有网材构件的限流装置的制作方法

文档序号:6828440阅读:201来源:国知局
专利名称:有网材构件的限流装置的制作方法
背景技术
1.发明领域本发明总的涉及包括配电和电动控制应用的总电路保护装置,更具体地涉及设计成适于多种用途的简单,可重复使用,降低成本的装置,最具体地涉及利用导电复合材料和电阻不均匀分布构件为系统电压大于或等于100V和短路电流大于或等于100A的较高功率应用的限流装置。
2.相关技术说明很多装置可在短路发生时限制电路中的电流。目前使用的限流装置包括通称为电阻正温度系数效应(PTCR或PTC)的填充聚合材料。PTCR效应的特征是,在一定的转换温度下,PTCR材料从导电率较好的材料转换成电阻率较高的材料。一些现有限流装置中,在加压接触电极之间放有PTCR材料,通常是以碳黑载荷的聚乙烯。
操作中,这些现有限流装置放在待保护的电路中。正常电路状态下,限流装置处于高导电态。短路发生时,PTCR材料经电阻加热而温度升高直到温度高于转换温度为止。在该温度点,PTCR材料电阻变成高电阻态,限制了短路电流。短路消除时,限流装置冷却至转换温度以下,再回到高导电态。高导电态中,限流装置可响应再短路过程而再次转换成高阻态。披露PTCR材料的专利例子包括US专利5382938号和5313184号和欧洲专利0640995A1号。
以PTCR效应为基础的限流装置通常设计成用于低功率电路。例如,最大电流密度小于10A/cm2。用于较高功率的已知的其它限流装置,例如,与Duggal等人共有的美国专利5614881号披露的限流装置,它包括含导电填料的导电复合材料,与复合材料相邻设置的两个电极,电阻不均匀分布构件和给导电复合材料加压用的装置。该装置中,复合材料在转换过程中不依赖PTCR效应限制电流。
Duggal的专利(5614881)中所述的限流装置认为,薄层高电阻加热后迅速热膨胀和粘接材料中气体逸出,而使限流装置局部或完全物理分离,由此在转换过程中有效地限制电流。分离对电流流动产生较高的总装置电阻,以限制电流流过短路电流路径。
尽管Duggal的专利(US.No.5614881)中所述限流装置能有效限流,但在大功率转换过程中,通常会在限流材料上产生较大机械应力。因此,这种限流装置的优点是要能重复耐受多次大功率转换过程引起的强大应力。
概述按本发明典型实施方案的限流装置包括第一和第二电极;位于第一和第二电极之间的复合材料,所述复合材料含有(a)粘接剂,和(b)导电填料;给装置提供电阻不均匀分布的薄层;增强复合材料用的网材;和对着复合材料给电极加压用的加压器,其中,网材配置在不含薄层的复合材料体积内。
按另一实施方案的限流装置包括第一和第二电极;位于第一和第二电极之间的复合材料,该复合材料包含(a)粘接剂和(b)导电填料;设置在复合材料中的网材;网材由电绝缘材料构成;给装置提供电阻不均匀分布的薄层;和对着复合材料给电极加压的加压器。
按又一实施方案的限流装置包括第一和第二电极;位于第一和第二电极之间的复合材料,复合材料是网材形状,该复合材料含(a)粘接剂,和(b)导电填料;占据网材空间的可压缩材料;和对着复合材料给电极加压的加压器。
本发明的典型实施方案提供了能设计来适应包括高电压/电流配电系统的多种用途的简单、并能重复使用的限流装置,以保护敏感元件不被高故障电流损坏。该装置有增强构件,使它能重复耐受随高电压/电流电路转换过程而经常出现的高机械应力和热应力。增强构件提高了装置的寿命并使装置具有耐冲击能力。该装置不依赖PTCR效应而限流。
附图的简要说明通过以下结合附图所做的详细说明,能清楚理解本发明的其它特征和优点,其中

图1示出按本发明第1实施方案的限流装置;图2示出按本发明第2实施方案的限流装置;图3示出按本发明第3实施方案的限流装置,它包括网材形复合材料;和图4示出按本发明第4实施方案的限流装置,其中,复合材料以两半块构成。
优选实施方案的详细说明按本发明典型实施方案的限流装置,包括含低热分解或低蒸发温度的粘接剂和导电填料的复合材料。限流装置也可以包括增强网材或筛网,或者,复合材料可以制成网材形状或筛网状。粘接剂可以选择在例如低于800℃,通常是低于400℃的低热解或低蒸发温度下有明显气体逸出的材料。导电填料包含导电材料,例如银、镍、铝、硼化钛,石墨,或碳黑。该装置最好包括至少一层加以选择的薄层,该薄层的电阻质大于该限流装置平均相同厚度和取向层的电阻值,因此,为该装置提供电阻的不均匀分布。所述薄层通常包括复合材料的一部分。
相信本发明获得了良好结果,因为,短路过程中,该经挑选的薄层电阻阻热,可以说是绝热的,接着迅速热膨胀且气体从粘接材料中逸出,在对电流流动产生较高总装置阻抗的该经选择的薄层处,该限流装置局部或全部出现物理分离。因此,该限流装置限制了电流流过短路的电流路径。短路消除时,例如,用外加手段消除短路时,确信该限流装置因施加于其中的压力而回复到低电阻态,允许电流正常流动。限流装置在多次如此短路状态下,根据这些因素,其中,如每次短路发生时的严重程度和持续时间,而能多次重复使用。
图1示出本发明的第1实施方案。限流装置100包括第1电极110和第2电极112,和位于两个电极之间的导电复合材料120。为了清楚展示。图1-4中示出了限流装置的部件分解图。复合材料120含导电填料和有低热分解温度或低蒸发温度的粘接剂。能用于构成复合材料120的材料实例说明于下。
在此其全文引作参考的美国专利No.5614881所述的限流装置构成为有电阻不均匀分布的构件。电阻不均匀分布通常由限流装置的至少一层薄层提供,该至少一层薄层按垂直于电流流动方向设置,其电阻大于装置中平均相同厚度和取向层的平均电阻。
如图1所示,薄层124可以是包括复合材料120的两个相对表面和电极110、112中之一的膜层,其中,从电极和复合材料之间的接触电阻得出较高的电阻。“接触电阻”是指有一定粗糙度的两个表面重叠而造成的电阻。按本发明的另一实施方案,薄层形成在复合材料的中心区中,例如,将复合材料的两半块压在一起而构成。图4示出有薄层124′的实施方案。两半块复合材料120′间的接触电阻提供电阻增大的薄层124′。正如本行业技术人员所公认的,薄层可位于电极之间的任何地方。本行业的技术人员还会发现,本发明不限于单一的复合材料,图1示出两个电极的样式,可以包括多种复合材料和两个以上的电极。
无论复合材料120的总厚度是多少,通常薄层的厚度为10-200μm,所具有的电阻值通常比装置中有相同厚度和取向层平均电阻至少大10%。构成较高电阻的薄层124的其它方式包括传导电流的薄层中导电填料颗粒加得少些;使复合材料或电极,或两者的界面粗糙些,因此,只采用正常传输电流的导电填料颗粒的子集;减小垂直于所选区中电流流动方向的复合材料的横截面面积,并在电极与复合材料之间,或者,在图4所示的复合材料的两半块120′之间,放置不导电材料层(例如<1μm,通常<100nm)。
再看图1,限流装置最好按垂直于所选高阻薄层124的方向,如用“P”标示的箭头所指方向加压。复合材料120通常经加压而与电极接触,因此,复合材料120与一个或两个电极110、112之间有接触电阻,工作时,装置100与待保护电路串联。可用诸如机械弹簧,气体弹簧、气压弹簧等常规加压装置或加压器加压。
如图1所示,限流装置100还包括放置在复合材料120中的增强网材130。网材130通常采用连续绞合线连接的三维网形结构。网材130的绞合线包括例如镍、铝、银或铜的金属绞合线。网材130的绞合线还包括玻璃、玻璃纤维、尼龙、聚酯、石墨纤维、硼纤维、棉花、改性棉、人造纤维、纤维素、纤维素衍生物、丙烯酸、聚碳酸酯、聚氨酯或芳族聚酰胺(KEVAR)。网材130包含最好与复合材料120兼容的材料,而且,在转换过程所处温度下是稳定的。
网材130的绞合线以许多网结点与其它绞合线连接而构成网状结构,以使复合材料120具有强度。该网状结构在绞合线之间可有有规律的孔结构。可用的网材的一个实例是Inco Corp.厂址Sudbury,Ontario,Canada购得的INCOFOAM镍泡沫材料。上述的构成网材的其它材料,例如,玻璃、玻璃纤维、尼龙等,可以是市售的有各种绞线直径和敞口尺寸的材料。图1中给出了与复合材料120的尺寸相关的网材130的尺寸和形状的一个实例。但是,本行业技术人员会发现,还会有其它构形。
如果需要,网材130也可以是两维网。“两维”是指网只占据平面,而厚度很小但不为零。两维网可以放在复合材料中与电极平行。可把两维网叠放在两片复合材料之间来构成限流装置。当然,也可以用放在复合材料中不同位置的多层网来提高强度。
为了防止在转换过程中复合材料120破裂或断裂,网材130用来增强复合材料120强度,转换过程中大部分能量加给复合材料120。按该实施例,网材130占据复合材料120的部分体积,而不占据较高电阻薄层124、例如,复合材料120中的与电极110,112邻接的区域。因此,如图1所示,复合材料包括至少一个无网材区域122,它通常与薄层124一致。由于压力“P”加到电极对网材130无任何物理妨碍。因此,转换过程之后,复合材料120中的无网材区122可使复合材料120再构成它的非分离态。因此,网材130可以用转换过程后不会被腐蚀的坚固材料如铜或镍构成,以提高强度。
正常工作中,限流装置100的电阻小。本例中,限流装置100的电阻等于复合材料120和网材130的电阻,加电极110,112的电阻,加复合材料与电极之间的接触电阻之和。出现短路时,高电流密度开始流过装置100,短路的最初阶段,装置的阻热性可以绝热。因此,认为限流装置100所选择的阻热性较大的薄层,例如,与电极相邻的复合材料层的加热比限流装置的其它部分的加热快得多。阻热层接着迅速热膨胀并从复合材料中逸出气体。
热膨胀和气体逸出导致例如在电极与复合材料之间的薄层124处局部或完全分离,薄层124中的复合材料120部分腐蚀掉并产生气体。气体造成薄层124分离。这种分离使薄层124产生缝隙和更大的转换电阻。分离造成薄层124处的电连通率减小。例如,导电填料中的导电颗粒会彼此分开,薄层中的导电颗粒的电连通率减小,薄层电阻增大。
该分离状态下,认为会出现复合材料120被腐蚀,在限流装置的分离层之间会出现电弧。分离状态下的装置的总电阻通常比不分离状态下的装置的总电阻大得多。转换电阻与初始电阻之比例如是10至1000以上。高电弧电阻认为是由于复合材料120中的气体逸出,加上气体的去离子特性的在薄层124产生的高压造成的。
任何情况下,限流装置100都能有效限制短路电流,因此,短路不会使电路的其它元件损坏。
短路电流截止后,由于所加压力P可以把分离层推到一起使限流装置再回到其不分离状态。一旦限流装置的薄层再回到不分离状态或低电阻状态,限流装置进入完全工作状态,并能响应其它短路过程而再次实施限流操作。
为了达到某些目的,例如,控制电路中限流装置上可能出现的最大电压,或者,为了提高限流装置的使用寿命而为某些电路能量设置其它路径,那么,可用包括电阻器,可变电阻器,或其它线性或非线性元件的并联电流路径,从而构成限流装置的其它实施方案。
图2示出按本发明另一实施方案的限流装置。限流装置200包括第1和第2电极210,212,位于电极之间的导电复合材料220,和至少一层薄层224,薄层224以垂直于电流流动方向设置,并具有比该装置中平均相同厚度和取向层的平均电阻大的电阻。薄层224,例如是包括电极210、212之一的电极和复合材料220的相对表面的膜层、其中,从电极与复合材料之间的接触电阻产生较高的电阻。如图4所示,薄层224也可以在电极之间的任何地方形成,如上所述,薄层也可以用除接触电阻之外的任何方法构成。
通常按垂直于高阻薄层的方向,如图4中箭头“P”所指方向给限流装置200加压。复合材料220通常包括以后要举例说明的低热分解温度粘接剂和导电填料,它与电极以压力接触,因此,复合材料与一个或两个电极之间会有接触电阻。操作中,装置与待保护电路串联。
如图2所示,限流装置200还包括设置在复合材料220中的增强网材230,网材230通常采用连续绞合线连接成的三维网状结构。按本实施方案,网材230可以从一个电极210至另一电极212的全部路径延伸,并与一个或两个电极物理接触。网材的绞合线通常包括电绝缘材料,例如比电阻率大于106Ω-cm的材料。网材的绞合线通常有利于或允许在转换过程后使分离层重新构形。网材230的绞合线可包括玻璃、玻璃纤维、尼龙、聚酯、石墨纤维、硼纤维、棉花、改性棉、人造纤维、纤维素、纤维素衍生物、丙烯酸、聚碳酸酯、聚氨酯或聚酰胺(KEVLAR)等。
网材230的顺从性使网材可以在转换过程中,在所选择的薄层224中,例如复合材料与电极界面处因消蚀掉的复合材料220而产生屈从性。随着复合材料230被消蚀掉,网材230的屈从性有利于或允许限流装置220因所加压力而使分离层(例如复合材料和电极)推到一起重新形成其不分离态。认为一旦限流装置薄层再回到不分离态或低电阻态,限流装置会完全处于工作状态,以响应其它短路过程再进行限流工作。
如果需要网材230通常是两维网状结构。图2中示出了与复合材料220的尺寸相关的网材230的尺寸和构形的实例,但本行业的技术人员会发现还可以有其它构形。网材230增强了复合材料220,以防止在转换过程中复合材料220破碎损坏,因其间主要能量施加在复合材料上。如果需要提高强度,可用例如镍、铝、银或铜等金属构成网材的绞合线。
图1-2所示实施方案可用浸渍复合材料的网材构成。例如,按一个实施方案,可把所需的网材或筛网放到无网复合材料构成的相同类型的模具中,与复合材料一起,并给复合材料加热加压使其固化,制成网材增强的限流装置。当然,要适当调节模压条件使其与网材材料的成分相容。
图3示出按本发明又一实施方案的限流装置300。图3中,限流装置300包括第1和第2电极310,312,和导电复合材料320。按本实施方案,复合材料320本身是有连续连接绞合线的网材330的形状。网材330的绞合线通常以很多结相互连接,构成三维网结构。网结构可以在绞合线之间有有规律的孔结构。
限流装置300构成有电阻不均匀分布构件。电阻不均匀分布通常由至少一层薄层提供,该薄层垂直于电流流动方向设置,它具有比该装置平均相同厚度和取向的层平均电阻大的电阻。薄层324可以是包括电极310、312之一的电极和复合材料320的相对表面的薄层,其中,从电极与复合材料之间的接触电阻得到较高的电阻。也可以在电极之间的任何地方形成薄层,如图4所示实例。如上所述,也可以由除接触电阻以外的任何方法构成薄层。
网材330的绞合线332之间配置有降低转换过程中复合材料320上机械应力所用的可压缩材料340。为降低复合材料上的热应力,可压缩材料340还可以有高热导率。可压缩材料340可以是比复合材料320的可压缩性更好和热导率更高的材料,例如,聚合物。合适的可压缩材料340的实例包括天然橡胶材料和合成橡胶材料,例如,硅橡胶,硅氧炕(聚硅氧烷)、聚氨酯、异戊二烯橡胶,和氯丁橡胶之类的高弹体。可压缩材料340还可包括空气等。
可压缩材料340通常有足够大的介电强度,以防止两个电极310,312之间直接放电
弧。为防止
弧,可压缩材料340通常与周围的复合材料紧密地物理接触。例如,可压缩材料340粘制周围的复合材料320上。为提高介电强度或热导率,可压缩材料340中可添加填料。
把复合材料320构成网材形状或筛网状,能使复合材料更有效地散热,并使邻接复合材料320的可压缩材料340所占据的空间自由膨胀、消除应力,例如,消除高电流电压引起的机械应力和热应力,在助于避免复合材料320的破碎和断裂。
首先构成复合材料的固体块。之后,切除适当的部分把复合材料作成网材形状,由此构成图3所示实施方案。例如,在复合材料中挖洞并在空腔中填入可压缩材料。或者,将复合材料直接模压成网材构件,所用模具有与网材中的开口对应的多个芯柱。随后用可压缩材料填充网材中的敞口,例如,把网形复合材料放入模具中,用可压缩材料填充模具,并在适当的温度和压力下使可压缩材料固化。或者,把可压缩材料构成适当尺寸的颗粒,再把这些颗粒分散入复合材料中,并使颗粒周围的复合材料硬化,由此构成图3所示实施例。
现在举例说明复合材料120、220、320的成分。
例1导电复合材料包含高弹体,具体是(聚)硅氧烷作为粘接材料,而金属,具体是银作为填充材料,其电阻率为0.004Ω-cm。将A和B两部分混合构成银填充的可固化的硅氧烷材料(高弹体)。A部分包含有端基二甲基乙烯基甲硅烷氧基单元和二甲基甲硅烷氧单元,在25℃时粘度为400cps的乙烯基有机(聚)硅氧烷流体23克,Ames GoldsmithCorp提供下列银颗粒,Ag 4300(46.6克),Ag 1036(37.3克),和Ag 1024(37.3克),和有端基三甲基甲硅烷氧基单元的氢化硅氧烷流体(1g)硅上有0.8wt%化学结合的氢。B部分含有二甲基乙烯基甲硅烷氧基单元和二甲基甲硅烷氧基单元,粘度为400cps的乙烯基有机(聚)硅氧烷流体(2克),二甲基马来酸酯(14μL)和Karstedt′s铂催化剂(5%铂的二甲苯溶液83μL),详见B.D Karstedt(1973)的美国专利No.3775452)。A成分40克和B成分0.44克混合之后,灌进模具中,在150℃,在5000磅的压力下在Carver压力器中热压30分钟,使混合物固化。
电极可包括镀镍铜电极、通常与复合材料加压接触。电极直径通常是约1/4英寸,位于复合材料中心,复合材料直径约3/4英寸而厚度约1/8英寸。用加压器,例如,产生170psi压力的弹簧,给电极上加3.7kg的压力。
例2按本例,复合材料包含热固性粘接剂,具体是环氧粘接剂,和金属,具体是镍粉、作导电填料。该材料是由Epoxy-Technology Inc供应的N3D材料,其电阻率为0.02-0.03Ω-cm,该材料不依赖PTCR效应限流。电极可以是镀镍的铜。用可以产生370psi压力的加压器给电极加8.2kg的压力。
例3按本例,热固性粘接剂,具体是带金属填料,具体为银的环氧粘接剂,所述银由Ames Goldsmith Corp供应的以下银粉配制Ag 4300(5.6克)、Ag 1036(4.2克),Ag 1024(4.2克),并由EpoxyTeehnology Inc供应两种成分的市售环氧树脂(Epotek 301),环氧树脂(2.3克)与硬化剂(0.6克)混合,之后,加入银粉并在Teflon(特氟隆)模具中混合,在60℃固化1小时。电极可用镀镍铜电极,并加170psi的压力。
例4高弹性粘接剂,具体是(聚)硅氧烷粘接剂,带两种成分的金属导电填料,具体是银和铝作为导电填料,可以把两部分A和B混合制备。A部分含有带二甲基乙烯基甲硅烷氧基单元和二甲基甲硅烷氧基单元端基的、粘度为400cps的乙烯基有机聚硅氧烷流体(23克),铝粉37.3克,由Ames Goldsmith Corp供应的以下银粉Ag 4300(46.6克),Ag 1036(37.3克),和Ag 1024(37.3克)和有三甲基甲硅烷氧基单元端基的氢化硅氧烷流体提供硅上有0.8wt%化学结合氢的流体(1克)。B部分含有二甲基乙烯基甲硅烷氧基单元和二甲基甲硅烷氧基单元的、粘度为400cps的乙烯基有机(聚)硅氧烷流体(2克),二甲基马来酸酯(14μl)和上述的Karstedt′s铂催化剂(5%铂的二甲苯溶液83μl)。将A成分40克和B成分0.44克混合之后,灌入模具中,然后在Carver加压器中、在150℃,5000磅压力下热压30分钟,使混合物固化。电极可以是镀镍铜电极或n型硅(半导体)。并给复合材料加170psi的压力。
例5强化高弹体粘接剂,具体是用锻制二氧化硅强化的可固化的(聚)硅氧烷,带两种成分的金属填料,具体是银和铝,可用两部分A和B制成。A部分由高弹体粘接剂组成,具体是有二甲基乙烯基甲硅烷氧基单元和二甲基甲硅烷氧基单元端基的粘度为400cps的乙烯基有机(聚)硅氧烷流体(23克),有三甲基甲硅烷氧基单元端基的氧化(聚)硅氧烷流体(2g),其硅上有0.8wt%的化学结合氢,用300m2/g环八甲基四硅氧烷和用六甲基二硅氮烷二次处理过的锻制的二氧化硅(1.2克),铝粉(37.3克),由Ames Goldsmith Corp供应的银粉Ag 4300(46.6克),Ag 1036(37.3克),Ag 1024(37.3克)。B部分含有二甲基乙烯基甲硅烷氧基单元和二甲基甲硅烷氧基单元端基的、粘度为400cps的乙烯基有机(聚)硅氧烷流体(2克),二甲基马来酸酯(14μL)和Karstedt的铂催化剂(83μL)。把A部分(40克)和B部分(0.44克)混合配成可固化的配方,之后用手混合,并把混合物放入模具中,在Carver压力器中,在150℃和5000磅压力下,经30分钟热压使混合物固化。可用镀镍的铜制成电极,并给复合材料加6psi的压力。
例6热塑性粘接剂,具体是聚乙二醇,以金属填料,具体是银,作为导电填料而制成。银粉混合物包含由Ames Goldsmith Corp供应的以下银粉Ag 4300(2.8克),A 1036(2.1克),Ag 1024(2.1克)、银粉加热到约80℃,之后在80℃灌入熔融的聚乙二醇(MW8000)中并混合。之后将材料灌入Teflon模具中,并在室温下使其硬化。电极可用镀镍的铜制成,并给复合材料加6psi的压力。
例7按本例,复合材料含聚合物基质材料和导电填料。聚合物基质材料含至少一种环氧材料和至少一种(聚)硅氧烷。聚合物基质材料用的环氧材料选自表氯醇和双酚A的缩合物(Epon 828 Shell),环氧官能化的(聚)硅氧烷单体,例如,DMSE01(Gelest Inc)、Araldite DT025(CIBA)、丁基缩水甘油醚(环氧)、和其它合适的环氧材料。
环氧成分通常含10-90wt%的聚合物基质材料。聚合物基质材料用的(聚)硅氧烷选自环氧官能化的(聚)硅氧烷单体,例如DMSE01(GelestInc)、二甲基硅氧烷、聚[(甲基)(氨乙基氨丙基)]硅氧烷(PMAS)、和氨基硅氧烷(Magnasoft ULTRA购自WITCO Corp),占聚合物基质材料约10-80wt%。
导电填料通常选自镍粉、银和碳黑。导电填料占总复合材料的50至90wt%复合材料其余是聚合物基质材料。
复合材料在高于100℃的高温下有良好的热稳定性和结构稳定性。复合材料的机械强度和结构稳定能重复经受高电流状态。复合材料具有很大机械强度的原因是,至少一部分(聚)硅氧烷混入聚合物基质中键合,因此能承受强力。复合材料经过重复出现的大电流后仍能保持电阻稳定性的部分原因是,从环氧基衍生的化学键造成的。这些和其它适宜复合材料已在这里引作参考的公知的美国专利申请流水号09/081.888的申请中说明。
例8按本例,复合材料含有机粘接剂和导电填料。有机粘接剂含高Tg环氧材料、低粘度聚乙二醇环氧材料、并含至少一种周化剂。高Tg环氧材料的用量通常占有机粘接剂的至少70wt%。高Tg环氧材料可包括线性酚醛清漆或双酚A结构等。低粘度聚乙二醇环氧材料用量通常占有机粘接剂的30wt%。低粘度聚乙二醇环氧材料的一个实例是市售的DowChemical Corp供应的DER 736。低粘度聚乙二醇环氧材料使高Tg环氧材料具有柔软性。有机粘接剂的固化剂可含用于环氧材料的常用固化剂,如酸、胺、酐、或,自由基引发剂。固化剂的一个实例是硼三氯化胺配合物、从Ciba Geigy Corp购买的DY 9577。固化剂用量是高Tg环氧材料和低粘度聚乙二醇环氧材料相结合的2-10%。
导电填料例如包括细镍粉,如从Novamet Corp购到的、已空气分级的细镍粉Ni255。导电填料的用量通常占复合材料的55-70wt%,有机粘接剂通常占复合材料的45-30wt%。在此引作参考的共同拥有的流水号08/896,874美国申请中已公开了这些和其它合适的复合材料。
例9复合材料含导电填料和至少一种有机粘接剂。有机粘接剂通常含至少一种热塑性聚合物基质。聚合物基质聚合物通常由至少一种环形热塑性低聚物构成。合适的环低聚物的一些实例包括环聚碳酸酯(见美国专利No.4727134),环聚酯(见美国专利No.5039783),和环酰胺(见美国专利No.5362845)。将带合适聚合引发剂的环低聚物和导电填料干混合便能制成复合材料。干混合可使导电填料、例如镍,能均匀分散在环低聚物和导电填料的混合物中。干混合后加热加压,使复合材料共同固结和使环形低聚物聚合。由于加压时材料不流动,能保持导电填料在环低聚物中的均匀分布。
也能将带引发剂的环低聚物与导电填料溶液混合构成复合材料;或者,把环低聚物熔化成低粘度熔液,并且将低聚物与导电填料和引发剂混合。
热塑性聚合物使复合材料具有机械强度。热塑性聚合物还能提高高温下的柔软性和流动性。在转换过程消失之后有利于再回复到低阻态。提高流动性的原因是限流器再回复到它的低阻态时有效接触面积增大。在此引作参考的公知的流水号为08/977672的美国申请公开了该复合材料和其它合适的复合材料。
具有低热分解温度或低汽化温度,例如,低于800℃的粘接材料的其它实例包括例如聚四氟乙烯、聚(乙二醇)、聚乙烯、聚碳酸酯、聚酰亚胺、聚酰胺、聚甲基丙烯酸甲酯、聚酯、液晶聚酯、聚丙烯、聚(苯硫醚等热塑性材料);例如环氧化合物,聚酯、聚氨酯,酚类;酚醛醇酸等热固性材料;例如,(聚)硅氧烷,聚氨酯,异戊二烯橡胶,氯丁橡胶等高弹体;有机或无机晶体。导电填料的其它例子包括镍、银、铜、碳黑、二氧化钛、硼化钛、碳和石墨。
为了改善复合材料的特性,例如,机械性能和介电性能,或者,提供灭弧特性或阻燃性能,可使用三相填料。可用于复合材料中的三相填料包括选自煅制二氧化硅之类的强化填料,或沉淀二氧化硅及其混合物等增量填料。其它填料包括二氧化钛、锌钡白(立德粉)、氧化锌、硅藻硅酸盐、白碳黑、氧化铁、硅藻土、碳酸钙、硅氮烷处理过的二氧化硅、(聚)硅氧烷处理过的二氧化硅、玻璃纤维、氧化镁、氧化铬、氧化锆、α-石英、煅烧粘土、碳、石墨、软木、碳酸氢钠棉、硼酸、水合氧化铝等等。其它添加剂可包括防止限流装置损坏,例如突然冲击而破碎,用的抗冲击改性剂;防止和/或抑制限流装置燃烧用的阻燃剂;按客户要求而为装置着色用的颜料和色素。防止因元件暴露在阳光下或其它形式的UV射线下而造成元件物理性能下降用的UV屏蔽剂。
最后,本发明的限流装置可用一个或多个并联的线性或非线性电路元件,例如,电阻器或可变电阻器。
本行业的技术人员通过在此公开的本发明的说明书和对本发明实践之后,还会发现可以有其它的实施方案。说明书和实施例只是为了说明本发明,而下面的权利要求书才真正限定本发明的范围和发明精神。
权利要求
1.一种限流装置,它包括第1和第2电极;位于第1和第2电极之间的复合材料,该复合材料含(a)粘接剂,和(b)导电填料;给装置提供电阻不均匀分布的薄层;增强复合材料的网材;和用于对着复合材料给电极加压的加压器,其中,网材配置于不包括薄层的复合材料体积内。
2.按权利要求1的装置,其中,薄层包括第1电极和复合材料的相对面,电阻的不均匀分布是由第1电极与复合材料之间的接触电阻产生的。
3.按权利要求1的装置,其中,将复合材料作成两半块,薄层包括两半块的相对面,电阻的不均匀分布从两半块之间的接触电阻产生。
4.按权利要求1的装置,其中,加压器包括弹簧。
5.按权利要求1的装置,其中,网材包括金属网材。
6.按权利要求1的装置,其中,网材含镍、铝、银和铜中的至少一种金属。
7.按权利要求1的装置,其中,网材含下列材料中的至少一种玻璃、玻璃纤维、尼龙、聚酯、石墨纤维、硼纤维、棉花、人造纤维、纤维素、丙烯酸、聚碳酸酯、聚氨酯、芳族聚酰胺。
8.按权利要求1的装置,其中,粘接剂有低热分解温度或低汽化温度,在低于800℃时有明显的气体逸出。
9.按权利要求8的装置,其中,短路过程中,电阻的不均匀分布引起阻热作用,并使粘接剂迅速热膨胀和蒸发。
10.按权利要求1的装置,其中,网材包括连续绞合线连接的三维网。
11.按权利要求10的装置,其中,绞合线以结点连接构成网状结构。
12.接权利要求1的装置,其中,网材是两维筛网形状。
13.一种限流装置,包括第1和第2电极;位于第1和第2电极之间的复合材料,该复合材料含(a)粘接剂,和(b)导电填料;设置在复合材料中的网材,该网材由电绝缘材料构成;给装置提供电阻不均匀分布的薄层;和用于对着复合材料给电极加压的加压器。
14.按权利要求13的装置,其中,网材含下列材料中的至少一种玻璃、玻璃纤维、尼龙、聚酯、石墨纤维、硼纤维、棉花、人造纤维、纤维素、丙烯酸、聚碳酸酯、聚氨酯、和芳族聚酰胺。
15.按权利要求13的装置,其中,网材的绞合线要具有足够的屈从性,由此在转换过程后,加压器着力于复合材料时,能使之与第一电极接触。
16.一种限流装置,包括第1和第2电极;位于第1和第2电极之间的复合材料,该复合材料是网材形状,所述复合材料含(a)粘接剂,和(b)导电填料;占据网材内空间的可压缩材料;和用于对着复合材料给电极加压的加压器。
17.按权利要求16的装置,其中,网材包括复合材料绞合线连接成的网。
18.按权利要求17的装置,其中,可压缩材料包括(聚)硅氧烷,聚氨酯,异戊二烯橡胶和氯丁橡胶中的至少一种。
全文摘要
介绍的限流装置包括第1和第2电极;位于第1和第2电极之间的复合材料,所述复合材料含:(a)粘接剂、和(b)导电填料;给装置提供电阻不均匀分布的薄层;增强复合材料用的网材;和对着复合材料给电极加压用的加压器,其中,网材放在不包括薄层的复合材料体内。该限流装置简单并能重复使用,并能适合多种用途,包括高电压/电流配电系统,以防止高故障电流损坏敏感元件。装置有坚固构件,它使装置能重复经受因高电压/电流电路中转换过程出现的强大机械应力和热应力。该装置不依赖PTCR效应而进行限流工作。
文档编号H01C7/102GK1275237SQ99801341
公开日2000年11月29日 申请日期1999年8月5日 优先权日1998年8月12日
发明者A·R·杜加尔 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1