一种高鲁棒性的高压静电放电保护器件的制作方法

文档序号:9617534阅读:736来源:国知局
一种高鲁棒性的高压静电放电保护器件的制作方法
【技术领域】
[0001 ] 本发明涉及集成电路的可靠性领域,是关于一种高鲁棒性的高压静电放电保护器件结构。
【背景技术】
[0002]ESD(Electro-Static Discharge)即静电放电,是自然界中一种常见的现象,小到摩擦生电,大到电闪雷鸣,都属于这个范畴。在集成电路制造、封装、运输、装配等过程中,不可避免的都会受到ESD冲击的影响,甚至导致失效。ESD引发的集成电路失效主要有两个原因:介质击穿和热损毁。若无合理的钳位电路,则过高的电场将导致栅输入端出现介质击穿。而热损毁发生的根本原因则是ESD脉冲下瞬态大电流产生的巨大热量。半导体(包括硅)不是良好的导热材料,ESD电流在硅或互联线中产生的热量不能及时传导出去,热量积累之下芯片内部可能出现金属或接触孔熔化,导致开路或短路发生,或因为硅材料熔化导致杂质再分布、材料性能改变。静电放电是造成大多数电子器件和半导体系统失效的主要原因,已成为近来半导体设计中备受关注的问题。
[0003]高压功率集成电路是国家重要的支撑科技,与能源、环保、通讯、生命科学、材料和交通等关键性的科技领域息息相关。功率集成电路的设计水平直接决定着一个国家在电源管理、绿色照明和电机控制等领域的核心竞争力。高压功率集成电路的ESD防护能力,对于系统的稳定性和可靠性起到了至关重要的作用。因此研究高压功率集成电路ESD防护器件工作机理、优化器件ESD防护能力对高压功率集成电路的设计具有十分重要的现实意义。当前大部分高压ESD防护器件难以满足ESD设计窗口的要求:如既要有高于工作电压的维持电压,又要有尽量低于栅氧击穿电压的触发电压。简而言之,现有的高压ESD防护电路缺乏能够满足窄小ESD设计窗口的强鲁棒性的ESD防护器件。而且,由于许多功率集成电路产品常工作在比较“恶劣”的环境下(如高电压、大电流、频繁插拔及高低温工作环境等),使它们的ESD防护设计需要考虑更多因素,集中体现在高压ESD防护器件需要具有良好的防误触发能力、抗闩锁能力和强鲁棒性等综合性能。
[0004]高压二极管作为一种最早使用的ESD防护器件,应用久远而且广泛,其结构简单而有效,一直发挥着重要作用。高压二极管的正向和反向工作状态下均可以作为ESD保护工作方式。正向二极管通常以二极管串的形式存在,这是为了防止在电源电压的正常工作时,二极管两端的电压超过其开启电压而导通,引起电路漏电问题的发生,但是在高压情况下,二极管串一般不能满足数量上的要求,因为高压下,需要大量的二极管才能使其在正常工作条件下处于关断状态。因此,只考虑反向的二极管ESD性能。反向二极管作为ESD保护器件具有结构简单,无折回,不会发生闩锁的特点,同时,也由于其不发生Snapback,使其泄放电流时的电压维持在较高水平,从而产生大量的焦耳热,容易造成器件损毁,所以,相比于发生Snapback型器件其ESD能力相对较弱。于是为了提升器件的ESD能力常常采用加大器件面积的方法,但这样会带来成本的增加。高压双极型晶体管也是一种常用的ESD防护元件,当ESD冲击到来时,反偏结间建立了一个很高的电场,器件发生雪崩击穿产生大量电子空穴对,空穴被低电位的一端收集,由于体电阻的存在产生压降,当BE结达到开启电压0.7V左右时,器件导通来泄放ESD电流。作为Snapback型器件,双极型晶体管有较强的ESD电流泄放能力,但是由于其维持电压一般低于高压器件的工作电压所以有很大的闩锁风险。
[0005]围绕着高压工艺的静电保护对触发电压、维持电压、闩锁风险以及较低的成本的要求,本文介绍了一种高鲁棒性的高压ESD保护器件,在同样的尺寸下与传统的高压反偏二极管相比其二次击穿电流更高,与传统的高压双极型晶体管相比其闩锁风险更低,能更好的符合ESD设计窗口的要求,具有良好的应用前景。

【发明内容】

[0006]本发明在不改变器件面积的基础上,提供一种高鲁棒性的高压ESD保护器件结构,并且维持电压可以调节以适应不同设计的要求。
[0007]本发明采用如下技术方案:
[0008]—种高鲁棒性的高压ESD保护器件,包括:P型衬底,在P型衬底上设有埋氧化层,在埋氧化层上设有N型外延层,在N型外延层的上部设有第一低压N型阱、第一低压P型阱,在第一低压N型阱内设有N型阴区,在第一低压P型阱内设有P型阳区,在N型外延层的上表面上设有场氧化层且所述场氧化层位于N型阴区与P型阳区之间,在N型阴区、场氧化层及P型阳区的上表面设有钝化层,在N型阴区上连接有阴极金属,在P型阳区上连接有阳极金属,其特征在于,在第一低压N型阱内设有P型注入效率调节阱,所述的N型阴区位于P型注入效率调节阱内。与现有技术相比,本发明具有如下优点:
[0009](1)本发明结构与图1所示的传统的高压反偏二极管相比ESD电流泄放能力更强。本发明的器件结构在阴极增加了一个新的P型注入区12,器件的等效电路为如图4所示的一个齐纳二极管(二极管的阴极为N型阴区5,二极管的阳极为P型注入效率调节阱12)和基极浮空的PNP晶体管(PNP晶体管的发射极为P型注入效率调节阱12,基极为N型外延层3和第一低压N型阱4组成的N型区域,集电极为第一低压P型阱7)的串联,器件内部存在一个基极浮空的PNP双极型晶体管,从而具有更高的电流泄放能力。
[0010](2)本发明结构在拥有良好的电压钳位效果的同时还拥有低的闩锁风险,能更好的符合ESD设计窗口的要求。所谓电压钳位即是将内部被保护电路的栅极输入电压钳制在栅介质的击穿电压以下。如图5所示,传统的高压反偏二极管在发生雪崩击穿以后,二极管两端电压迅速增大很快超出内部被保护电路的栅极击穿电压,不能起到有效的保护作用。而本发明中的器件结构在发生雪崩击穿以后,由于动态电阻比较小,维持电压幅值变化不大,直到发生二次击穿失效都没有超过栅介质的击穿电压,所以电压钳位效果比较好。低的闩锁风险要求器件的维持电压高于内部被保护电路的工作电压,如图2所示的传统的高压PNP双极型晶体管在发生雪崩击穿以后由于会发生较强的回滞,维持电压比较低会有较高的闩锁风险,而本发明结构中存在的PNP双极型晶体管由于其发射极掺杂浓度低于集电极掺杂浓度,使得PNP双极型晶体管的维持电压变大,而且本发明结构总的维持电压还要加上齐纳二极管的击穿电压,是PNP双极型晶体管的维持电压和齐纳二极管的击穿电压两者之和,进一步提高了维持电压的值降低了闩锁的风险。
[0011](3)本发明结构的维持电压是可以调节
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1