基于不等式约束的辅助电容集中式全桥MMC自均压拓扑的制作方法

文档序号:11861962阅读:268来源:国知局
基于不等式约束的辅助电容集中式全桥MMC自均压拓扑的制作方法与工艺

本实用新型涉及柔性输电领域,具体涉及一种基于不等式约束的辅助电容集中式全桥MMC自均压拓扑。



背景技术:

模块化多电平换流器MMC是未来直流输电技术的发展方向,MMC采用子模块(Sub-module,SM)级联的方式构造换流阀,避免了大量器件的直接串联,降低了对器件一致性的要求,同时便于扩容及冗余配置。随着电平数的升高,输出波形接近正弦,能有效避开低电平VSC-HVDC的缺陷。

全桥MMC由全桥子模块组合而成,全桥子模块由四个IGBT模块,一个子模块电容及1个机械开关构成,运行灵活,具有直流故障箝位能力。

与两电平、三电平VSC不同,全桥MMC的直流侧电压并非由一个大电容支撑,而是由一系列相互独立的悬浮子模块电容串联支撑。为了保证交流侧电压输出的波形质量和保证模块中各功率半导体器件承受相同的应力,也为了更好的支撑直流电压,减小相间环流,必须保证子模块电容电压在桥臂功率的周期性流动中处在动态稳定的状态。

基于电容电压排序的排序均压算法是目前解决全桥MMC中子模块电容电压均衡问题的主流思路。但是,排序功能的实现必须依赖电容电压的毫秒级采样,需要大量的传感器以及光纤通道加以配合;其次,当子模块数目增加时,电容电压排序的运算量迅速增大,为控制器的硬件设计带来巨大挑战;此外,排序均压算法的实现对子模块的开断频率有很高的要求,开断频率与均压效果紧密相关,在实践过程中,可能因为均压效果的限制,不得不提高子模块的触发频率,进而带来换流器损耗的增加。

文献“A DC-Link Voltage Self-Balance Method for a Diode-Clamped Modular Multilevel Converter With Minimum Number of Voltage Sensors”,提出了一种依靠钳位二极管和变压器来实现MMC子模块电容电压均衡的思路。但该方案在设计上一定程度破坏了子模块的模块化特性,子模块电容能量交换通道也局限在相内,没能充分利用MMC的既有结构,三个变压器的引入在使控制策略复杂化的同时也会带来较大的改造成本。



技术实现要素:

针对上述问题,本实用新型的目的在于提出一种经济的,模块化的,不依赖均压算法,同时能相应降低子模块触发频率和电容容值且具有直流故障箝位能力的全桥MMC自均压拓扑。

本实用新型具体的构成方式如下。

基于不等式约束的辅助电容集中式全桥MMC自均压拓扑,包括由A、B、C三相构成的全桥MMC模型,A、B、C三相每个桥臂分别由N个全桥子模块及1个桥臂电抗器串联而成;包括由6N个IGBT模块,6N+7个箝位二极管,4个辅助电容,2个辅助IGBT模块组成的自均压辅助回路。

上述基于不等式约束的辅助电容集中式全桥MMC自均压拓扑,全桥MMC模型中,A相上桥臂的第1个子模块,其一个IGBT模块中点向上与直流母线正极相连接,另一个IGBT模块中点向下与A相上桥臂的第2个子模块一个IGBT模块中点相连接;A相上桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相上桥臂的第i-1个子模块一个IGBT模块中点相连,另一个IGBT模块中点向下与A相上桥臂的第i+1个子模块一个IGBT模块中点相连;A相上桥臂的第N个子模块,其一个IGBT模块中点向下经两个桥臂电抗器与A相下桥臂的第1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向上与A相上桥臂的第N-1个子模块一个IGBT模块中点相连接;A相下桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相下桥臂的第i-1个子模块一个IGBT模块中点相连,另一个IGBT模块中点向下与A相下桥臂的第i+1个子模块一个IGBT模块中点相连;A相下桥臂的第N个子模块,其一个IGBT模块中点向下与直流母线负极相连接,另一个IGBT模块中点向上与A相下桥臂的第N-1个子模块两个IGBT模块中点相连接。B相和C相上下桥臂子模块的连接方式与A相一致。

上述基于不等式约束的辅助电容集中式全桥MMC自均压拓扑,自均压辅助回路中,第一个辅助电容与第二个辅助电容通过箝位二极管并联,第二个辅助电容正极连接辅助IGBT模块,第一个辅助电容负极连接箝位二极管并入直流母线正极;第三个辅助电容与第四个辅助电容通过箝位二极管并联,第三个辅助电容负极连接辅助IGBT模块,第四个辅助电容正极连接箝位二极管并入直流母线负极。箝位二极管,通过IGBT模块连接A相上桥臂中第1个子模块电容与第一个辅助电容正极;通过IGBT模块连接A相上桥臂中第i个子模块电容与第i+1个子模块电容正极,其中i的取值为1~N-1;通过IGBT模块连接A相上桥臂中第N个子模块电容与A相下桥臂第1个子模块电容正极;通过IGBT模块连接A相下桥臂中第i个子模块电容与A相下桥臂第i+1个子模块电容正极,其中i的取值为1~N-1;通过IGBT模块连接A相下桥臂中第N个子模块电容与第三个辅助电容正极。箝位二极管,通过IGBT模块连接B相上桥臂中第1个子模块电容与第二个辅助电容负极;通过IGBT模块连接B相上桥臂中第i个子模块电容与第i+1个子模块电容负极,其中i的取值为1~N-1;通过IGBT模块连接B相上桥臂中第N个子模块电容与B相下桥臂第1个子模块电容负极;通过IGBT模块连接B相下桥臂中第i个子模块电容与B相下桥臂第i+1个子模块电容负极,其中i的取值为2~N-1;通过IGBT模块连接B相下桥臂中第N个子模块电容与第四个辅助电容负极。C相箝位二极管的连接关系与A相或B相一致。

附图说明

图1是全桥子模块的结构示意图;

图2是基于不等式约束的辅助电容集中式全桥MMC自均压拓扑。

具体实施方式

为进一步阐述本实用新型的性能与工作原理,以下结合附图对对实用新型的构成方式与工作原理进行具体说明。但基于该原理的全桥MMC自均压拓扑不限于图2。

参考图2,基于不等式约束的辅助电容集中式全桥MMC自均压拓扑,包括由A、B、C三相构成的全桥MMC模型,A、B、C三相每个桥臂分别由N个全桥子模块及1个桥臂电抗器串联而成,包括由6N个IGBT模块,6N+7个箝位二极管,4个辅助电容,2个辅助IGBT模块组成的自均压辅助回路。

全桥MMC模型中,A相上桥臂的第1个子模块,其一个IGBT模块中点向上与直流母线正极相连接,另一个IGBT模块中点向下与A相上桥臂的第2个子模块一个IGBT模块中点相连接;A相上桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相上桥臂的第i-1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向下与A相上桥臂的第i+1个子模块一个IGBT模块中点相连接;A相上桥臂的第N个子模块,其一个IGBT模块中点向上与A相上桥臂的第N-1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向下经两个桥臂电抗器L0与A相下桥臂的第1个全桥子模块一个IGBT模块中点相连接;A相下桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相下桥臂的第i-1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向下与A相下桥臂的第i+1个子模块一个IGBT模块中点相连接;A相下桥臂的第N个子模块,其一个IGBT模块中点向下与直流母线负极相连接,另一个IGBT模块中点向上与A相下桥臂的第N-1个子模块一个IGBT模块中点相连接。B相和C相上下桥臂子模块的连接方式与A相一致。

自均压辅助回路中,辅助电容C1与辅助电容C2通过箝位二极管并联,辅助电容C2正极连接辅助IGBT模块T1,辅助电容C1负极连接箝位二极管并入直流母线正极;辅助电容C3与辅助电容C4通过箝位二极管并联,辅助电容C3负极连接辅助IGBT模块T2,辅助电容C4正极连接箝位二极管并入直流母线负极。箝位二极管,通过IGBT模块Tau_1连接A相上桥臂中第1个子模块电容C­au­_1与辅助电容C1正极;通过IGBT模块Tau_iTau_i+1连接A相上桥臂中第i个子模块电容C­au­_i与第i+1个子模块电容C­au­_i+1正极,其中i的取值为1~N-1;通过IGBT模块Tau_NTal_1连接A相上桥臂中第N个子模块电容C­au­_N与A相下桥臂第1个子模块电容C­al­_1正极;通过IGBT模块Tal_iTal_i+1连接A相下桥臂中第i个子模块电容C­al­_i与A相下桥臂第i+1个子模块电容C­al­_i+1正极,其中i的取值为1~N-1;通过IGBT模块Tal_N连接A相下桥臂中第N个子模块电容C­al_N与辅助电容C3正极。箝位二极管,通过IGBT模块Tbu_1连接B相上桥臂中第1个子模块电容C­bu­_1与辅助电容C2负极;通过IGBT模块Tbu_iTbu_i+1连接B相上桥臂中第i个子模块电容C­bu­_i与第i+1个子模块电容C­bu­_i+1负极,其中i的取值为1~N-1;通过IGBT模块Tbu_NTbl_1连接B相上桥臂中第N个子模块电容C­bu_N与B相下桥臂第1个子模块电容C­bl­_1负极;通过IGBT模块Tbl_iTbl_i+1连接B相下桥臂中第i个子模块电容C­bl­_i与B相下桥臂第i+1个子模块电容C­bl­_i+1负极,其中i的取值为1~N-1;通过IGBT模块Tbl_N连接B相下桥臂中第N个子模块电容bl­_N与辅助电容C4负极。C相中箝位二极管的连接关系与A相一致。

正常情况下,自均压辅助回路中6N个IGBT模块Tau_iTal_iTbu_iTbl_iTcu_iTcl_i常闭,其中i的取值为1~N,A相上桥臂第一个子模块电容Cau_1旁路时,此时辅助IGBT模块T1断开,子模块电容Cau_1与辅助电容C1通过箝位二极管并联;A相上桥臂第i个子模块电容Cau_i旁路时,其中i的取值为2~N,子模块电容Cau_i与子模块电容Cau_i-1通过箝位二极管并联;A相下桥臂第一个子模块电容Cal_1旁路时,子模块电容Cal_1通过箝位二极管、两个桥臂电抗器L0与子模块电容Cau_N并联;A相下桥臂第i个子模块电容Cal_i旁路时,其中i的取值为2~N,子模块电容Cal_i与子模块电容Cal_i-1通过箝位二极管并联;辅助IGBT模块T2闭合时,辅助电容C2通过箝位二极管与子模块电容Cal_N并联。

正常情况下,自均压辅助回路中6N个IGBT模块Tau_iTal_iTbu_iTbl_iTcu_iTcl_i常闭,其中i的取值为1~N,辅助IGBT模块T1闭合时,辅助电容C2与子模块电容Cbu_1通过箝位二极管并联;B相上桥臂第i个子模块电容Cbu_i旁路时,其中i的取值为1~N-1,子模块电容Cbu_i与子模块电容Cbu_i+1通过箝位二极管并联;B相上桥臂第N个子模块电容Cbu_N旁路时,子模块电容Cbu_N通过箝位二极管、两个桥臂电抗器L0与子模块电容Cbl_1并联;B相下桥臂第i个子模块电容Cbl_i旁路时,其中i的取值为1~N-1,子模块电容Cbl_i与子模块电容Cbl_i+1通过箝位二极管并联;B相下桥臂第N个子模块电容Cbl_N旁路时,子模块电容Cbl_N与辅助电容C4通过箝位二极管并联。其中辅助IGBT模块T1的触发信号与A、C相上桥臂第一个子模块触发信号的“逻辑和”一致;辅助IGBT模块T2的触发信号与B相下桥臂第N个子模块的触发信号一致。

在直交流能量转换的过程中,各个子模块交替投入、旁路,辅助IGBT模块T1T2交替闭合、关断,A、B相上下桥臂间电容电压在箝位二极管的作用下,满足下列约束:

由于辅助电容C1C2C3C4电压的关系满足:

由此可知,

C、B相间的约束条件与A、B相间的约束条件一致。

由上述具体说明可知,该全桥MMC拓扑具备子模块电容电压自均衡能力。

最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1