具有半桥电路和电压钳位元件的电子电路的制作方法

文档序号:16975802发布日期:2019-02-26 18:58阅读:181来源:国知局
具有半桥电路和电压钳位元件的电子电路的制作方法

本公开大体上涉及电子电路,特别是具有半桥电路的电子电路。



背景技术:

半桥电路包括高侧开关和低侧开关,每个开关包括负载路径和控制节点,并且它们的负载路径串联连接。通常,半桥的输出端由电路节点形成,高侧开关和低侧开关两者的负载路径都连接到该电路节点。此外,具有高侧开关和低侧开关的串联电路可以接收在供电节点之间可用的供电电压。

半桥电路可以用在各种不同的电路应用中,例如电压逆变器,降压转换器或用于驱动负载的驱动电路,这里仅例举了几个例子。半桥电路的操作可以包括高侧开关和低侧开关的开关模式操作。这种开关模式操作可能导致通过高侧开关或低侧开关之一的电流的突然变化。特别地,如果高侧开关或低侧开关之一从传导电流的导通状态变为阻断的关断状态,则可能发生这种突然变化。通过高侧开关或低侧开关之一的电流的突然变化可能引起电压尖峰,其电压电平远高于连接半桥的高侧开关和低侧开关以及将将半桥连接到供电节点的导体的寄生电感中的供电电压。

在给定的寄生电感下,电流变化越突然,电压尖峰的电压电平越高。为了将电压尖峰保持在特定电压电平以下,可以降低高侧开关和低侧开关的开关速度。然而,这增加了开关损耗,在许多情况下,这是非常不期望的。另一种选择是设计电压阻断能力足够高以耐受电压尖峰的高侧开关和低侧开关。然而,增加电压阻断能力不可避免地增加导通电阻,导通电阻是导通状态下相应开关的电阻,因此传导有损耗。通常,增加电压阻断能力也会增加开关损耗,这是与接通和关断晶体管器件相关的损耗。这也是不期望的。



技术实现要素:

一个示例涉及具有至少一个开关电路的电子电路。所述至少一个开关电路包括电压钳位元件,以及具有高侧开关和低侧开关的半桥,其中高侧开关和低侧开关均包括控制节点和负载路径,并且其中高侧开关和低侧开关的负载路径串联连接。电压钳位元件与半桥并联连接,使得连接高侧开关和低侧开关并且将电压钳位元件与半桥连接的第一导体的第一总电感小于20毫微亨(nh)。

附图说明

下面参照附图说明示例。附图用于示出一些原理,因此仅示出了用于理解这些原理所必需的方面。附图不是按比例绘制的。在附图中,相同的附图标记表示相同的特征。

图1示出了根据一个示例的具有开关电路的电子电路;

图2示出了说明在操作期间图1所示的电子电路中出现的信号的波形的时序图;

图3a至图3c示出了可以如何实现图1所示的开关电路中的电子开关的不同示例;

图4示出了用于驱动图1所示的半桥电路中的一个电子开关的驱动电路的一个示例;

图5示出了根据另一示例的具有开关电路的电子电路;

图6示出了图5所示的电子电路的变型。

图7示出了图1所示的电子电路中使用的电压钳位元件的一个示例的垂直截面图;

图8示出了根据图7所示的电压钳位元件的一个示例的水平截面图;

图9a和图9b示出了集成有图1所示类型的开关电路的模块的一个示例;

图10示出了集成有图6所示类型的开关电路的模块的一个示例;

图11示出了包括几个开关电路的电子电路的一个示例;以及

图12示出了集成有若干开关电路的模块。

具体实施方式

在下面的详细描述中,参照了附图。附图形成说明书的一部分,并且出于说明的目的,示出了可以如何使用和实现本发明的示例。应该理解的是,除非另外特别指出,否则本文描述的各种实施方式的特征可以彼此组合。

图1示出了根据一个示例的具有开关电路的电子电路。开关电路包括半桥和钳位元件2。半桥包括:第一电子开关11,其在下文中被称为高侧开关;第二电子开关12,其在下文中被称为低侧开关;以及钳位元件2。高侧开关11和低侧开关12中的每个包括控制节点111、112以及第一负载节点121、122与第二负载节点131、132之间的负载路径。高侧开关11和低侧开关12的负载路径串联连接。与高侧开关11的负载路径121-131和低侧开关12的负载路径122-132相连接的电路节点形成半桥的输出端out。

高侧开关11被配置成在控制节点111处接收第一驱动信号sdrv1,并且其低侧开关12被配置成在其控制节点112处接收第二驱动信号sdrv2。这些第一驱动信号sdrv1和第二驱动信号sdrv2中的每个被配置成接通或关断相应的开关11、12。生成这些第一驱动信号sdrv1和第二驱动信号sdrv2的驱动电路未在图1中示出。参照下面的图4说明驱动电路的一个示例。

钳位元件2与半桥并联连接。更具体地,钳位元件2与串联电路并联连接,该串联电路包括高侧开关11的负载路径121-131和低侧开关12的负载路径122-132。此外,半桥11、12耦接至电子电路的输入。输入包括第一输入节点in1和第二输入节点in2并且被配置成接收输入电压vin。可选地,电容器50连接在第一输入节点in1与第二输入节点in2之间。该电容器50在下文中称为输入电容器,但也可称为dc链路电容器。

根据一个示例,电压钳位元件2与半桥并联连接,使得连接半桥的高侧开关11和低侧开关12的导体以及将电压钳位元件2与半桥相连接的导体的总寄生电感小于20毫微亨(nh)、小于10nh、或甚至小于5nh。该总寄生电感在下文中称为第一寄生电感,并且由图1中所示的电路图中的电感lp3表示。通过图1所示的电路图中的连接线示意性地示出了将高侧开关11与低侧开关12相连接并且将电压钳位元件2与半桥相连接的导体。根据一个示例,并且如图1所示,这些导体包括:第一导体31,其连接电压钳位元件2与第一电子开关11的第一负载节点121;第二导体32,其连接电压钳位元件2与低侧开关12的第二负载节点132;以及第三导体33,其连接高侧开关11的第二负载节点131和低侧开关12的第一负载节点122。该组导体31至33在下文中称为第一组导体。

在图1所示的电路图中,第一组导体31至33由连接线示意性地示出。在电子电路的实施方式中,这些导体31至33中的每个可以包括以下中的至少一个:接合线;半导体芯片上的接触焊盘;印刷电路板上的迹线;扁平导体;或绝缘基板上的金属化部。此外,可以使用任何类型的导电材料来实现这些导体31至33。导电材料的示例包括但不限于铝(al)、铜(cu)、金(au)、银(ag)、铂(pt)和由这些元素形成的任何合金。下面进一步说明可以如何实现这些导体31至33的示例。

在电子电路的实施方式中,通过将钳位元件2物理地布置成靠近半桥11、12以便具有短导体31至33,可以获得小于20nh的第一寄生电感,因此,具有小于20nh的低的第一寄生电感lp3。

在图1中,lp4表示第二组导体的总寄生电感,该第二组导体将输入in1、in2或输入电容器50与开关电路特别是与电压钳位元件2连接。该总电感在下文中称为第二寄生电感。参照图1,第二组导体包括将第一输入节点in1与电压钳位元件2连接的第四导体41,以及将第二输入节点in2与电压钳位元件2连接的第五导体42。关于第二组的这些导体41至42的实施方式,以上关于第一组导体31至33所述的所有内容都等效地应用。

根据一个示例,具有半桥11、12和钳位元件2的开关电路被连接到输入in1、in2或输入电容器50,使得第二寄生电感lp4大于第一寄生电感lp3。根据一个示例,第二寄生电感lp4与第一寄生电感lp3之间的比率lp4/lp3大于5、大于10或大于20。

图2示出了说明在开关电路中的电压钳位元件2的功能的时序图。具体地,图2示出了由高侧开关11的控制节点111接收的第一驱动信号sdrv1、电压钳位元件2两端的电压v2、高侧开关11两端的电压v11、通过高侧开关11的电流i11、以及通过电压钳位元件2的电流i2的时序图。第一驱动信号sdrv1具有接通高侧开关11的接通电平和关断高侧开关11的关断电平中之一。仅出于说明的目的,在图2所示的示例中,接通电平被描绘为高信号电平,而关断电平被描绘为低信号电平。低信号电平可以是零或负值。

图2中所示的时序图在高侧开关11接通时开始,使得通过高侧开关11的电流i11大于零,并且半桥两端的电压v1基本上等于输入电压vin。在图2中,t1表示第一驱动信号sdrv1的信号电平从接通电平变为关断电平以便关断高侧开关11的时间。从该第一时间t1开始,通过高侧开关11的电流i11(在下文中称为高侧电流)开始朝向零减小。高侧电流i11的这种变化与第一寄生电感lp3中的感应电压v3(参见图1)和第二寄生电感lp4中的v4相关联。在第一寄生电感lp3中感应的电压v3由下式给出:

v3=lp3·di1/dt(1),

其中lp3表示第一寄生电感,并且di1/dt表示高侧电流i1随时间的变化率。从等式1可以看出,感应电压v3的电压电平与第一寄生电感lp3成比例,并且与高侧电流i11的变化率di1/dt成比例。高侧电流的变化率di1/dt取决于高侧开关11的开关速度,即,取决于高侧开关11多快地从接通状态切换到关断状态。下面参照图4说明可以如何调节高侧开关11或低侧开关12的开关速度的示例。

当高侧开关11关断时,在第二寄生电感lp4中感应的电压使得电压钳位元件2两端的电压v2增加到高于输入电压vin。当钳位元件2两端的电压v2达到钳位元件2的击穿电压时,钳位元件2开始传导电流,并因此将电压v2钳位到基本上由钳位元件2的击穿电压给出的电压电平。在图2中,t2表示钳位元件2开始接通的时间,并且t3表示半桥两端的电压v1降低到钳位元件2的击穿电压以下使得通过钳位元件2的电流变为零的时间。

图2示意性地示出了电压v11、v2和电流i11、i2的时序图。由寄生效应引起的振荡可能会叠加这些电压和电流。然而,在图2中未示出这种振荡。

对钳位元件2两端的电压v2进行钳位具有如下效果:半桥11、12两端的电压v1被钳位到基本上由钳位元件2的击穿电压加上电压v3所给出的电压电平,所述电压v3是由高侧电流i11的变化引起的在第一寄生电感lp3中感应的电压。由于钳位元件2被布置成靠近具有高侧开关11和低侧开关12的半桥电路使得第一寄生电感lp3小于20nh,因此即使高侧开关11快速关断,半桥两端的电压v1也仅略大于钳位电压,这可能导致高侧电流i11的突然变化。因此,即使在高侧开关11和低侧开关12的高开关速度下,钳位元件2也保护具有高侧开关11和低侧开关12的半桥免受过电压。因此,高侧开关11和低侧开关12的开关速度可以适应各个应用的需要,并且不必适于将寄生电感中感应的电压保持为低以保护半桥免受过电压。

根据一个示例,电压钳位元件2包括二极管,其电压阻断能力大于输入电压vin并且能够以雪崩模式重复地操作。仅出于说明的目的,电压钳位元件2在图1所示的示例中被绘制为二极管。二极管的阴极节点22连接至第一输入节点in1,其中第一电源电位可用,并且阳极节点21连接至第二输入节点in2,其中第二电源电位可用。输入电压vin是第一电源电位和第二电源电位之间的差。此外,第一输入节点in1处可用的第一电源电位高于第二输入节点in2处可用的第二电源电位。

高侧开关11和低侧开关12仅示意性地示出为图1所示的示例中的电子开关。这些电子开关11、12可以以各种方式实现。一些示例在图3a至图3c中示出。在图3a至图3c中,附图标记1表示高侧开关11和低侧开关12中的任意一个,并且附图标记11、12和13分别表示电子开关1的控制节点、第一负载节点和第二负载节点。参照图3a,电子开关1可以实现为igbt(绝缘栅双极型晶体管)。当利用igbt实现时,igbt的栅极节点形成控制节点11,igbt的集电极节点形成第一负载节点12,并且igbt的发射极节点形成第二负载节点13。可选地,igbt包括连接在第一负载12和第二负载节点13之间的集成二极管(图3a中以虚线示出)。

根据图3b中所示的另一示例,电子开关1包括mosfet(金属氧化物半导体场效应晶体管)。当利用mosfet实现时,mosfet的栅极节点形成电子开关1的控制节点11,mosfet的漏极节点形成第一负载节点12,并且源极节点形成第二负载节点13。根据图3c所示的又一示例,电子开关1包括jfet(结型场效应晶体管)或hemt(高电子迁移率晶体管)。当利用jfet或hemt实现时,jfet或hemt的栅极节点形成第一控制节点11,漏极节点形成第一负载节点12,并且源极节点形成第二负载节点13。

根据一个示例,相同类型的电子开关用于实现高侧开关11和低侧开关12。根据另一示例,使用不同类型的电子开关来实现高侧开关11和低侧开关12。此外,两个或更多个晶体管器件可以并联连接,以形成高侧开关11和低侧开关12中之一。在该上下文中“并联连接”意味着各个晶体管器件的负载路径并联连接,并且各个晶体管器件的控制节点连接成使得这些晶体管器件接收相同的驱动信号。并联连接的晶体管器件可以是相同类型的晶体管器件。也就是说,两个或更多个igbt、mosfet、jfet或hemt可以并联连接。然而,也可以使不同类型的晶体管器件并联连接,使得例如至少一个mosfet与至少一个igbt并联连接。然而,这只是一个示例。也可以使用其他组合。

参照图1,可选地,第一续流元件51与高侧开关11的负载路径121-131并联连接,并且第二续流元件52与低侧开关12的负载路径122-132并联连接。根据一个示例,续流元件51、52是除了高侧开关11和低侧开关12之外的分立器件。根据另一示例,续流元件51、52集成在高侧开关11或低侧开关12中。例如,如果高侧开关11和低侧开关12是mosfet,则mosfet的内部体二极管可以用作相应的续流元件。

图4中示出了能够驱动高侧开关11或低侧开关12的驱动电路15的一个示例。图4示出了一个驱动电路15和一个电子开关1。图4所示的电子开关1表示高侧开关11和低侧开关12中的任意一个。图4所示类型的两个驱动电路可以在电子电路中实现,一个用于驱动高侧开关11,并且另一个用于驱动低侧开关12。仅出于说明的目的,在图4所示的示例中将电子开关1绘制为igbt。然而,这只是一个示例。也可以使用任何其他类型的电子开关来代替igbt。

图4中所示的igbt1以及参照图3a至图3c说明的任何其他类型的晶体管器件是电压控制器件。在这种情况下,驱动信号sdrv是控制节点11和第二负载节点13之间的电压。也就是说,igbt中的驱动信号sdrv是栅极节点11与发射极节点13之间的电压(在mosfet中是栅极节点11与源极节点13之间的电压,并且在hemt或jfet中是栅极节点11与源极节点13之间的电压)。

参照图4,驱动电路15包括第一驱动器151和第二驱动器152,每个驱动器连接在控制节点11和第二负载节点13之间。第一驱动器151包括串联连接在电子开关1的控制节点11和第二负载节点13之间的第一电压源1531、第一电子开关1511和可选的第一电阻器1521。第二驱动器152包括串联连接在电子开关1的控制节点11和第二负载节点13之间的可选的第二电压源1532、第二电子开关1512和可选的第二电阻器1522。当第一开关1511接通时,第一驱动器151被激活,而当第一开关1511关断时,第一驱动器151被去激活。当第二开关1512接通时,第二驱动器被激活,而当第二开关1512关断时,第二驱动器被去激活。第一驱动器151和第二驱动器152由控制电路155根据输入信号sin来激活和去激活。输入信号sin表示是否希望接通或关断电子开关1。当输入信号sin表示希望接通电子开关1时,控制电路155通过接通第一电子开关1511来激活第一驱动器151,并通过关断第二电子开关1512来去激活第二驱动器152。当第一驱动器151被激活时,驱动信号sdrv基本上等于由第一驱动器151的电压源1531提供的电压v151。当输入信号sin表示希望关断电子开关1时,控制电路155通过关断第一电子开关1511来去激活第一驱动器151,并通过接通第二电子开关1512来激活第二驱动器152。当第二驱动器被激活时,驱动信号sdrv基本上等于零,或者当第二驱动器152利用电压源532实现时,等于由电压源1532生成的电压的反相电压电平-v152。

输入信号sin可以由任何类型的控制器(诸如微控制器)生成,取决于半桥的输出端out处的输出电压的期望波形。

诸如图3a至图3c中所示的任何晶体管器件等电压控制式电子开关包括在控制节点11和第二负载节点13之间的内部电容(通常称为栅极-发射极或栅极-源极电容)。在图4所示的示例中该内部电容由连接在栅极节点11和第二负载节点13之间的电容器示出。当该内部电容已被充电成使得内部电容两端的电压高于电子开关1的阈值电压时,电子开关1接通,并且当该内部电容已经放电成使得内部电容两端的电压低于阈值电压时,电子开关1关断。该内部电容充电越快,电子开关1接通越快,并且内部电容器放电越快,电子开关1关断得越快。为了在接通时调节开关速度,可以适当地调节第一可选电阻器1521的电阻。等效地,可以通过适当地调节第二可选电阻器1522的电阻来调节关断时的开关速度。通常,随着这些电阻器1521、1522的电阻减小,开关速度增加。

图5示出了根据另一示例的电子电路。在该示例中,整流器元件7与钳位元件2串联连接。根据一个示例,钳位元件2和整流器元件7两者都包括二极管。在这种情况下,钳位元件2的二极管和整流元件7的二极管以背对背配置的方式连接。在图5所示的示例中,这通过将整流器元件7的阳极节点71连接至钳位元件2的阳极节点21而获得。在该示例中,整流器元件7的阴极节点72连接至第二输入节点in2。根据图6中所示的另一示例,钳位元件2的二极管和整流器元件7的二极管以整流器元件7的阴极节点72被连接至钳位元件2的阴极节点22的背对背配置来连接。在该示例中,整流器元件7的阳极节点71被连接至第一输入节点in1。

根据一个示例,整流器元件包括肖特基二极管,诸如硅或碳化硅肖特基二极管。根据一个示例,该肖特基二极管的电压阻断能力与输入电压vin无关,并且例如小于100v或甚至小于50v,而钳位元件的电压阻断能力高于输入电压vin。根据采用具有半桥11、12和钳位元件2的开关电路的具体应用,输入电压vin可以选自几百伏特(诸如600伏特)与几千伏特(诸如4000伏特)之间的范围。

根据一个示例,钳位元件2是合并的双极和肖特基二极管,诸如mps(合并pin肖特基)二极管。这种类型的二极管包括与集成在一个器件中的肖特基二极管并联的双极二极管。图6中示意性地示出了mps二极管的垂直截面图。

图7示出了集成有mps二极管的半导体本体200的一部分的垂直截面图。根据一个示例,半导体本体200是碳化硅(sic)半导体本体。半导体本体包括第一表面201。图7中所示的垂直截面图示出了在垂直于第一表面201的截面中的半导体本体200。

集成在半导体本体200中的mps二极管包括n型基极区23和n型第一发射极区24。第一发射极区24邻接基极区23,并且第二表面202与第一表面201相对。第一发射极区24连接至阴极节点22或形成mps二极管的阴极节点22。根据一个示例(未示出),金属化部形成在第一发射极区24上并且与第一发射极区24形成欧姆接触。在这种情况下,金属化部形成mps二极管的阴极节点22。

参照图7,mps二极管包括至少一个第一部分201和至少一个第二部分202。第一部分201和第二部分202中的每个包括基极区23和第一发射极区24的一部分。在第一部分201中,mps二极管另外包括p型第二发射极区25。第二发射极区25邻接基极区23并且与第一表面201的顶部上的第一金属化部26欧姆连接。在第二部分202中,基极区23延伸到第一表面201,并且基极区23和在第一表面201的顶部上的第二金属化部27之间形成肖特基接触。第一金属化部26和第二金属化部27两者都连接至阳极节点21或形成mps二极管的阳极节点21。图6所示的mps二极管包括通过第一金属化部26、第二发射极区25、基极区23的一部分形成在第一部分201中的双极二极管以及通过第二金属化部27、基极区23的一部分和第一发射极区24的一部分形成在第二部分202中的肖特基二极管。双极二极管和肖特基二极管通过使第一发射极区24共用并且借助于第一金属化部26和第二金属化部27连接至阳极节点21而并联连接。

根据一个示例,第一金属化部26包括镍-铝(nial)合金、铝-铜(alcu)合金、铝-硅-铜(alsicu)合金、铜(cu)、或铝(al)中的至少一种。根据一个示例,第二金属化部27包括钛(ti)、钼(mo)、氮化钼(mon)、或氮化钛(tin)中的至少一种。根据一个示例,相同类型的金属用于第一金属化部26和第二金属化部27。例如,如果基极区23的掺杂浓度低于1e18cm-3、低于1e17cm-3、或低于1e16cm-3,则在上文中以第一金属化部26为背景说明的金属或金属合金也可用于第二金属化部。在这种情况下,与p型第二发射极区25形成欧姆接触的这些金属或金属合金与基极区23形成肖特基接触。

图7中所示类型的mps二极管具有高雪崩鲁棒性。也就是说,mps二极管可以在输出端被损坏或破坏的情形下在雪崩模式下重复地操作。当在阳极节点21和阴极节点22之间施加电压以使第二发射极区25和基极区23之间的pn结反向偏置时,mps二极管以雪崩模式操作。当该电压的电压电平达到mps二极管的雪崩击穿电平时,在pn结处发生雪崩击穿,这使得mps二极管传导电流直到电压降至雪崩击穿电平以下。雪崩击穿发生在与第一表面201间隔开的pn结处,即,在半导体本体200的深处。这使得mps二极管适合于反复承受雪崩击穿。

根据一个示例,钳位元件2和整流器元件7集成在同一半导体主体200中。参照图7,这可以通过在n型发射极区24和阴极节点22之间形成肖特基接触来获得。形成这种肖特基接触可以包括在n型发射极区上形成肖特基金属73。该肖特基金属可以包括以上参照本文中的第二金属化部说明的金属或金属合金中一种。

图7仅示出了mps二极管的一部分。mos二极管可以包括图7中所示类型的多个器件结构。图8中示出了一个示例,其示出了mps二极管在截面a-a(参见图8)中的水平截面图,截面a-a穿过第二发射极区25并邻接基极区23的区域。在图8所示的示例中,mps二极管包括由基极区23的部分分开的多个第二发射极区25。仅出于说明的目的,第二发射极区25在图8所示的示例中是矩形的,然而,这仅是示例。第二发射极区25可以实现为任何其他类型的形状,诸如圆形或六边形。

根据一个示例,具有半桥的开关电路、可选的续流元件51,52和钳位元件2集成在半导体模块中。集成有开关电路的半导体模块的一个示例在图9a和图9b中示出。图9a示出了模块的顶视图,图9b示出了截面b-b中的垂直截面图。在图9a和图9b中,在模块的各个特征的附图标记旁边或下面的括号中的附图标记表示由模块的相应特征形成的开关电路的那些特征。

参照图9a和图9b,模块包括基板60,基板60具有绝缘载体61和在载体61顶部上的若干金属化部62,63,64。各个金属化部62,63,64彼此间隔开。根据一个示例,基板60是dcb(直接铜接合)基板。在该示例中,载体61包括陶瓷材料,并且金属化部62,63,64包括铜。此外,模块包括集成有高侧开关11的第一半导体芯片711、集成有低侧开关12的第二半导体芯片712、集成有钳位元件2的第三半导体芯片72、集成有第一续流元件51的第四半导体芯片751、以及集成有第二续流元件52的第五半导体芯片752。第一半导体芯片711和第二半导体芯片712中的每个具有在第一表面上的控制焊盘7111,7112,在第二表面上的第一负载焊盘7121,7122(参见图9b),以及在第一表面上的第二负载焊盘7131,7132。控制焊盘7111,7112形成集成在各自半导体芯片711,712中的电子开关的控制节点111,112,第一负载焊盘7121,7122形成第一负载节点121,122,并且第二负载焊盘7131,7132形成第二负载节点131,132。第一半导体芯片711和第二半导体芯片712的第一负载焊盘7121,7122安装至基板。具体地,第一半导体芯片711的第一负载焊盘7121安装至第一金属化部62并且与第一金属化部62电连接,并且第二半导体芯片712的第一负载焊盘7122安装至第二金属化部63并与第二金属化部63电连接。将第一负载焊盘7121,7122安装至第一金属化部和第二金属化部62,63可以包括通过焊接、熔接或粘接将第一负载焊盘7121,7122安装至相应的金属化部。然而,在图9b中未示出焊接层、熔接层或粘接层。

集成有钳位元件2的第三半导体芯片72包括在第一表面上的第一负载焊盘721和在第二表面上的第二负载焊盘722。第一负载焊盘721形成钳位元件2的阳极节点21,第二负载焊盘722形成钳位元件2的阴极节点22。在图9a和图9b所示的示例中,第三半导体芯片72的第二负载焊盘722安装至第一金属化部62并且与第一金属化部62电连接,使得集成在第三半导体芯片72中的钳位元件的阴极节点22经由第一金属化部62与集成在第一半导体芯片711中的高侧开关11的第一负载节点121电连接。

分别集成有第一续流元件51和第二续流元件52的第四半导体芯片751和第五半导体芯片752中的每个包括在第一表面上的第一负载焊盘7511,7512和在第二表面上的第二负载焊盘(在图9a和图9b中不可见)。第一负载焊盘7511,7512形成相应的续流元件51,52的第一负载节点511,512(参见图1)并且第二负载焊盘形成第二负载节点521,522。根据一个示例,续流元件51,52是二极管。在该示例中,第一负载节点511,512是阳极节点,并且第二负载节点521,522是阴极节点。在图9a所示的示例中,第四半导体芯片751的第二负载焊盘安装至第一金属化部62并且与第一金属化部62电连接,使得集成在第四半导体芯片751中的续流元件51的第二负载节点521经由第一金属化部62与集成在第一半导体芯片711中的高侧开关11的第一负载节点121电连接。此外,第五半导体芯片752的第二负载焊盘安装至第二金属化部63并且与第二金属化部63电连接,使得第二续流元件52的第二负载节点522经由第二金属化部63与集成在第二半导体芯片712中的低侧开关12的第一负载节点122电连接。

模块还包括多个导体。仅出于说明的目的,在图9a所示的示例中将这些导体绘制为接合线。在图9a中,这种接合线由粗线表示,没有附图标记。在一些示例中,若干接合线在相同的接触焊盘或金属化部之间并行连接。使用并行的多个接合线可以帮助减小电阻和寄生电感。然而,具有并行的若干接合线仅是示例。代替并行的若干接合线,可以使用仅一个接合线。替选地,可以使用扁平导体、铜夹或带状接合来代替一个或更多个接合线。

参照图9a,形成高侧开关11的第二负载节点131的第一半导体芯片711的第二负载焊盘7131连接至第四半导体芯片751的第一负载焊盘7511,以将高侧开关11的第二负载节点131与第一续流元件51的第一负载节点511电连接。等同地,第二半导体芯片712的第二负载焊盘7132与第五半导体芯片752的第一负载焊盘7512电连接,以将低侧开关12的第二负载节点132与第二续流元件52的第一负载节点512电连接。在图9a所示的示例中,这些电连接通过若干接合线形成。然而,这只是一个示例。可以使用任意其他类型的导体来电连接这些焊盘。

参照图9a,该模块还包括输入端,输出端和控制端口。这些端口中的每个可以由从模块的壳体9突出的扁平导体形成。壳体在图9a和9b中以虚线示出。壳体覆盖基板60和半导体芯片711,712,72,751,752。根据一个示例,基板60的载体61在背离半导体芯片的表面处未被壳体9覆盖,这使得可以将基板60直接安装到冷却元件(图中未示出)。根据另一示例,基板60被完全模制,因此也被壳体覆盖。

参照图9a,该模块包括分别形成第一输入节点in1和第二输入节点in2的第一输入端口81和第二输入端口82。在图9a所示的示例中,第一输入端口81和第二输入端口82中的每个包括两个扁平导体。形成第一输入节点81的扁平导体电连接到第一金属化部62,并且形成第二输入节点的扁平导体82电连接到第三金属化部64。模块还包括由另一扁平导体形成的输出端口83。该输出端口83电连接到第二金属化部63。例如,如图9a所示,这些端口之一与这些金属化部之一之间的电连接中的每个电连接包括一个或更多个接合线。

参照图9a,模块还包括第一对控制端口841,851和第二对控制端口842,852。这些对中的每一对包括第一控制端口841,842和第二控制端口851,852。第一对控制端口841,851用于接收用于高侧开关11的驱动信号,并且第二对控制端口842,852用于接收用于低侧开关12的驱动信号。第一对中的第一控制端口841连接至第一半导体芯片711的控制焊盘7111,并且第一对中的第二控制端口851连接至第一半导体芯片711的第二负载焊盘7131。等同地,第二对中的第一控制端口842连接至第二半导体芯片712的控制焊盘7112,并且第二对中的第二控制端口852连接至第二半导体芯片712的第二负载焊盘7132。例如,如图9a所示,控制端口之一与控制焊盘或负载焊盘之一之间的电连接中的每个电连接包括一个或更多个接合线。

此外,在图9a所示的模块中,第二半导体芯片712的第二负载焊盘7132被连接至第三金属化部64以便于将集成在第二半导体芯片712中的低侧开关12的第二负载节点132连接至第二输入节点in2,第三半导体芯片72的第一负载焊盘721被连接至第三金属化部64以便于将集成在第三半导体芯片72中的钳位元件2的第一负载节点21连接至第二输入节点in2,并且第一半导体芯片711的第二负载焊盘7131和第四半导体芯片751的第一负载焊盘7511被连接至第二金属化部63以不便于将集成在第一半导体芯片711中的高侧开关11的第二负载节点131和集成在第四半导体芯片751中的第一续流元件51的第一负载节点511连接至输出端out。例如,如图9a所示,这些负载焊盘之一与这些金属化部之一之间的电连接中的每个电连接包括一个或更多个接合线。

在图9a和图9b所示的半桥电路中,连接高侧开关11和低侧开关12的并将半桥与钳位元件2连接的导体由金属化部62,63,64和接合线形成。例如,图1中所示的第一导体31基本上由第二半导体芯片72的第二负载焊盘722,第一半导体芯片711的第一金属化部和第一负载焊盘7121形成;第二导体32基本上由如下形成:第一半导体芯片711的第一负载焊盘7131、将该第一负载焊盘7131连接到第二金属化部63的连接部、第二金属化部63、和第二半导体芯片712的第一负载焊盘7122;并且第三导体33基本上由如下形成:第二半导体芯片712的第二负载焊盘7132、将该第二负载焊盘7132连接至第三金属化部64的连接部、将第三金属化部64连接至第三半导体芯片72的第一负载焊盘721的连接部、以及第三半导体芯片72的第一负载焊盘721。通过将钳位元件2布置在模块内部,获得了将钳位元件2与半桥连接并将高侧开关11和低侧开关12连接的那些导体的低的第一寄生电感。

图10示出了图9a和图9b中所示模块的修改的顶视图。在该示例中,模块另外包括如图6中所示的整流器元件7。整流器元件7集成在第六半导体芯片77中。第六半导体芯片77和具有钳位元件的第三半导体芯片72安装至第四金属化部65,使得集成在第三半导体芯片72中的钳位元件2的第二负载节点和集成在第六半导体芯片77中的整流器元件7的第二负载节点经由第四金属化部65电连接。钳位元件2的第二负载节点由第三半导体芯片72的第二负载焊盘形成,并且整流元件6的第二负载节点由第六半导体芯片77的第二负载焊盘形成。这些第二负载焊盘在图10中不可见。根据一个示例,如图6所示,钳位元件3和整流器元件7的第二负载节点是阴极节点,使得阴极节点通过第四金属化部65连接。

第三半导体芯片72和第六半导体芯片77中的每个包括形成钳位元件2和整流器元件7的第一负载节点的第一负载焊盘721,771。根据一个示例,第一负载节点是阳极节点。这些第一负载焊盘721,771布置在第三半导体芯片72和第六半导体芯片77的背离第四金属化部65的表面上。在该示例中,第三半导体芯片72的第一负载焊盘721连接到第三金属化部64,以便于将钳位元件2的第一负载节点(阳极节点)12连接到第二输入节点in2;并且第六半导体芯片77的第一负载焊盘771连接到第一金属化部分62,以便于将整流器元件7的第一负载节点(阳极节点)71连接到第一输入节点in1。

如图5所示,如果钳位元件2和整流器元件7的阳极节点被连接,则改变模块中的第三半导体芯片72和第六半导体芯片77的位置并且倒置这些第三半导体芯片72和第六半导体芯片77,使得第四金属化部65连接形成阳极节点的第二负载焊盘722,772,钳位元件2的阴极节点连接到形成第一输入端in1的第一金属化部62,以及整流器的元件7的阴极节点连接到形成第二输入端in2的第三金属化部64。

根据另一示例(未示出),具有整流器元件7的第六半导体芯片77和具有钳位元件2的第三半导体芯片72以芯片上芯片的配置布置在图9a中所示类型的模块中。例如,第六半导体芯片77布置在第三半导体芯片72和连接到第三金属化部64的接合线之间,使得第六半导体芯片77的第一负载焊盘连接到第三半导体芯片72的第一负载焊盘721,并且第六半导体芯片77的第二负载焊盘772连接到第三金属化部。

图1和图5中所示的电子电路各自包括一个开关电路。然而,这只是一个示例。参照图11,若干这样的开关电路可以包括在一个电子电路中。仅出于说明的目的,图11中所示的电子电路包括三个开关电路i,ii,iii。这些开关电路中的每个根据图5所示的开关电路实现。在这些开关电路i,ii,iii中,与图5中相同的附图标记表示相同的特征,其中开关电路i的附图标记补充有_i,开关电路ii的附图标记补充有_ii,并且开关电路iii的附图标记补充有_iii。这些开关电路中的每个都连接到输入端in1,in2。可以省略各个开关电路中的整流器元件7i,7ii,7iii,这将导致图1所示类型的开关电路i,ii,iii。例如,图11中所示类型的电子电路可以用在三相逆变器中。

图12示出了一种模块,其中电子电路具有图11所示类型的三个开关电路i,ii,iii,其中省略了可选的整流器元件7i,7ii,7iii。图11中所示的模块包括布置在公共壳体9中的三个子模块。这些子模块中的每个都包括其自己的基板,并且以与图9a和图9b中所示的模块相同的方式实现。为了另外实现整流器元件7i,7ii,7iii,这些子模块中的每个可以由图10中所示类型的模块代替。在这些子模块中,与图9中相同的附图标记表示相同的特征,其中实现开关电路i的子模块的附图标记补充有_i,实现开关电路ii的子模块的附图标记补充有_ii,并且实现开关电路iii的子模块的附图标记补充有_iii。在图11所示的模块中,三个子模块共同具有第一输入端口81并且共同具有第二输入端口82。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1