一种晶体硅非晶硅层叠电池及其制造方法

文档序号:10536958阅读:314来源:国知局
一种晶体硅非晶硅层叠电池及其制造方法
【专利摘要】本发明公开了一种晶体硅非晶硅层叠电池及其制作方法,太阳电池由晶体硅和非晶体硅层叠而成,充分利用非晶硅薄膜电池在700nm的波长以内,吸收系数大和晶体硅电池在波长大于700nm时吸收系数强的特点,充分利用太阳光谱;同时背面钝化的结构增加了对红外光谱的吸收,充分利用太阳光谱,提高电池的效率,同时减反射膜具有自清洁功能。
【专利说明】
一种晶体硅非晶硅层叠电池及其制造方法
技术领域
[0001 ]本发明涉及一种电池晶体硅/非晶硅叠层电池的结构及其制造方法。
【背景技术】
[0002]在能源短缺、环境污染问题日益突出的背景下,发展可再生能源已成为全球的重大课题,利用太阳能则是发展可再生能源的一个重点方向,世界光伏市场在过去十年一直保持着年均30%以上的高速增长,2009年增幅更是达到惊人的152.8%。产量由2008年的7.91GW增至2009年的近20GW。与国外先进电池制备技术相比,我国晶硅太阳电池制备技术还是相对落后,基本流程由在P型硅片上以制绒、扩散、刻蚀、沉积减反膜、丝网印刷方法制造太阳电池。
[0003]2010年以来,太阳电池片的销售从卖方市场到买方市场,政府补贴大幅削减,使得电池片的制造商努力降低自己的生产成本,而提高电池片的效率就是有效的途径,不仅降低了每瓦的生产成本,并且销售得市场更大;目前高效电池的研发集中在背面钝化,细栅印刷,双面电池等,这些电池的制备和传统电池的制备工艺兼容和接近,都是单节电池,不能充分的利用太阳电池的光谱,效率的提高受到了限制。

【发明内容】

[0004]发明目的:本发明的目的是为了解决现有技术的不足,提供一种晶体硅非晶硅叠层电池及其制造方法。
[0005]技术方案:为了实现以上目的,本发明提供的一种晶体硅非晶硅叠层电池及其制造方法,包括N型硅衬底、掺杂P层、第一本征非晶硅I层、微晶硅N层、第二本征非晶硅I层、非晶硅P层、透明导电电极、氧化铝/氮化硅钝化层、电池负极、电池正极、二氧化硅膜层/ 二氧化钛膜层/二氧化硅膜层减反射膜,所述的N型硅衬底的上表面自下而上依次层叠掺杂P层、第一本征非晶硅I层、微晶硅N层、第二本征非晶硅I层、非晶硅P层、透明导电电极、电池正极、二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜;N型硅衬底下表面沉积氧化铝/氮化硅钝化层,所述N型硅衬底与氧化铝/氮化硅钝化层上设有开槽,所述开槽内嵌电池负极,其中所述透明导电电极包括依次层叠的第一石墨烯层、金属网格薄膜层以及第二石墨烯层。
[0006]所述N型硅衬底的电阻率为0.3 Ω.cm-10 Ω.cm。
[0007]所述第一本征非晶硅I层的厚度为2-10nm。
[0008]所述微晶硅N层的光敏性为1-1 O,导电率1-1 Os/cm。
[0009]所述减反射膜的厚度为100-150nmo
[0010]—种晶体硅非晶硅叠层电池的制作方法,包括一下步骤:
[0011](a)对N型单晶硅半导体衬底表面绒面化并进行化学清洗:表面绒面化的目的是增加太阳光在表面的折射次数,增加光线在硅衬底中的光程,提高太阳光的利用率;单晶硅半导体通常在在碱溶液进行表面绒面化,是形成由金字塔形状的绒面。同时绒面给前薄膜PIN电池提供内反射,提高薄膜电池的电流密度;化学清洗,化学清洗一般在稀盐酸和氢氟酸中进行,目的是去除表面的杂质,为后面的沉积本征非晶硅提供准备;
[0012](b)制备PN节:在N型硅衬底的前表面进行硼扩散,形成PN节;或者离子注入硼源,通过退火形成PN结;
[0013](c)在N型单晶硅半导体衬底背表面沉积氧化铝/氮化硅钝化层;
[0014](d)在扩硼的表面沉积第一本征非晶硅I层:它主要起到钝化作用;
[0015](e)沉积前电池的微晶硅N层;
[0016](f)沉积电池前表面第二本征非晶硅I层:在微晶硅N层上沉积前电池的本征非晶硅I层,它是前电池的有源层;
[0017](g)沉积前电池的非晶硅P层:在本征非晶硅I层的上面采用PECVD的方法沉积前电池的非晶硅P层,它形成前电池的正极;
[0018](h)在非晶硅P层上制备透明导电极:所述透明导电电极包括依次层叠的第一石墨烯层、金属网格薄膜层以及第二石墨烯层,主要作用是收集电池的载流子;
[0019](i)制备背电极;
[0020](j)制备前电极;
[0021](k)激光烧蚀;
[0022](I)退火;
[0023](m)在前电极以及透明导电电极表面沉积二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜,其具有减反射和自清洁的作用。
[0024]有益效果:本发明与现有技术相比具有以下优点:
[0025]此电池的结构以背点接触电池N型电池和非晶硅薄膜电池组成,这样的结构充分利用非晶硅薄膜电池在700nm的波长以内,吸收系数大和晶体硅电池在波长大于700nm时吸收系数强的特点,充分利用太阳光谱。同时非晶硅吸收有源层I层的带系可微调的特点,使前电池和后电池的电流匹配达到最佳,提高电池的效率,同时良好的钝化结构能最大限度的提尚有效的少子寿命,从而提尚电池的开路电压,同时减反射I旲具有自清洁功能。
【附图说明】
[0026]图1为晶体硅非晶硅层叠电池的结构示意图。
【具体实施方式】
[0027]下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
[0028]实施例1
[0029]—种晶体娃非晶娃层叠电池,包括N型娃衬底1、掺杂P层2、第一本征非晶娃I层3、微晶硅N层4、第二本征非晶硅I层5、非晶硅P层6、透明导电电极7、氧化铝/氮化硅钝化层8、电池负极9、电池正极10以及二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜,所述的N型硅衬底I的上表面自下而上依次层叠掺杂P层2、第一本征非晶硅I层3、微晶硅N层4、第二本征非晶硅I层5、非晶硅P层6、透明导电电极7、电池正极10以及二氧化硅膜层/二氧化钛膜层/ 二氧化硅膜层减反射膜;N型硅衬底I下表面沉积氧化铝/氮化硅钝化层8,所述氧化铝/氮化硅钝化层8上设有开槽,所述开槽内嵌电池负极9;所述N型硅衬底的电阻率为0.3 Ω.cm-10 Ω.cm;所述第一本征非晶娃I层的厚度为2-10nm;所述微晶娃N层的光敏性为1-10,导电率1-lOs/cm;所述减反射膜的厚度为100-150nmo
[0030]本发明所涉及的太阳能电池结构如下所述,制备流程:
[0031]a)选择N型硅衬底I,且N型硅片的电阻率为10 Ω.cm,并对N型单晶硅半导体衬底表面绒面化并进行化学清洗,对于N型单晶硅衬底,采用稀得氢氧化钠溶液在N型衬底的表面制备出金字塔形状的陷光结构,随后用稀释的盐酸和氢氟酸进行清洗;
[0032]b)在N型硅衬底I的前表面进行硼扩散,形成PN节:将N型硅衬底I放入扩散炉中进行硼扩散,扩散温度为800°C,其中源可以用BBr3,目标方阻范围是50Ω/口;
[0033]c)去背节、边节以及硼硅玻璃:在单面刻蚀的设备中,采用浓度为5%的氢氟酸和50%的硝酸的混合溶液刻蚀硅片的背表面和边缘;
[0034]d)在背表面沉积氧化铝/氮化硅钝化层:在硅片的背表面采用等离子化学气相沉积的方法制备130nm厚的氧化铝/氮化硅钝化膜;
[0035]e)在扩硼的表面生长本征非晶硅:在180°C的温度下,采用PECVD的方法生长2nm的第一本征非晶娃I层3;
[0036]f)沉积前电池的微晶硅N层4:在180°C的温度下,采用PECVD的方法生长1nm的微晶娃N层4;
[0037]g)沉积前电池的非晶I层:在180°C的温度下,采用PECVD的方法生长300nm的第二本征非晶硅I层6;
[0038]h)沉积前电池的非晶P层:在180 °C的温度下,采用PECVD的方法生长I Onm的3 ^晶硅P层5;
[0039]i)在非晶硅P层5的表面制备透明导电极:所述透明导电电极包括依次层叠的第一石墨烯层、金属网格薄膜层以及第二石墨烯层;
[0040]j)制备背电极:采用蒸镀的方式在背面的SiN钝化膜上蒸镀上一层10nm银作为电池的负极;
[0041 ] k)制备前电极:采用蒸镀的方式,在ITO制上备电池的正极;
[0042]I)激光烧蚀:在硅片的背面上采用激光烧蚀的方式,把背面的SiN薄膜局部烧穿,同时让银和硅在局部形成欧姆接触,激光烧蚀的图形可以是20um的线,也可以是直径为20um的圆;
[0043]m)退火:在温度160摄氏度时退火,目的是让Al和Si以及Ag和ITO形成好的欧姆接触;
[0044](η)在前电极以及透明导电电极表面沉积厚度为10nm的二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜。
[0045]实施例2
[0046]实施实例2与实施实例I的步骤基本进相同,除了步骤b)采用离子注入工艺替代夕卜,步骤如下:
[0047]a)选择N型硅衬底I
[0048]b)采用离子注入的工艺,注入硼源:在离子束能量1keV情况下,离子注入量I X15cm_2;
[0049]c)退火:在退火炉中,在温度为900°C时退火,使激活离子注入的硼源,并对离子注入时损伤的硅表面进行修复,目标方阻范围是80 Ω /口。。
[0050]d)在背表面沉积氧化铝/氮化硅钝化层;
[0051]e)在扩硼的表面生长本征非晶硅
[0052]f)沉积前电池的微晶硅N层4
[0053]g)沉积前电池的非晶I层
[0054]h)沉积前电池的非晶P层
[0055]i)在非晶硅P层5的表面制备透明导电极
[0056]j)制备背电极
[0057]k)制备前电极
[0058]I)激光烧蚀
[0059]m)退火
[0060](η)在前电极以及透明导电电极表面沉积二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜。
[0061 ] 实施例3
[0062]η)选择N型硅衬底1,且N型硅片的电阻率为0.3Ω.cm,并对N型单晶硅半导体衬底表面绒面化并进行化学清洗,对于N型单晶硅衬底,采用稀得氢氧化钠溶液在N型衬底的表面制备出金字塔形状的陷光结构,随后用稀释的盐酸和氢氟酸进行清洗;
[0063]ο)在N型硅衬底I的前表面进行硼扩散,形成PN节:将N型硅衬底I放入扩散炉中进行硼扩散,扩散温度为1000°C,其中源可以用BBr3,目标方阻范围是115 Ω/口;
[0064]p)去背节、边节以及硼硅玻璃:在单面刻蚀的设备中,采用浓度为13%的氢氟酸和65%的硝酸的混合溶液刻蚀硅片的背表面和边缘;
[0065]q)在背表面沉积氧化铝/氮化硅:在硅片的前表面采用等离子化学气相沉积的方法制备150nm厚的氧化铝/氮化硅减钝化膜;
[0066]r)在扩硼的表面生长本征非晶硅:在280°C的温度下,采用PECVD的方法生长1nm的第一本征非晶硅I层3;
[0067]s)沉积前电池的微晶硅N层4:在280°C的温度下,采用PECVD的方法生长30nm的微晶娃N层4;
[0068]t)沉积前电池的非晶I层:在280°C的温度下,采用PECVD的方法生长Ium的第二本征非晶硅I层6;
[0069 ] u)沉积前电池的非晶P层:在250 °C的温度下,采用PECVD的方法生长2 5nm的彳_晶硅P层5;
[0070]V)在非晶硅P层5的表面制备透明导电极:所述透明导电电极包括依次层叠的第一石墨烯层、金属网格薄膜层以及第二石墨烯层;
[0071]w)制备背电极:采用蒸镀的方式在背面的SiN钝化膜上蒸镀上一层SOOnm银作为电池的负极;
[0072]X)制备前电极:采用蒸镀的方式,在ITO制上备电池的正极;
[0073]y)激光烧蚀:在硅片的背面上采用激光烧蚀的方式,把背面的SiN薄膜局部烧穿,同时让银和硅在局部形成欧姆接触,激光烧蚀的图形可以是20um的线,也可以是直径为20um的圆;
[0074]Z)退火:在温度240摄氏度时退火,目的是让Al和Si以及Ag和ITO形成好的欧姆接触;
[0075](Za)在前电极以及透明导电电极表面沉积厚度为150nm的二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜。
【主权项】
1.一种晶体硅非晶硅层叠电池,其特征在于:包括N型硅衬底、掺杂P层、第一本征非晶硅I层、微晶硅N层、第二本征非晶硅I层、非晶硅P层、透明导电电极、氧化铝/氮化硅钝化层、电池负极、电池正极、二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜,所述的N型硅衬底的上表面自下而上依次层叠掺杂P层、第一本征非晶硅I层、微晶硅N层、第二本征非晶硅I层、非晶硅P层、透明导电电极、电池正极、二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜;N型硅衬底下表面沉积氧化铝/氮化硅钝化层,所述N型硅衬底与氧化铝/氮化硅钝化层上设有开槽,所述开槽内嵌电池负极,其中所述透明导电电极包括依次层叠的第一石墨烯层、金属网格薄膜层以及第二石墨烯层。2.根据权利要求1所述的一种晶体硅非晶硅层叠电池,其特征在于:所述N型硅衬底的电阻率为0.3 Ω.cm-10 Ω.cm。3.根据权利要求1所述的一种晶体硅非晶硅层叠电池,其特征在于:所述第一本征非晶硅I层的厚度为2-10nmo4.根据权利要求1所述的一种晶体硅非晶硅层叠电池,其特征在于:所述微晶硅N层的光敏性为1-10,导电率l-10s/cmo5.根据权利要求1所述的一种晶体硅非晶硅层叠电池,其特征在于:所述减反射膜的厚度为 100-150nm。6.—种晶体硅非晶硅层叠电池的制作方法,其特征在于,包括以下步骤: (a)对N型单晶硅半导体衬底表面绒面化并进行化学清洗; (b)制备PN节; (c)在N型单晶硅半导体衬底背表面沉积氧化铝/氮化硅钝化层; (d)在扩硼的表面沉积第一本征非晶硅I层; (e)沉积前电池的微晶硅N层; (f)沉积电池前表面第二本征非晶硅I层; (g)沉积前电池的非晶硅P层; (h)在非晶硅P层上制备透明导电电极,所述透明导电电极包括依次层叠的第一石墨烯层、金属网格薄膜层以及第二石墨烯层; (i)制备背电极; (g)制备前电极; (k)激光烧蚀; (I)退火; (m)在前电极以及透明导电电极表面沉积二氧化硅膜层/ 二氧化钛膜层/ 二氧化硅膜层减反射膜。
【文档编号】H01L31/20GK105895712SQ201610228165
【公开日】2016年8月24日
【申请日】2016年4月13日
【发明人】黄广明
【申请人】黄广明
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1