电动车辆的制作方法

文档序号:7305473阅读:134来源:国知局
专利名称:电动车辆的制作方法
技术领域
本发明涉及一种电动车辆,特别涉及一种能够在蓄电装置和车辆外部 的电源或电负载之间授受电力的电动车辆。
背景技术
日本特开平4 - 295202号公报公开了能够在车辆外部的交流电源和车 载直流电源之间授受电力的马达驱动装置。该马达驱动装置具有蓄电池、 变换器(inverter) IA以及IB、感应电动机MA以及MB、控制单元。感 应电动机MA、 MB分别包括Y结线的绕组CA、 CB。在绕组CA、 CB的 中性点NA、 NB上经由EMI滤波器连接有输入/输出端口 。变换器IA、 IB 分别与感应电动机MA、 MB相对应地设置,并分别连接在绕组CA、 CB 上。变换器IA、 IB并联连接在蓄电池上。
在该马达驱动装置中,在再充电模式时,能够将从连接在输入/输出端 口上的单相电源向绕组CA、 CB的中性点NA、 NB之间供给的交流电转 换成直流电,充电蓄电池。另外,能够在中性点NA、 NB之间上产生正弦 波的已调节的交流电,将所产生的交流电输出到连接在输入/输出端口上的 外部装置。
由于包含在变换器中的开关元件的接通/断开动作,在变换器上产生电 磁噪音。在此,若车辆在行驶中,则在大部分的情况下来自变换器的电磁 噪音被其他的噪音(行驶声音等)所掩盖, 一般不会成为大的噪音问题。
但是,如在上述公报中所公开的马达驱动装置那样,能够采用马达驱 动用的变换器,进行车辆外部的电源或电负载和车载蓄电装置之间的电力 授受时,可以想到这种电力授受是在车辆停止时进行,特别是从外部电源 向蓄电装置的充电是在不使用车辆时的夜间进行。因此,在这种电力授受时,来自变换器的电磁噪音有可能成为大问题,但在上述公报中,未对此 类问题进行探讨。
另外,在使用马达驱动用的变换器在车辆外部的电源或电负载和车载 蓄电装置之间进行电力授受的情况下,浪涌电压对外部电源或外部负载所 产生的影响令人担忧,所述浪涌电压是因包含在变换器中的开关元件的接
通/断开动作而产生的。在上述公报中所公开的马达驱动装置中具备了 EMI 滤波器,但是与此对应地增加费用。

发明内容
因此,本发明是为了解决上述问题而做出的,其目的在于,提供如下 的电动车辆,即,考虑了车辆外部的电源或电负载和搭载在车辆上的蓄电 装置之间授受电力时变换器所产生的噪声。
根据本发明,电动车辆,具有旋转电机、变换装置、蓄电装置、控制 装置。变换装置能够驱动旋转电机。蓄电装置与变换装置之间进行电力的 授受。控制装置以第一动作模式(行驶模式)以及第二动作模式(充放电 模式)的任一模式控制变换装置,所述第一动作模式是旋转驱动旋转电机, 所述第二动作模式是使变换装置作为在车辆外部的电源或者电负载和蓄电 装置之间授受电力的电压变换器来动作。控制装置,在第二动作模式时, 相对于第一动作模式时变更变换装置所包含的开关元件的开关频率以及开 关速度中的任一方,由此比第一动作模式时降低从变换装置产生的规定的 噪声。
优选的是,所述规定的噪声为声频噪声。控制装置,在第二动作模式 时,相对于第一动作模式时向接近非可听范围的方向变更载波频率。
再有,优选的是,控制装置在第一动作模式时,将载波频率设定为第 一频率;在第二动作模式时,将载波频率设定为比第一频率高的第二频率。
再有,优选的是,第二频率包含在非可听范围带中。
优选的是,控制装置在第二动作模式时,只有在预先设定的夜间时间 段里变更载波频率。
优选的是,电动车辆还具有噪声传感器。噪声传感器检测车辆周围的
6噪声级。控制装置,在第二动作模式时,只有在由噪声传感器检测出的噪 声级比规定值低时,变更载波频率。
优选的是,电动车辆还具有指示输入部。指示输入部,能够由使用者 指示禁止载波频率的变更。控制装置,在载波频率的变更被指示输入部所 禁止时,中止载波频率的变更。
另外,优选的是,规定的噪声为传向车辆外部的电源或电负载的浪涌 电压的噪声,所述浪涌电压为伴随着变换装置中包含的开关元件的接通/ 断开动作而产生的电压。控制装置,在第二动作模式时,比第一动作模式 时降低开关元件的开关速度。
再有,优选的是,电动车辆还具有驱动电路。驱动电路根据来自控制 装置的指令,驱动开关元件。驱动电路包括笫一栅电阻以及第二栅电阻。 第一栅电阻在第一动作模式时使用。第二栅电阻在第二动作模式时使用, 电阻值比第一栅电阻大。
优选的是,旋转电机,包含星形接线的第一多相绕组作为定子绕组。 该电动车辆还具备另一个旋转电机和连接装置。另一个旋转电机,包含星 形接线的第二多相绕组作为定子绕组。连接装置构成为,能够在第一多相 绕组的第一中性点以及第二多相绕组的第二中性点和车辆外部的电源或电 负载之间授受电力。变换装置包括第一以及第二变换器。第一变换器能够 驱动旋转电机。第二变换器能够驱动另一个旋转电机。控制装置,在第二 动作模式时,控制第一以及第二变换器,使得在通过连接装置连接于第一 以及第二中性点的车辆外部的电源或电负载和蓄电装置之间授受电力。
再有,优选的是,控制装置,在第二动作模式时从车辆外部的电源对 蓄电装置进行充电的情况下,将第一以及第二多相绕组作为电抗线围来使 用,且控制第一以及第二变换器使得第一以及笫二变换器作为电压变换器
的臂(leg,桥臂)来动作,由此升压从车辆外部的电源供给的电压。
在本发明中,变换装置以第一动作模式(行驶模式)以及第二动作模 式(充放电模式)的任一模式动作,所述第一动作模式旋转驱动旋转电机, 所述第二动作模式使变换装置作为在车辆外部的电源或电负载和蓄电装置 之间授受电力的电压变换器来动作。而且,控制装置,在第二动作模式时,相对于第一动作模式时变更包含在变换装置中的开关元件的开关频率以及 开关速度的任一方,由此比第一动作模式时降低从变换装置产生的规定的 噪声,因此,在车辆外部的电源或者电负载和蓄电装置之间进行电力的授 受时,抑制从变换装置产生的规定的噪声。
由此,根据本发明,能够抑制在车辆外部的电源或者电负载和蓄电装 置之间进行电力授受时的电磁噪音、浪涌电压对电源或电负载的影响。


图l是作为本发明的电动车辆的一例的混合动力车辆的整体框图。
图2是图1所示的ECU的功能框图。
图3是表示图l所示的变换器以及电动发电机的零相等价电路的图。 图4是在图2所示的载波信号生成部中设定载波频率的流程图。 图5是在第一实施方式的第一变形例中设定载波频率的流程图。 图6是第一实施方式的第二变形例的混合动力车辆的整体框图。 图7是在第一实施方式的第二变形例中设定载波频率的流程图。 图8是第一实施方式的第三变形例的混合动力车辆的整体框图。 图9是在第一实施方式的第三变形例中设定载波频率的流程图。 图IO是第二实施方式中驱动电路的电路图。 图11是第三实施方式的电动车辆的整体框图。
具体实施例方式
对于本发明的实施方式,参照附图,进行详细说明。此外,对图中的 相同或相当部分标上了相同的附图标记,不重复进行其说明。第一实施方式
图l是作为本发明的电动车辆的一例的混合动力车辆的整体框图。参 照图1,该混合动力车辆100具备发动机4、电动发电机MG1以及MG2、 动力分配机构3、车轮2。另外,混合动力车辆100还具备蓄电装置B、 变换器10以及20、 ECU ( Electronic Control Unit:电子控制单元)30、驱动电路40、 AC开关50。
还有,混合动力车辆IOO还具备电源线PL、接地线GL、电容器C、 U相线UL1以及UL2、 V相线VL1以及VL2、 W相线WL1以及WL2、 电压传感器80、电流传感器82以及84、旋转角传感器86以及88。另夕卜, 混合动力车辆IOO还具备电力线ACL1以及ACL2、连接器70。
该混合动力车辆100以发动机4以及电动发电机MG2为动力源行驶。 动力分配机构3结合于发动机4和电动发电机MG1、 MG2上,并在它们 之间进行动力分配。例如,作为动力分配机构3,可以使用具有太阳齿轮、 行星齿轮架以及齿圈(ring gear)的三个旋转轴的行星齿轮机构。该三个 旋转轴分别连接在发动机4以及电动发电机MG1、 MG2的各旋转轴上。 例如,通过将电动发电机MG1的转子设为中空、使发动机4的曲轴通过 其中心,从而能够将发动机4以及电动发电机MG1、 MG2机械连接在动 力分配^/L构3上。
此外,电动发电机MG2的旋转轴通过未图示的减速齿轮或动作齿轮 结合在车轮2上。另外,也可以在动力分配机构3的内部还组装对于电动 发电机MG2的S走转轴的减速器。
而且,电动发电机MG1作为由发动机4驱动的发电机工作,且作为 能够进行发动机4的起动的电动机工作,安装在混合动力车辆IOO上,电 动发电机MG2作为驱动车轮2的电动机来安装在混合动力车辆IOO上。
另外,该混合动力车辆100,如后面详细说明那样,能够通过连接器 94与连接在连接器70上的工业(商用)电源92授受电力。
蓄电装置B的正极以及负极分别连接在电源线PL以及接地线GL上。 电容器C连接在电源线PL和接地线GL之间。变换器10包括U相分支 (arm) 12、 V相分支14以及W相分支16。 U相分支12、 V相分支14 以及W相分支16并联连接在电源线PL和接地线GL之间。U相分支12 由串联连接的功率晶体管Qll、 Q12组成,V相分支H由串联连接的功率 晶体管Q13、 Q14组成,W相分支16由串联连接的功率晶体管Q15、 Q16 组成。在功率晶体管Qll ~ Q16上分别反并联连接有二极管Dll ~ D16。
此夕卜,作为上述的功率晶体管,例如,可以使用IGBT (Insulated GateBipolar Transistor:绝缘栅双极双极晶体管)。另夕卜,代替功率晶体管也可 以使用功率MOSFET ( Metal Oxide Semiconductor Field-Effect Transistor:金属氧化物半导体场效应晶体管)等电力开关元件。
电动发电机MG1包括三相线圏5作为定子线圏。形成三相线圏5的 U相线圏U1、 V相线圏VI以及W相线圏Wl的一端互相连接、形成中 性点N1, U相线圏U1、 V相线圏VI以及W相线圏Wl的另一端分别连 接在变换器10的U相分支12、 V相分支14以及W相分支16的各自的上 下分支的连接节点上。
变换器20包括U相分支22、 V相分支24以及W相分支26。电动发 电机MG2包括三相线圏6作为定子线圏。变换器20以及电动发电机MG2 的构成分别与变换器10以及电动发电机MG1相同。
电力线ACL1的一端连接在三相线圏5的中性点Nl上,电力线ACL1 的另一端连接在连接器70上。另外,电力线ACL2的一端连接在三相线 圏6的中性点N2上,电力线ACL2的另一端连接在连接器70上。
蓄电装置B为能够充放电的直流电源,例如,由镍氢或锂离子等的二 次电池构成。蓄电装置B向变换器10/20供给电力,另一方面,通过变换 器10以及/或者20被充电。此外,作为蓄电装置B,也可以使用大容量的 电容器(capacitor )。
电容器C使电源线PL和接地线GL之间的电压变动变得平滑。电压 传感器80检测出电容器C的端子间电压,即电源线PL相对于接地线GL 的电压VDC,将该检测出的电压VDC输出到ECU30。
变换器10,根据来自驱动电路40的驱动信号DR1,将来自蓄电装置 B的直流电压转换成三相交流电压,将该转换的三相交流电压输出到电动 发电机MG1。另外,变换器10,根据来自驱动电路40的驱动信号DR1, 将电动发电机MG1接受发动机4的动力所发电的三相交流电压转换成直 流电压,将该转换的直流电压输出到电源线PL。
变换器20,根据来自驱动电路40的驱动信号DR2,将来自蓄电装置 B的直流电压转换成三相交流电压,将该转换的三相交流电压输出到电动发电机MG2。另外,变换器20,在车辆再生制动时,根据来自驱动电路 40的驱动信号DR2,将电动发电机MG2接受来自车轮2的旋转力所发电 的三相交流电压转换成直流电压,将该转换的直流电压输出到电源线PL。
在此,当交流电从通过连接器94连接在连接器70上的工业电源92 经由电力线ACL1、 ACL2流到中性点N1、 N2时,变换器10、 20将从中 性点N1、 N2输入的交流电转换成直流电、输出到电源线PL,从而充电蓄 电装置B。另外,当需要向通过连接器94连接在连接器70上的工业电源 92供电时,变换器10、 20在中性点N1、 N2之间产生工业交流电压,从 中性点N1、 N2经由电力线ACL1、 ACL2向工业电源92输出电力。
电动发电机MG1、 MG2分别为三相交流旋转电机,例如,由三相交 流同步电动发电机构成。电动发电机MG1被变换器10再生驱动,将使用 发动机4的动力发电所得的三相交流电压输出到变换器10。另外,在发动 机4起动时,电动发电机MG1由变换器10动力运转驱动,起转(Cranking) 发动机4。电动发电机MG2由变换器20动力运转驱动,产生用于驱动车 轮2的驱动力。另外,电动发电机MG2,在车辆再生制动时,由变换器 20再生驱动,将使用来自车论2的旋转力而发电所得的三相交流电压输出 到变换器20。
电流传感器82检测流过电动发电机MG1的各相线圏的马达电流II , 输出到ECU30。旋转角传感器86检测电动发电机MG1的转子的旋转角 61,输出到ECU30。电流传感器84检测流过电动发电机MG2的各相线 圏的马达电流12,并输出到ECU30。旋转角传感器88检测电动发电机 MG2的转子的旋转角6 2,输出到ECU30。
ECU30生成用于分别控制变换器10、 20的信号PWI1、 PWI2,将所 生成的信号PWIl、 PWI2输出到驱动电路40。
在此,工业电源92的连接器94连接在连接器70上,根椐来自AC开 关50的充电要求信号CHG,要求从工业电源92向蓄电装置B充电时, ECU30控制变换器10、 20,使得供给到中性点N1、 N2的来自工业电源 92的交流电转换成直流电、充电蓄电装置B。更详细讲,ECU30将电动发电机MG1、 MG2的三相线圏5、 6作为 电抗线圏来使用,且控制变换器IO、 20,使得变换器IO、 20作为将从中 性点N1、N2输入进来的来自工业电源92的交流电转换成直流电的单相顺 变器的臂来动作,由此,将从工业电源92供给的电压升压。
另外,工业电源92的连接器94连接在连接器70上,根据来自AC开 关50的供电要求信号SUP,要求从蓄电装置B向工业电源92供电时, ECU30控制变换器10、 20,使得来自蓄电装置B的直流电转换成交流电、 从中性点N1、 N2输出到工业电源92。
更详细讲,ECU30控制变换器10、 20,使得变换器IO、 20作为将来 自蓄电装置B的直流电转换成交流电、从中性点N1、 N2输出的单相逆变 器的臂来动作。
驱动电路40,从ECU30接收信号PWIl、 PWI2。而且,驱动电路40 根据信号PWIl,生成用于实际导通/截止变换器10的功率晶体管Qll~ Q16的驱动信号DR1,并将所生成的驱动信号DR1输出到功率晶体管 Q11 Q16的栅极。另外,驱动电路40,根据信号PWI2,生成用于实际 导通/截止变换器20的功率晶体管Q21 ~ Q26的驱动信号DR2,并将所生 成的驱动信号DR2输出到功率晶体管Q21 ~ Q26的栅极。
AC开关50为用于使用者指示从工业电源92向蓄电装置B充电或者 从蓄电装置B向工业电源92供电的输入装置。若指示了从工业电源92向 蓄电装置B充电,则AC开关50激活输出到ECU30的充电要求信号CHG。 另外,若指示了从蓄电装置B向工业电源92供电,则AC开关50激活输 出到ECU30的供电要求信号SUP。此外,AC开关50,例如由触摸面板 或者按钮等构成。
图2是图1所示的ECU30的功能框图。参照图2, ECU30包括变换 器控制部32以及34、协调控制部36、载波信号生成部38。
变换器控制部32根据电动发电机MG1的转矩指令TR1 、马达电流II 以及旋转角6 1、来自电压传感器80的电压VDC以及来自载波信号生成 部38的载波信号FC1,生成用于导通/截止变换器10的功率晶体管Qll ~Q16的PWM ( Pulse Width Modulation:脉冲宽度调制)信号,并将所生 成的PWM信号作为信号PWI1输出到驱动电路40。
变换器控制部34根据电动发电机MG2的转矩指令TR2、马达电流12 以及旋转角6 2、电压VDC以及来自载波信号生成部38的载波信号FC2, 生成用于导通/截止变换器20的功率晶体管Q21~Q26的PWM信号,并 将所生成的PWM信号作为信号PWI2输出到驱动电路40。
此外,变换器控制部32、 34,在来自协调控制部36的控制信号CTL1 被激活时,以使得从工业电源92输入到中性点Nl、 N2的交流电被转换成 直流电、充电蓄电装置B的方式分别生成信号PWIl、 PWI2,将所生成的 信号PWM1、 PWM2输出到驱动电路40。
另外,变换器控制部32、 34,在来自协调控制部36的控制信号CTL2 被激活时,以使得在中性点N1、 N2之间产生用于输出到工业电源92的工 业交流电压的方式分别生成信号PWIl、 PWI2,将所生成的信号PWM1、 PWM2输出到驱动电路40 。
协调控制部36,在点火信号IG为非激活状态且来自AC开关50的充 电要求信号CHG为激活状态时,激活输出到变换器控制部32、 34的控制 信号CTL1。另外,协调控制部36,在点火信号IG为非激活状态且来自 AC开关50的供电要求信号SUP为激活状态时,激活输出到变换器控制 部32、 34的控制信号CTL2。此外,点火信号IG为根据点火钥匙的位置 而变化的信号,非激活的点火信号IG表示点火钥匙在关闭(OFF)位置。
再有,协调控制部36,在点火信号IG为非激活状态时,若充电要求 信号CHG或供电要求信号SUP被激活,则激活输出到栽波信号生成部38 的模式信号MD。即,该模式信号MD为表示变换器10、 20的动作模式 的信号,非激活状态的模式信号MD表示动作模式为行驶模式(通常模式), 激活状态的模式信号MD表示动作模式为充放电模式(能够在蓄电装置B 和工业电源92之间授受电力的状态)。
载波信号生成部38,在来自协调控制部36的模式信号MD为非激活 状态时,将载波信号FC1、 FC2的载波频率分别i殳定为行驶4莫式用的频率fdl、 fd2。另外,载波信号生成部38,在来自协调控制部36的模式信号 MD为激活状态时,将载波信号FC1、 FC2的各自的载波频率设定为充放 电模式用的频率fc。
而且,载波信号生成部38,生成具有所设定的载波频率的栽波信号 FC1、 FC2,将所生成的载波信号FC1、 FC2分别输出到变换器控制部32、 34。
此外,行驶模式用的载波频率fdl、 fd2是考虑功率晶体管Qll ~ Q16、 Q21 Q26的开关损失而决定的,通常包含在可听范围(例如,几kHz 10kHz)。另一方面,为了降低来自变换器IO、 20的电磁噪音,充放电模 式用的载波频率fc祐j殳定成比行驶模式用的载波频率fdl、 fd2高。例如, 载波频率fc设定为比15kHz高的频率,最好设定在非可听范围(20 kHz 以上)。
此外,若提高载波频率,则晶体管的开关损失增大,但充放电模式时 流到变换器IO、 20的电流比行驶^=莫式时少一位以上,因此,开关损失的增 加量不会成为问题。
图3表示图1所示的变换器10、 20以及电动发电机MG1、 MG2的零 相等价电路。在作为三相变换器的变换器IO、 20的各自中,存在八种形式 的六个晶体管的导通/截止的组合。在该八种开关形式当中的两种形式,相
间电压为零,将这种电压状态称为零电压矢量。关于零电压矢量,可以看 作是上分支的三个晶体管处于相互相同的开关状态(全部导通或者截止), 另夕卜,可以看作是下分支的三个晶体管也处于相互相同的开关状态。因此, 在该图3中,将变换器10的上分支的三个晶体管统括为上分支10A,将变 换器10的下分支的三个晶体管统括为下分支10B来表示。同样,将变换 器20的上分支的三个晶体管统括为上分支20A,将变换器20的下分支的 三个晶体管统括为下分支20B来表示。
如图3所示,可以将该零相等价电路看作是以经由电力线ACL1、 ACL2给予中性点Nl、 N2上的单相交流的工业电力为输入的单相PWM 顺变器。另外,也可以将该零相等价电路看作是使用从电源线PL供给的直流电压在中性点N1、 N2上产生单相交流电压的单相PWM逆变器。因 此,进行开关控制使得在各个变换器10、 20中改变零电压矢量,使变换器 10、 20分别作为单相PWM顺变器或者单相PWM逆变器的各相分支(臂) 来动作,由此能够将从连接器70输入的商用交流电压变换成直流电压输出 到电源线PL,或者,能够将来自电源线PL的直流电压转换成交流电压、 从连接器70输出。
图4是在图2所示的载波信号生成部38中设定载波频率的流程图。参 照图4,载波信号生成部38根据来自协调控制部36的模式信号MD,判 断变换器IO、 20的动作模式是否为充放电模式(步骤SIO)。
栽波信号生成部38,若判定动作模式为充放电模式(在步骤SIO中为 "是"),则将栽波信号FC1、 FC2的各自的载波频率设定为充放电模式用 的频率fc (步骤S20)。
另一方面,若在步骤SIO中判定为动作模式不是充放电模式(在步骤 S10中为"否"),则载波信号生成部38将载波信号FC1、 FC2的载波频率 分别设定为行驶模式用的频率fdl、 fd2 (步骤S30)。第一实施方式的第一变形例
在该第一变形例中,只在噪音(声频噪声)尤其可能成为问题的深夜 时间段上,设定充放电模式用的载波频率fc。
图5是在第一实施方式的第一变形例中设定载波频率的流程图。参照 图5,该流程图在图4所示的流程图中还包括了步骤S12。即,若在步骤 10中判定为动作模式为充放电模式,则载波信号生成部38判定时刻是否 为预先设定的深夜时间段(例如,22点~ 6点)(步骤S12 )。
载波信号生成部38,若判定为时刻为深夜时间段(在步骤S12中为 "是"),则处理进入到步骤S20,将载波信号FC1、 FC2的各自的载波频 率设定为充放电模式用的频率fc。
另一方面,若在步骤12中判定为时刻不是深夜时间段(在步骤S12 中为"否"),则载波信号生成部38使处理进入到步骤S30,将载波信号 FC1、 FC2的载波频率分别设定为行驶模式用的频率fdl、 fd2。第一实施方式的第二变形例
在该第二变形例中,检测车辆周围的噪音,只有在车辆周围的噪音小
时,设定充放电模式用的栽波频率fc。
图6是第一实施方式的第二变形例的混合动力车辆的整体框图。参照 图6,该混合动力车辆100A,在图1所示的混合动力车辆100的构成上还 具备噪声传感器52,代替ECU30具备ECU30A。
噪声传感器52检测该混合动力车辆100A的周围的噪声级,向 ECU30A输出根据所检测出的噪声级而变化的信号DB。
ECU30A根据点火信号IG、来自AC开关50的充电要求信号CHG 以及供电要求信号SUP,决定变换器IO、 20的动作模式(行驶模式/充放 电模式),根据所决定的动作模式以及来自噪声传感器52的信号DB,通 过后述的方法决定用于生成信号PWIl、 PWI2的载波信号的载波频率。
此外,ECU30A的其他的功能与第一实施方式中的ECU30相同。另 外,混合动力车辆100A的其他的构成与第一实施方式的混合动力车辆100 相同。
图7是在第一实施方式的第二变形例中设定载波频率的流程图。参照 图7,该流程图在图4所示的流程图上还包括步骤S14。即,若在步骤SIO 中判定为动作模式为充放电模式,则载波信号生成部38根据来自噪声传感 器52的信号DB,判定车辆周围的噪声级是否低于预先设定的规定值(步 骤S14)。
载波信号生成部38,若判定为车辆周围的噪声级低于规定值(在步骤 S14中为"是"),则处理进入到步骤S20,将载波信号FC1、 FC2的各自 的载波频率设定为充放电模式用的频率fc。
另一方面,若在步骤14中判定为车辆周围的噪声级为规定值以上(在 步骤S14中为"否"),则载波信号生成部38使处理进入到步骤S30,将载 波信号FC1、 FC2的载波频率分别设定为行驶模式用的频率fdl、 fd2。第一实施方式的第三变形例
在该第三变形例中,能够由使用者选择在充放电模式时是否将载波频率从行驶才莫式用的频率切换到充;^文电^^式用的频率。
图8是第一实施方式的第三变形例的混合动力车辆的整体框图。参照 图8,该混合动力车辆100B在图1所示的混合动力车辆100的构成中,代 替AC开关50以及ECU30分别具备AC开关50A以及ECU30B。
AC开关50A,若使用者指示在充放电模式时禁止将变换器10、 20的 栽波频率从行驶模式用的频率fdl、 fd2切换到充放电模式用的频率fc,则 向ECU30B输出H (逻辑高)电平的信号INH。
此夕卜,AC开关50A的其他功能与第一实施方式中的AC开关50相同。
ECU30B根据点火信号IG、来自AC开关50A的充电要求信号CHG 以及供电要求信号SUP,决定车辆的动作模式(行驶模式/充放电模式), 根据所决定的动作模式,决定用于生成信号PWIl、 PWI2的栽波信号的载 波频率。
在此,在来自AC开关50A的信号INH为H电平时,即使变换器10、 20的动作^^式为充放电^^莫式,ECU30B也将变换器10、 20的载波频率分 别设定为行驶模式用的频率fdl、 fd2。换句话讲,在信号INH为H电平 时,即使动作模式为充放电模式,ECU30B也禁止载波频率从行驶模式用 的频率fdl、 fd2切换到充放电模式用的频率fc。
此外,ECU30B的其他的功能与第一实施方式中的ECU30相同。另 外,混合动力车辆100B的其他的构成与第一实施方式的混合动力车辆100 相同。
图9是在第一实施方式的第三变形例中设定载波频率的流程图。参照 图9,该流程图在图4所示的流程图中还包括步骤S16。即,若在步骤SIO 中判定为动作模式为充放电模式,则载波信号生成部38判定来自AC开关 50A的信号INH是否为H电平(步骤S16 )。
载波信号生成部38,若判定为信号INH为L (逻辑低)电平(在步 骤S16中为"否"),则处理进入到步骤S20,将载波信号FC1、 FC2各自 的载波频率设定为充放电模式用的频率fc。
另一方面,若在步骤S16中判定为信号INH为H电平(在步骤S16
17中为"否"),载波信号生成部38使处理进入到步骤S30,将载波信号FC1、 FC2的载波频率分别设定为行驶模式用的频率fdl、 fd2。
如上所述,在该第一实施方式以及其各变形例中,ECU30、 30A、 30B, 在充放电模式时,将变换器IO、 20的载波频率从行驶模式用的频率fdl、 fd2切换到充放电模式用的频率fc ( >fdl、 fd2),因此,能够抑制从变换 器IO、 20产生的电磁噪音。因此,根据该第一实施方式以及其各变形例, 能够抑制在工业电源92和蓄电装置B之间进行电力授受时的噪音。第二实施方式
在第二实施方式中,在充放电模式时,降低包含在变换器IO、 20中的 功率晶体管Q11~Q16、 Q21-Q26的开关速度。由此,降低伴随着晶体 管的开关动作而产生的浪涌电压,从而抑制向连接在连接器70上的工业电 源92的噪声。
该第二实施方式的混合动力车辆的整体构成与图1所示的第一实施方 式的混合动力车辆100相同。
图10是第二实施方式中驱动电路40的电路图。此外,在图10中代表 性地显示了用于导通/截止驱动包含在变换器10中的功率晶体管Qll的电 路,对其他的功率晶体管Q12~Q16、 Q21~Q26,也分别设置相同的电路。
参照图10,驱动电路40包括反相电路IV1以及IV2、与门AD1 AD4、 npn型晶体管NTl NT4、电阻RD以及RC、电源节点VG。
反相电路IV1反相来自ECU30 (未图示,以下相同)的信号PWIlu, 输出到与门AD2、 AD4。此外,信号PWIlu为信号PWI1当中的用于驱 动变换器10的U相分支12的信号。反相电路IV2接收在ECU30的协调 控制部36 (未图示)中生成的模式信号MD,将所收到的模式信号MD反 相,输出到与门AD1、 AD2。
与门AD1运算信号PWIlu和反相电路IV2的输出信号的逻辑与,将 其运算结果输出到npn型晶体管NT1的基极。与门AD2运算反相电路IV1、 IV2的各输出信号的逻辑与,将其运算结果输出到npii型晶体管NT2的基 极。与门AD3运算信号PWIlu和模式信号MD的逻辑与,将其运算结果输出到叩n型晶体管NT3的基极。与门AD4运算反相电路IV1的输出信 号和模式信号MD的逻辑与,将其运算结果输出到npn型晶体管NT4的 基极。
npn型晶体管NT1、 NT2串联连接在电源节点VG和功率晶体管Qll 的发射极之间,分别在基极接收与门AD1、 AD2的输出信号。npn型晶体 管NT3、 NT4串联连接在电源节点VG和功率晶体管Qll的发射极之间, 分别在基极接收与门AD3、 AD4的输出信号。
电阻RD连接在npn型晶体管NT1、 NT2的连接节点和功率晶体管 Qll的栅极之间。电阻RC连接在npn型晶体管NT3、 NT4的连接节点和 功率晶体管Qll的栅极之间。在此,电阻RC的电阻值比电阻RD的电阻 值大。
在该驱动电路40中,模式信号MD为L电平时,即,变换器IO、 20 的动作模式为行驶模式时,与门AD3、 AD4为非激活状态,与门AD1、 AD2被激活。由此,npn型晶体管NT3、 NT4—直被截止,叩n型晶体 管NT1、 NT2根据信号PWIlu而被导通/截止。因此,在行驶模式时,作 为功率晶体管Qli的栅电阻使用电阻RD。
另一方面,模式信号MD为H电平时,即,变换器IO、 20的动作模 式为充方文电才莫式时,与门AD3、 AD4净皮激活,与门AD1、 AD2为非激活 状态。由此,npn型晶体管NTl、 NT2—直被截止,npn型晶体管NT3、 NT4根据信号PWIlu被导通/截止。因此,在充放电模式时,作为功率晶 体管Qll的栅电阻使用电阻RC。
即,在该驱动电路40中,在充放电模式时使用比行驶模式时大的栅电 阻。由此,抑制伴随着各功率晶体管的导通/截止动作而产生的浪涌电压, 抑制向与变换器IO、 20授受电力的工业电源92的噪声。
此外,若提高晶体管的栅电阻,则晶体管的开关损失增大,但充放电 模式时比行驶模式时流过变换器IO、 20的电流少一位以上,因此,开关损 失的增加量不会成为问题。
如上所述,在该第二实施方式中,在充放电模式时,将驱动电路40的栅电阻从行驶模式用的电阻RD切换到充放电模式用的电阻RC ( >电 阻RD),因此,降低伴随着功率晶体管Q11~Q16、 Q21 Q26的导通/截 止动作而产生的浪涌电压。因此,根据该第二实施方式,能够抑制在工业
电源92和蓄电装置B之间进行电力授受时的向工业电源92的噪声。第三实施方式
在该第三实施方式中,显示了使用一台电动发电机从工业电源92向蓄 电装置B进行充电的构成。
图11是第三实施方式的电动车辆的整体框图。参照图11,该电动车 辆100C具备蓄电装置B、变换器20、电动发电机MG2、车轮2、 ECU30C、 驱动电路40、 AC开关50。另外,电动车辆IOOC还具备电源线PL、接地 线GL、电容器C、 U相线UL2、 V相线VL2、 W相线WL2、电压传感 器80、电流传感器84、旋转角传感器88。
还有,电动车辆100C还具备整流电路28、电力线ACL2以及ACL3、 连接器70。
整流电路28包括二极管D31、 D32。 二极管D31的阴极连接在电源线 PL上,二极管31的阳极连接在二极管32的阴极上,二极管D32的阳极 连接在接地线GL上。而且,电力线ACL3的一端连接在二极管D31、 D32 的连接点上,电力线ACL3的另一端连接在连接器70上。
ECU30C生成用于控制变换器20的信号PWI2,将所生成的信号PWI2 输出到驱动电路40。
在此,工业电源92的连接器94连接在连接器70上,根据来自AC开 关50的充电要求信号CHG,要求从工业电源92向蓄电装置B充电时(充 放电模式时),ECU30C控制变换器20,使得输入到中性点N2的来自工 业电源92的交流电转换成直流电、充电蓄电装置B。
此时,ECU30将用于生成信号PWI2的载波信号FC2的载波频率设 定为充放电模式用的频率fc ( >fd2)。
另一方面,ECU30在动作模式不是充放电模式时(行驶模式时),将 载波信号FC2的载波频率设定为行驶模式用的频率fd2。此外,在电动车辆100C中的其他构成为如在第一实施方式中所说明。
如上所述,在该第三实施方式中,在充放电模式时,将变换器20的载 波频率从行驶模式用的频率fd2切换到充放电模式用的频率fc ( > fd2 ), 因此,能够抑制变换器20产生的电磁噪音。因此,根据该第三实施方式, 也能够抑制从工业电源92向蓄电装置B进行充电时的噪音。
此外,虽未特别图示,但作为第三实施方式的第一变形例,也可以与 笫一实施方式的第一变形例一样,只在噪音尤其可能成为问题的深夜时间 段上,设定充放电模式用的载波频率fc。
另外,作为第三实施方式的第二变形例,也可以与第一实施方式的笫 二变形例一样,通过噪声传感器52检测出车辆周围的噪音,只有在车辆周 围的噪音小时,设定充放电模式用载波频率fc。
再有,作为第三实施方式的第三变形例,也可以与第一实施方式的第 三变形例一样,能够由使用者选择在充放电模式时是否将载波频率从行驶 才莫式用频率切换到充放电模式用的频率。
另外,作为其他实施方式,在能够使用一台电动发电机从工业电源92 向蓄电装置B进行充电的构成(图11)中,与上述的第二实施方式一样, 由图10所示的电路构成驱动电路40,使包含在变换器20中的功率晶体管 Q21~Q26的开关速度在充电模式时下降。由此,降低伴随着晶体管的开 关动作而产生的浪涌电压,抑制向连接在连接器70上的工业电源92的噪 声。
此外,在上述的第一、第二实施方式中,设为工业电源92连接在连接 器70上,但也可以代替工业电源92连接电负载,从混合动力车辆向电负 栽供给电力。
另夕卜,在上述的各实施方式中,也可以在电力线ACL1、 ACL2(在第 三实施方式中为电力线ACL2、 ACL3 )和连接器70之间设置漏电断路器。 另外,也可以将升压来自蓄电装置B的电压并供给给变换器10、 20的升 压转换器设置在蓄电装置B和变换器10、 20之间。此外,作为这种升压 转换器,例如可以使用公知的斩波电路。另外,在上述的第一、第二实施方式中,对于使用动力分配机构3将发动机4的动力分配给电动发电机MG1和车轮2的、所谓的串行/并行式混合动力车辆,进行了说明,但本发明可以适用于将发动机4的动力只使用在电动发电机MG1的发电上、只使用电动发电机MG2产生车辆的驱动力的、所谓的串行式混合动力车辆。
另外,本发明也可适用于不具备发动机4只靠电力行驶的电动车辆、或作为电源还具备燃料电池的燃料电池车辆。
此外,在上述中,电动发电机MG1、 MG2的至少一个对应于本发明的"旋转电机",变换器IO、 20的至少一个对应于本发明的"变换装置"。另外,ECU30、 30A 30C对应于本发明的"控制装置",AC开关50A对应于本发明的"指示输入部"。再有,电阻RD对应于本发明的"第一栅电阻",电阻RC对应于本发明的"第二栅电阻"。另夕卜,还有,电力线ACL1~ACL3以及连接器70形成本发明的"连接装置"。
应该认为本次所公开的实施方式在所有方面上只是举例,而不是作为限定。本发明的范围不由上述的实施方式的说明表示,而由权利要求的范围表示,包括与权利要求的范围等同的意思以及范围内的所有变更。
权利要求
1. 一种电动车辆,具有旋转电机;变换装置,其能够驱动所述旋转电机;蓄电装置,其与所述变换装置之间授受电力;和控制装置,其以第一动作模式以及第二动作模式中的任一模式控制所述变换装置,所述第一动作模式旋转驱动所述旋转电机,所述第二动作模式使所述变换装置作为在车辆外部的电源或者电负载和所述蓄电装置之间授受电力的电压变换器来动作;所述控制装置,在所述第二动作模式时,相对于所述第一动作模式时变更所述变换装置所包含的开关元件的开关频率以及开关速度中的任一方,由此比所述第一动作模式时降低从所述变换装置产生的规定的噪声。
2. 如权利要求l所述的电动车辆,其中, 所述规定的噪声为声频噪声;所述控制装置,在所述第二动作模式时,相对于所述第一动作模式时 向接近非可听范围的方向变更所述载波频率。
3. 如权利要求2所述的电动车辆,其中,所述控制装置,在所述第一动作模式时,将所述载波频率设定为笫一 频率,在所述第二动作模式时,将所述载波频率设定为比所述第一频率高 的第二频率。
4. 如权利要求3所述的电动车辆,其中, 所述第二频率包含在非可听范围带中。
5. 如权利要求2所述的电动车辆,其中,所述控制装置,在所述第二动作模式时,仅在预先设定的夜间时间段 变更所述载波频率。
6. 如权利要求2所述的电动车辆,其中, 还具有检测车辆周围的噪声级的噪声传感器;所述控制装置,在所述第二动作模式时,仅在由所述噪声传感器检测出的噪声级比规定值低时变更所述载波频率。
7. 如权利要求2所述的电动车辆,其中,还具有使用者能够指示禁止所述载波频率的变更的指示输入部; 所述控制装置,在通过所述指示输入部禁止了所述载波频率的变更时, 中止变更所述栽波频率。
8. 如权利要求l所述的电动车辆,其中,所述规定的噪声为传向所述电源或所述电负载的浪涌电压的噪声,所 述浪涌电压伴随着所述开关元件的接通/断开动作而产生;所述控制装置,在所述第二动作才莫式时,比所述第一动作模式时降低 所述开关元件的开关速度。
9. 如权利要求8所述的电动车辆,其中,还具有根据来自所述控制装置的指令驱动所述开关元件的驱动电路; 所述驱动电路,包括在所述第一动作模式时使用的第一栅电阻;和 在所述第二动作模式时使用、电阻值比所述第一栅电阻大的第二栅电阻。
10. 如权利要求l所述的电动车辆,其中, 所述旋转电机,包含被星形接线的第一多相绕组作为定子绕组; 该电动车辆,还具有另 一个旋转电机,其包含被星形接线的第二多相绕组作为定子绕组;和连接装置,其构成为使得能够在所述第 一多相绕组的第 一 中性点以及 所述第二多相绕组的第二中性点和所述电源或所述电负载之间授受电力; 所述变换装置,包括第一变换器,其能够驱动所述旋转电机;和第二变换器,其能够驱动所述另一个旋转电机;所述控制装置,在所述第二动作模式时,控制所述第一以及第二变换 器,使得在通过所述连接装置连接于所述第 一以及第二中性点的所述电源 或所述电负载和所述蓄电装置之间授受电力。
11.如权利要求10所述的电动车辆,其中,所述控制装置,在所述第二动作模式时从所述电源对所述蓄电装置进 行充电的情况下,将所述第一以及第二多相绕组作为电抗线圏来使用,并 且控制所述第一以及第二变换器使得所述第一以及笫二变换器作为所述电 压变换器的臂进行动作,由此将从所述电源供给的电压升压。
全文摘要
变换器(10、20),在充放电模式时,在经由电力线(ACL1、ACL2)点连接在中性点(N1、N2)上的工业电源(92)和蓄电装置(B)之间进行电力变换。ECU(30),在充放电模式时,将变换器(10、20)的载波频率设定为比行驶模式时高的频率。另外,驱动电路(40)在充放电模式时,使用比行驶模式时大的栅电阻,驱动变换器(10、20)。
文档编号H02P27/06GK101479927SQ200780023648
公开日2009年7月8日 申请日期2007年5月25日 优先权日2006年6月23日
发明者久野裕道 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1