制作后电极的金属对激光具有很高的反射率,所以划刻后电极薄膜所用的激光必须工作在比在半导体薄膜134中划刻第二凹槽126时高得多的功率密度,通常要高出10倍至20倍以上。
例如,如果金属薄膜由铝构成,且厚度为7000A,并且铝的划刻是采用波长为0.53微米的倍频钕YAG激光,工作在TEMOO(球)模式时,则激光可以聚焦到25微米,功率到300毫瓦,当用同样的激光切开半导体薄膜134以制作第二凹槽126时,最好散焦到100微米,功率用在360毫瓦上。虽然用于直接切开铝时的激光的功率稍低,但每秒每单位面积上的光子数目,亦即激光的功率密度也是激光束斑尺寸的函数。对于给定的功率而言,功率密度反比于束斑半径的平方值。所以在上述实例中对于直接切开铝膜所需的激光功率密度约为切开非晶硅薄膜所需功率密度的13倍左右。
事实上,要防止采用激光直接切开铝而又不损坏在下面的半导体材料,确定所需要的功率密度是很困难的。尤其因为熔融的金属流入划刻的凹中使相临的后电极连接而短路,或者因熔融金属扩散到下面的半导体材料层中产生跨接而将光电元件短路。此外,当下层的半导体材料是由非晶硅构成时,我们发现下层的非晶硅会发生再结晶现象。而且,非晶硅PIN结构中的掺杂物经常会从N层或P层中扩散出来跑到重结晶后的I层中去。
所以,按照本发明的第一个实施例,制作金属薄膜136之后,金属薄膜136下层的光电区120是采用适当功率密度的激光进行划刻的,以便沿着平行而又临近第二凹槽126的第三条预定的布线将半导体材料烧蚀掉,但又不足以烧去前电极118的导电氧化物或薄膜金属136。尤其是激光器必须工作在这样的功率水平上,以便烧蚀半导体材料并产生出气体而使沿着第三布线的金属薄膜的结构减弱,而且使这部薄膜爆裂,而在金属薄膜中沿第三布线产生实际上连续的缝隙,并将金属薄膜分隔成许多后电极。如图2(e)所示,其中激光束用标号138予以标明。激光光刻金属薄膜136是从下面通过基底114将半导体材料烧蚀掉的。
本发明的这种在半导体材料的薄膜上制作金属薄膜图形的方法可以应用于不同于在此讨论的特定实施例的其他薄膜半导体器件中。显然,作为本领域的普通知识,本发明的方法不能用在激光入射一边有一插入层沉积在半导体薄膜层上,如果这一插入层或薄膜对激光束传布到半导体薄膜会产生干涉的话,或者这一插入层或薄膜,使反作用于激光束而破坏半导体器件的话。
按照本发明,沿着第三布线切开光电区120的半导体材料而制成的第三凹槽128见图2(f),第三凹槽128的宽度最好是约100微米,并且由半导体材料的非活性部分和第二凹槽126断开。如上所述,第三凹槽128中的半导体材料烧蚀而产生的气体,例如,从非晶硅中产生的硅气使在被烧蚀的半导体材料下面的金属薄膜136的结构减弱,而且爆裂以致形成缝隙而将薄膜136分隔成为许多个后电极122。
缝隙129应该从垂直于图2(f)平面的方向看是实际上连续不断的,要在薄膜136中产生连续不断的缝隙129就必需按照下列诸因素来调整激光器即金属薄膜材料的厚度,激光的波长,激光的功率密度,激光的脉冲率,以及划刻的进给速度。我们发现,采用波长为0.53微米的倍频钕YAG激光器来烧蚀厚度约6000A的非晶硅薄膜以便在3000-7000A厚的铝膜上制作图形时,激光的脉冲率为5仟赫左右,进给速度为13厘米/秒左右,TEMOO(球)模激光束斑为100微米左右,激光的功率为320-370毫瓦左右,如在上述条件下,而当激光功率工作在320毫瓦以下时,金属薄膜136部分将保持成跨接第3凹槽的很多桥以致将相临的光电池造成短路。如果激光器工作超过370毫瓦,则虽能制出连续不断的缝隙129,但所得组件的性能,如填充系数,就变坏了。虽然该项性能下降的确切原因并不很清楚,但是,我们相信,较高的功率水平将使本来应该在第三凹槽切开后保留下来的那部分非晶硅光电元件熔化了。此外,增加的功率密度又使激光束进一步切入前电极118中,而增加了串联电阻,甚至在功率密度再高的时候,会使相临光电元件之间的串联连接线切断而导致整个组件不能工作。
因为采用相对而言较低功率的激光器来烧蚀(切开)半导体材料制作第三凹槽128时,上层的金属薄膜并不是融化下来的,所以就不会产生熔蚀金属流入第三凹槽128,和扩散进入下层光电区而发生短路的问题。而且,烧蚀后的半导体材料,因为烧蚀时产生蒸气而突然膨胀,又受到上层金属的冷却,所以这种局部冷却将有助于制止非晶硅的重结晶和半导体热蒸气对上层金属薄膜的融化。
当用切开下层的半导体材料而制作连续的缝隙129时,经常会有金属碎片和残渣(图2(f)中的140)残留在缝隙129的两侧。按照本发明的方法,这些碎片和残渣可以随后将组件放入超声振动的液浴中,最好是水浴中,除去。超声振动后的光电组件即被消净,得到没有短路的缝隙129,并把相临的后电极分隔开。碎片和残渣亦可用氮气流或其他气流沿缝隙129吹喷的方法消除。
权利要求
1.一种薄膜半导体器件,其特征在于包括A)一块基底,B)布置在所说基底上的一层前接触层,包括ⅰ)由第一划刻线分开的许多段,ⅱ)由许多段组成的一个子组件,ⅲ)由至少一个所说的子组件组成的组件。C)用于将两个或两个以上的子组件互相并联的第一公共母线,D)布置在所说前接触层上的一层半导体材料薄膜,E)布置在所说半导体材料薄膜上的一层后接触层,所说的后接触层是被沿着相临于所说的第一划刻线所对应的第二划刻线划刻了的。F)将所说的背和后接触层的相临区域互连起来的内连线。
2.如权利要求所述的一种薄膜半导体器件,其特征在于其中所述的半导体材料的薄膜是被沿着第三划刻线划刻了的,所说的互连的背面包括了布置在第三划刻线上的所说的后电极的一部分。
3.一种在半导体基底上沉积窄长的导电固体条带图形的方法,其特征在于A)将包含有导电金属或有机金属组分的导电液沉积在该基底上,形成一条窄长的条带布线圈。B)使该已沉积的液体固化以便在该基底上形成一条实际上与该导电液相同布线图的固态窄长条带布线图。
4.一种如权利要求3所说的方法,其特征在于其固体窄带导电布线图包括很多导电材料制成的线条,其宽度大约由0.005英寸到1.000英寸,其厚度大约由0.0005英寸到0.0100英寸。
5.一种在基底上沉积一条窄长导电条带布线图的方法,其特征在于A)将包含有导电金属或有机金属组分和载液的导电液沉积在一块半导体基底上,形成一条窄带布线图,B)从该沉积在基底上的导电液中除去载液以便在基底上实际制成一条相对固定的固体导电金属或有机金属组分构成的固态布线图。
6.如权利要求3所说的方法,其特征在于沉积用的导电液是从一个小直径的细孔中流出,该细孔相对于基底,并实际上是并行于其底作X-Y-Z方向的运动。
7.一种如权利要求5所说的方法,其特征在于其中的载液是通过加热到温度为200℃左右到550℃左右的方法去除的。
8.一种如权利要求5所说的方法,其特征在于其中的导电液包括一种含有银、铜、镍、铝、金、铂、钯、及其混合物的导电金属。
9.一种如权利要求5所说的方法,其特征在于其中的导电液中还包含有玻璃原料。
10.一种如权利要求7所说的方法,其特征在于其中的导电液还包含有玻璃原料,而且导电液沉积在基底上以后是被加热到500℃左右到700℃左右除去载液,以便制成一种强固而又粘合紧密的导电图形。
11.一种如权利要求5所说的方法,其特征在于其中的窄条导电布线图是由导电材料布线所组成,宽度为0.005英寸左右到1.000英寸左右,厚度为0.0005英寸到0.0100英寸左右。
12.一种如权利要求5所说的方法,其特征在于其中的半导体基底包含有一层导电层。
13.一种如权利要求12所说的方法,其特征在于其中的导电层是导电的氧化锡。
全文摘要
一种半导体薄膜器件包括一块基底和一层布置在基底上的前接触层,它包括许多由第一划刻线分隔开的段,许多段组成一个子组件,至少一个子组件组成一个组件。用一条公共母线将两个或两个以上的子组件并联连接。用一层半导体材料的薄膜布置在前接触层上,再用一层后电极层布置在半导体材料薄膜上。沿着相邻第一划刻线的第二划刻线划刻后电极。再将后电极层的相临区域用互连线内连起来。
文档编号H01L31/20GK1050793SQ9010867
公开日1991年4月17日 申请日期1990年9月7日 优先权日1989年9月8日
发明者罗伯特·奥斯瓦德, 约翰·蒙根, 佩吉·韦斯 申请人:索拉雷斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1