电源电路和振动发电装置的制作方法

文档序号:23669255发布日期:2021-01-15 14:09阅读:167来源:国知局
电源电路和振动发电装置的制作方法

本发明涉及电源电路和振动发电装置。



背景技术:

作为从环境振动获取能量的能量获取技术之一,已知使用作为mems(microelectromechanicalsystems:微电机系统)振动元件的振动发电元件从环境振动进行发电的方法。振动发电元件自身具备压电元件、静电电容型元件,当使振动发电元件按照环境振动的频率振动时,产生与该频率相等的交流电力。因此,提出了一种振动发电装置,其组合了振动发电元件和电源电路,该电源电路将振动发电元件产生的交流电力变换为适合于使用的电压的直流或交流(例如参照专利文献1)。在专利文献1中,在静电电容型的振动发电元件发出的交流电力的整流(从交流向直流的变换)中,使用了普通的二相全波整流电路作为整流电路。

现有技术文献

专利文献

专利文献1:日本专利第5990352号公报



技术实现要素:

发明要解决的问题

环境振动的振动能量是微弱的,因此要求高效地将环境振动变换为电能的电源电路和振动发电装置。

用于解决问题的手段

第一方式的电源电路向外部负载输出从振动发电元件输入的电力,其具备:负半波整流电路,其将从上述振动发电元件输入的交流电力半波整流为负电压输出;反转斩波电路,其将从上述负半波整流电路输出的上述负电压输出反转为正电压输出并输出。

优选第二方式的电源电路在第一方式的电源电路中,还具备电压变换电路,该电压变换电路将从上述反转斩波电路输出的上述正电压输出进行电压变换后输出到上述外部负载。

优选第三方式的电源电路在第一或第二方式的电源电路中,还具备第一电容器,该第一电容器的一端与上述负半波整流电路的输出部连接,另一端接地,积蓄从上述负半波整流电路输出的上述负电压输出,并输出到上述反转斩波电路。

优选第四方式的电源电路在第三方式的电源电路中,还具备第二电容器,该第二电容器的一端与上述负半波整流电路的输出部连接,另一端接地,积蓄从上述反转斩波电路输出的上述正电压输出。

优选第五方式的电源电路在第三或第四方式的电源电路中,还具备控制电路,当上述第一电容器的上述一端的电压成为第一基准负电压时,上述控制电路将用于控制上述反转斩波电路中的斩波定时的开关元件接通,当上述第一电容器的上述一端的电压成为相比于第一基准负电压靠向正侧的第二基准负电压时,上述控制电路将用于控制上述反转斩波电路中的斩波定时的开关元件断开。

优选第六方式的电源电路在第五方式的电源电路中,上述控制电路具备:齐纳二极管,其阳极朝向上述第一电容器的上述一端地配置在上述第一电容器的上述一端与上述另一端之间;电阻元件,其配置在上述第一电容器与上述齐纳二极管之间;以及分压器,其配置在上述第一电容器的上述一端与上述另一端之间,对上述第一电容器的上述一端的电压和上述第一电容器的上述另一端的电压进行分压,上述控制电路根据在上述齐纳二极管的两端施加的电压与上述分压器的输出电压之间的高低的比较结果来接通和断开上述开关元件。

优选第七方式的电源电路在第六方式的电源电路中,上述电阻元件的一端与上述第一电容器的上述一端连接,另一端与上述齐纳二极管的上述阳极连接,上述齐纳二极管的阴极与上述第一电容器的上述另一端连接。

优选第八方式的电源电路在第六或第七方式的电源电路中,上述控制电路具备比较电路、输入侧反馈电阻、输出侧反馈电阻,向上述比较电路的第一输入输入上述齐纳二极管的上述阳极的电压,向上述比较电路的第二输入经由上述输入侧反馈电阻输入上述分压器的上述输出电压,并且经由上述输出侧反馈电阻输入上述比较电路的输出,上述控制电路根据上述比较电路的输出来接通和断开上述开关元件。

第九方式的振动发电装置具备:第一至第八方式中的任意一方式的电源电路;以及振动发电元件,其向上述电源电路供给电力。

优选第十方式的振动发电装置在第九方式的振动发电装置中,上述振动发电元件的形成了具有负电荷的驻极体的电极与上述电源电路的上述负半波整流电路的输入部连接,并且没有形成驻极体的电极与上述电源电路中的接地连接,或者上述振动发电元件的没有形成驻极体的电极与上述电源电路的上述负半波整流电路的输入部连接,并且形成了具有正电荷的驻极体的电极与上述电源电路的接地连接。

发明效果

根据本发明,能够高效地将环境振动的能量变换为电能。

附图说明

图1是表示本发明第一实施方式的电源电路50和振动发电装置100的概要结构的示意图。

图2是说明振动发电装置100具备的振动发电元件10的概要的图。

图3是说明振动发电元件10的动作原理的图。

图4将使用负半波整流电路20时的发电输出与使用全波整流电路时的发电输出进行比较。

图5表示反转斩波电路30的输入部p1的电压vp1的时间变化的图。

图6是表示本发明第二实施方式的电源电路50a和振动发电装置100a的概要结构的示意图。

图7是说明振动发电装置100a具备的振动发电元件10a的概要的图。

具体实施方式

(第一实施方式)

以下,参照附图说明本发明的第一实施方式。图1是表示本发明第一实施方式的电源电路50和振动发电装置100的概要结构的示意图。振动发电装置100具备通过环境振动发出交流电力的振动发电元件10、以及作为电源取得发出的交流电力的电源电路50。

电源电路50具备只输出从振动发电元件10输入的电力中的负电压的分量的负半波整流电路20、将来自负半波整流电路20的负电压的电力变换为正电压的反转斩波电路30。电源电路50还可以具备将来自反转斩波电路30的正电压的电力变换为预定的正电压的电力的电压变换电路40。

作为一个例子,振动发电元件10是具备驻极体电极的静电电容式发电元件(驻极体式发电元件),参照图2说明其概要。

振动发电元件10具备作为可动电极的第一电极11、作为固定电极的第二电极12。作为一个例子,第一电极11是具备2条梳齿部分15的梳齿电极,作为一个例子,第二电极12是具备3条梳齿部分16的梳齿电极。

第一电极11的梳齿部分15和第二电极12的梳齿部分16在图中的z方向上具有预定的厚度,并且在它们咬合的部分与另一方的电极相互相向。例如,能够将第一电极11和第二电极12制造为以硅为基材的mems构造体。

对第二电极12的梳齿部分16中的与第一电极11的梳齿部分15相向的面的表面区域17,实施公知的带电处理(例如日本特开2014-049557号公报所记载的带电处理),由此形成具有负电荷的驻极体。

通过形成驻极体,第二电极12的梳齿部分16半永久性地带电。结果,在与形成了驻极体的电极相向的第一电极11的梳齿部分15,感应出与形成了驻极体的电极特性相反的、即正的感应电荷。

通过绝缘性的支持框13固定地保持第二电极12。

另一方面,通过保持部14(电极保持部14a、连结部14b、固定部14c)将第一电极11保持为相对于支持框13在图中的上下方向(x方向)上振动。保持部14由以下构成:保持第一电极11的电极保持部14a、固定在支持框13的固定部14c、连结电极保持部14a与固定部14c的具有柔性的连结部14b。

连结部14b是图1中的x方向的厚度薄,z方向的厚度厚的由金属等柔性材料构成的薄片。当从外部向支持框13施加振动时,设置在图中电极保持部14a左右的2个连结部14b挠曲,由此电极保持部14a相对于支持框13在x方向上振动。结果,由电极保持部14a保持的第一电极11构成为相对于固定在支持框13的第二电极12在x方向上进行振动。

伴随着第一电极11和第二电极12向x方向的振动,第一电极11的梳齿部分15与第二电极12的梳齿部分16相向的面的面积增减。结果,第一电极11与第二电极12相向的部分的面积变化,由于驻极体而产生的感应电荷也变化,第一电极11与第二电极12之间的电位差变化而产生电动势,由此通过振动发电元件10进行发电。

振动发电元件10将设置了振动发电装置100的环境的振动能量变换为电能,产生交流电力。

输出来自振动发电元件10的交流电压的2条输出线中的与第二电极12连接的输出线w2与图1中的负半波整流电路20的输入部连接,另一方的与第一电极11连接的输出线w1接地。此外,输出线w1还经由接地与负半波整流电路20的接地(电源电路50的接地)连接。

负半波整流电路20具备阴极与振动发电元件10的一端连接的第一二极管d1、阳极与振动发电元件10的一端和第一二极管d1的阴极连接的第二二极管d2。负半波整流电路20的输入部是第一二极管d1的阴极和第二二极管d2的阳极。负半波整流电路20的输出部是第一二极管d1的阳极。

关于从振动发电元件10的第二电极12经由输出线w2输入到负半波整流电路20的交流电压,在其是正电压时,大致无电阻地作为电流经过第二二极管d2流向接地侧。因此,只有输入到负半波整流电路20的交流电压中的负电压的分量经过第一二极管d1从负半波整流电路20输出。

在作为负半波整流电路20的输出部的第一二极管d1的阳极连接第一电容器c1的一端,第一电容器c1的另一端接地。从负半波整流电路20输出的负的电力积蓄在第一电容器c1中,并从第一电容器c1供给到反转斩波电路30。

通过第一电容器c1,在时间上对作为脉冲输出的来自负半波整流电路20的输出电力进行平滑化,因此能够使电力稳定后供给到反转斩波电路30,能够提高反转斩波电路30的电力传递的效率。

图3是表示振动发电元件10的动作原理的概要的图。以下,参照图3说明第一实施方式的振动发电装置100的能量变换效率高的理由之一。

图3的(a)~(c)表示图3所示的第一电极11的梳齿部分15和第二电极12的梳齿部分16在图1中的x方向上相对移动的情况。在图3的说明中,为了简化,将第一电极11的梳齿部分15称为第一电极15,将第二电极12的梳齿部分16称为第二电极16。

图3的(a)表示第一电极15和第二电极16在预定的部分相向的状态。在与第一电极15相向的第二电极16的表面的区域17中,形成了带有负电荷60的驻极体。

被该负电荷60感应,在与第二电极16相向的第一电极15的表面感应出正电荷62。另一方面,在第二电极16中的不与第一电极15相向的部分,被区域17的负电荷60感应,在第二电极16的内部感应出正电荷61。

在第一电极15感应出的正电荷62与第二电极16表面的驻极体的负电荷60在第一电极15与第二电极16的相向部形成电场e0。

图3的(a)中的电阻r是将连接振动发电元件10的电源电路50和外部负载r0表示为电阻。在电场e0中,在振动发电元件10振动的情况下,向电阻r0施加伴随着第一电极和第二电极之间的静电电容的变化而产生的电压。在图3的(b)、(c)所示的例子中,伴随着第一电极15和第二电极16的振动,振动发电元件10的输出电压与图3的(a)所示的例子相比有增减。

图3的(b)表示了从图3的(a)所示的状态开始第一电极15和第二电极16在x方向上相对移动,第一电极15与第二电极16相向的部分的面积与图3的(a)所示的状态相比减少。

在图3的(b)所示的状态下,与图3的(a)所示的状态相比,通过第二电极16表面的负电荷60感应出的第一电极15表面的正电荷62减少,通过负电荷60感应出的第二电极16内的正电荷61增加。

因此,在由于电极的振动从图3(a)的状态变化为图3(b)的状态时,在图3的(a)中在第一电极15感应出的正电荷62的一部分成为电流i1,要经由电阻r从第一电极15向第二电极16移动(准确地说,电子要从第二电极16向第一电极15移动)。因此,第一电极15相对于第二电极16成为正电位。

但是,该电荷的移动被电阻r的电阻阻碍,因此在第一电极15残留正的残留电荷64,在另一方的第二电极16内的与负电荷60相向的部分的一部分,产生正电荷的缺失部63。该正的残留电荷64和正电荷的缺失部63使第一电极15与第二电极16的相向部的电场e1相比于图3(a)时的电场e0增强。

图3的(c)表示了从图3的(a)所示的状态开始第一电极15和第二电极16在x方向上相对移动,第一电极15与第二电极16相向的部分的面积与图3的(a)所示的状态相比增大了。

在图3的(c)所示的状态下,与图3的(a)所示的状态相比,通过负电荷60感应的第一电极15表面的正电荷62增多,通过负电荷60感应出的第二电极16内的正电荷61减少。

因此,在由于电极的振动从图3的(a)的状态变化为图3的(c)的状态时,在图3的(a)中在第二电极16中感应出的正电荷61的一部分成为电流i2,要经由电阻r从第二电极16向第一电极15移动(准确地说,电子要从第一电极15向第二电极16移动)。因此,第一电极15相对于第二电极16成为负电位。

但是,该电荷的移动被电阻r的电阻阻碍,因此在第二电极16中残留正的残留电荷65,在另一方的与负电荷60相向的部分的第一电极15内的一部分产生正电荷的缺失部66。该正的残留电荷65和正电荷的缺失部66使第一电极15和第二电极16的相向部的电场e2与图3(a)时的电场e0相比减弱。

这样,在电场e2减弱的状态下,振动发电元件10的发电效率降低。由此,如果在电场e2减弱的状态下从振动发电元件10获取电力,则电气阻尼减少,从机械能向电能的转换速度变慢,因此在作为可动电极的第二电极16中积蓄的环境振动的能量(动能)不会高效地转换为电能而被浪费。

在第一实施方式的电源电路50和振动发电装置100中,如图1所示,振动发电元件10的第二电极12经由输出线w2与负半波整流电路20连接。因此,如图3的(c)所示的例子那样,在振动发电元件10的第二电极12相对于第一电极11为正电位的情况下,负半波整流电路20的第二二极管d2为正向偏压,因此振动发电元件10产生的电流能够经过第二二极管d2,大致无电阻地从第二电极12流动到第一电极11。

因此,在第一实施方式的电源电路50和振动发电装置100中,能够防止如图3的(a)至图3的(c)所示第一电极15与第二电极16相对移动时的电场e2的减弱,能够得到高的发电效率。

看上去认为电流从第二电极12经过第二二极管d2流向第一电极11,由此浪费了发出的电能。但是,正向流过第二二极管d2的电流的电阻实质上为零,另外流过的电流的总量是在第一电极11和第二电极12中感应的电荷量,上限被确定,因此损失的电能的量δeg2,即(电阻)×(电流)×(电流)的量也是微小的。

图4将使用了本实施方式的负半波整流电路20时的发电输出与使用了现有的全波整流电路时的发电输出进行比较。

图4的(a)表示本实施方式的负半波整流电路20的发电输出(电力)p11与时间t(横轴)的关系,图4的(b)表示现有的全波整流电路的发电输出(电力)p21与时间t(横轴)的关系。两者的纵轴是输出电力p。

在使用了现有的例如二极管桥型的全波整流电路的情况下,伴随着电极的相对振动在振动发电元件的第一电极与第二电极之间感应出的正弦波的电力(电压)通过全波整流电路,负电压反转为正,输出大致与正弦波的绝对值相等的电力p21。电力p21的时间变化中的相邻峰值之间的时间是振动发电元件的振动周期的一半。

另一方面,图4的(a)所示的本实施方式的负半波整流电路20的输出p11只输出在第一电极11和第二电极12之间感应出的正弦波的电力(电压)中的第一电极11感应为正电位,第二电极12感应为负电位的状态。即,只输出正弦波状的电压中的负的部分,因此与使用现有的全波整流电路时的输出p21相比,峰值的数量为一半。

但是,在振动发电元件的情况下,从外部施加的振动的能量等于作为空气阻力、摩擦而损失的机械能与振动发电元件发出的电能之和。由此,如果从外部施加的振动的能量以及损失的机械能相等,则获取的电能的总量与获取电能的次数(频度)无关而是固定的。

因此,本实施方式的负半波整流电路20的输出p11的一个峰值的大小(电力)比现有的输出p21的一个峰值大。另外,在不考虑上述电场e2的弱化的情况下,本实施方式的负半波整流电路20的输出电力的时间平均p10与使用现有的全波整流电路的装置的输出电力的时间平均p20相等。

另外,如果考虑上述电场e2的弱化,则在使用现有的全波整流电路的装置中,无法避免电场e2的弱化从而发电效率降低,因此本实施方式的负半波整流电路20的输出电力的时间平均p10高于现有的全波整流电路的输出电力的时间平均。

如以上说明的那样,在本实施方式中,通过负半波整流电路2输入来自振动发电元件10的电力,因此能够提高振动发电元件10的发电效率。但是,负半波整流电路2的输出是负电压,在这一点上有时不适合于普通的使用。

因此,在本实施方式中,将从负半波整流电路20输出的负电压的电力输入到反转斩波电路30,通过反转斩波电路30将负电压的电力反转为正电压的电力后输出。

在用于控制斩波定时的mos晶体管等开关元件t1接通的状态下,从负半波整流电路20输出并输入到反转斩波电路30的负电压输出的电能暂时积蓄在线圈l1中。然后,如果开关元件t1断开,则由于线圈l1的自感,积蓄在线圈l1中的能量作为电流被释放,经过整流二极管d5输出到后级(图1中的右侧)的电路。

从负半波整流电路20输入给反转斩波电路30的电力是负电压,因此在开关元件t1接通的状态下,在线圈l1中,电流从接地侧(图1中的下侧)向开关元件t1侧流动。因为整流二极管d5的开关元件t1一侧是阳极,所以在开关元件t1接通的状态下,成为反向偏压不流过电流。

当开关元件t1断开时,由于线圈l1的自感,积蓄在线圈1中的能量转换为在线圈l1中从接地侧流向整流二极管d5侧的电流。这时,与整流二极管d5连接一侧的线圈l1的端部相对于接地为正电位。因此,整流二极管d5成为正向偏压,因此电流经过整流二极管d5向电压变换电路40输出。

如以上那样,通过反转斩波电路30将负电压的电力变换为正电压的电力。

在作为反转斩波电路30的输出部p3的整流二极管d5的阴极连接第二电容器c2的一端p3,第二电容器c2的另一端接地。从反转斩波电路30输出的正的电力积蓄在第二电容器c2中,从第二电容器c2向电压变换电路40的输入部vin输出。

通过第二电容器c2在时间上使作为脉冲输出的来自反转斩波电路30的输出电力平滑化,因此,能够使电力稳定后提供给变换电路40,能够提高电压变换电路40的电力传递效率。

电压变换电路40对从反转斩波电路30输出并输入到输入部vin的电压进行电压变换,使得从输出部vout输出到外部负载r0的电压成为正的预定的固定值。电压变换电路40可使用普通的开关调节型的dc/dc变换器。在电压变换电路40的输出部vout与接地之间设置有第三电容器c3,由此来自电压变换电路40的输出电压进一步被平滑化。

此外,电压变换电路40用于将作为反转斩波电路30的输出的正的电力变换为适合于外部负载r0的电压。因此,在适合于外部负载r0的电压与反转斩波电路30的输出电压一致的情况下、或外部负载r0自身具有变换电压的功能的情况下,电源电路50不需要具备电压变换电路40。在该情况下,在外部负载r0具备相当于第二电容器c2、第三电容器c3的电容器的情况下,电源电路50不需要具备第二电容器c2和第三电容器c3。

作为一个例子,反转斩波电路30的输入部p1与由nmos晶体管(nmosfet)构成的开关元件t1的源极连接。

在反转斩波电路30中,通过控制电路35进行用于将开关元件t1接通和断开的控制,该控制电路35具备反转斩波电路30中包含的齐纳二极管d6、构成分压器的电阻元件r2、r3、比较器电路cp等。

振动发电元件10的发电效率取决于用于积蓄来自振动发电元件10的电力的第一电容器c1的电压。即,当第一电容器c1被充电,电压的绝对值过于变高(在本实施方式中负地变大)时,从振动发电元件10观察时的第一电容器c1的电阻增大,因此振动发电元件10的发电效率降低。即使相反地第一电容器c1的电压的绝对值过于降低(在本实施方式中负地变小),振动发电元件10的发电效率也降低。

因此,控制电路35根据第一电容器c1的电压(反转斩波电路30的输入部p1的电压),对开关元件t1进行接通和断开控制,将第一电容器c1的电压维持在振动发电元件10的发电效率最高的最优电压v0附近的预定范围。具体地说,控制电路35进行控制使得第一电容器c1的电压成为比最优电压v0低的电压(负侧)的第一基准负电压v1与比最优电压v0高的电压(正侧)的第二基准负电压v2之间。

此外,一般担心当接通了开关元件t1时,在第二电容器c2中积蓄的电荷向第一电容器c1逆流,第一电容器c1的电压变动的情况。但是,本实施方式在第一电容器c1与第二电容器c2之间具备反转斩波电路30,反转斩波电路30在输出部具备整流二极管d5。因此,从为正电压的第二电容器c2向为负电压的第一电容器c1的电流被整流二极管d5切断,因此第一电容器c1的电压不会由于第二电容器c2的电压而变动。由此,能够进行开关元件t1的高精度的控制。

以下说明控制电路35。

在反转斩波电路30的输入部p1连接电阻元件r1的一端,电阻元件r1的另一端与齐纳二极管d6的阳极连接,齐纳二极管d6的阴极接地。并且,在输入部p1连接电阻元件r2的一端,电阻元件r2的另一端与电阻元件r3的一端连接,电阻元件r3的另一端接地。

如上述那样,第一电容器c1的一端与反转斩波电路30的输入部p1连接,第一电容器c1的另一端接地,因此齐纳二极管d6的阴极也与第一电容器c1的另一端连接。电阻元件r2和电阻元件r3构成对施加到第一电容器c1两端的电压(以接地为基准的输入部p1的电压)进行分压的分压器。

作为电阻元件r2与电阻元件r3的连接部的分压部p2的电压是对输入部p1的电压分压后的电压,因此与输入部p1的电压成正比。另一方面,如果输入部p1相对于齐纳二极管d6的击穿电压为负电压,则齐纳二极管d6的阳极的电压为负的固定值(齐纳二极管d6的击穿电压)。

因此,通过将上述2个电压输入到比较器电路cp进行电压比较,能够判断输入部p1的电压(第一电容器c1的电压)是在使振动发电元件10的发电效率最大的最优电压v0以上还是其以下。

为了进行该判断,对构成分压器的电阻元件r2、r3的电阻值进行设定,使得在反转斩波电路30的输入部p1的电压(第一电容器c1的电压)是最优电压v0时,分压部p2的电压与齐纳二极管d6的击穿电压大致相等。为了使该设定变得容易,如图1中所示那样,希望电阻元件r2、r3中的至少一方(在图1中为电阻元件r2)是可变电阻。

此外,作为电阻元件的替代,还可使电阻元件r2和电阻元件r3分别为电容器。

向比较器电路cp的负侧输入(第一输入)输入齐纳二极管d6的阳极的电压。另一方面,向正侧输入(第二输入)经由输入侧反馈电阻r4输入分压部p2的电压,并且经由输出侧反馈电阻r5输入比较器电路cp的输出。

由此,比较器电路cp作为具有滞后的电路发挥功能。即,在分压部p2的电压从正电压侧变化为负电压侧的情况下,在分压部p2的电压达到比输入到负侧输入的电压低的(更向负侧的)预定的第一电压时,比较器电路cp的输出从零(接地电位)变化为负。另一方面,在分压部p2的电压从负电压侧变化为正电压侧的情况下,在分压部p2的电压达到比输入到负侧输入的电压高(正侧)的预定的第二电压时,比较器电路cp的输出从负变化为零(接地电位)。

此外,对输入侧反馈电阻r4的电阻值以及输出侧反馈电阻r5的电阻值进行设定,使得在第一电容器c1的电压是上述的第一基准负电压v1和第二基准负电压v2时,分压部p2的电压分别为上述的第一电压和第二电压。希望在该设定时,一并设定上述电阻元件r2、r3的电阻值。

将比较器电路cp的输出输入到pmos晶体管(pmosfet)t2的栅极。

如果比较器电路cp的输出是负,则晶体管t2接通,由于流过电阻元件r8的电流导致的电压降,作为nmos晶体管的开关元件t1的栅极的电压变得比开关元件t1的源极的电压高(为正侧),开关元件t1成为接通。此外,优先电阻元件r8是可变电阻,使得能够调整电压降的量。

另一方面,如果比较器电路cp的输出是零,则晶体管t2断开,其结果是作为nmos晶体管的开关元件t1的栅极的电压与开关元件t1的源极的电压相等,因此开关元件t1断开。

此外,配置在晶体管t2的栅极与接地之间的电阻元件r7是用于使暂时积蓄在晶体管t2栅极的比较器电路cp的输出向接地放电的电阻元件,为了调整放电时间,优选为可变电阻。

另外,第二齐纳二极管d7是用于在输入部p1的电压的绝对值小而晶体管t2的动作不稳定的状态下,切断第二齐纳二极管d7和电阻元件r8,使开关元件t1断开的元件。

图5表示本实施方式的振动发电装置100的反转斩波电路30的输入部p1的电压(第一电容器c1的电压)vp1的时间变化,纵轴表示电压,横轴表示时间。

如果振动发电元件10开始发电,则在第一电容器c1中积蓄负的电荷,因此第一电容器c1的电压vp1逐渐负地增大。

当第一电容器c1的电压vp1达到第一基准负电压v1时,与电压vp1成正比的分压部p2的电压达到上述第一电压,控制电路35使开关元件t1接通。由此,积蓄在第一电容器c1中的电荷(电能)放电,成为电流流过线圈l1,作为磁能积蓄在线圈l1中。即使开关元件t1接通,负的电流也从振动发电元件10经由负半波整流电路20流入第一电容器c1。但是,流出到线圈l1的电流比从负半波整流电路20流入的电流多,因此第一电容器c1的电压vp1负地减少(向正方向变化)。

在开关元件t1接通后不久第一电容器c1的电压vp1从负侧达到第二基准负电压v2,与电压vp1成正比的分压部p2的电压也达到上述第二电压。于是,控制电路35将开关元件t1断开,因此从第一电容器c1向线圈l1的放电停止。因为负的电流从振动发电元件10经由负半波整流电路持续流入第一电容器c1,所以之后第一电容器c1的电压vp1再次向负侧变化,达到第一基准负电压v1。

然后,通过重复上述循环,第一电容器c1的电压vp1保持在第一基准负电压v1与第二基准负电压v2之间,即保持在振动发电元件10的发电效率最高的最优电压v0的附近。由此,本实施方式的振动发电装置100和电源电路50能够实现高的发电效率。

(第二实施方式)

图6是表示本发明第二实施方式的电源电路50a和振动发电装置100a的概要结构的示意图。本第二实施方式的大部分结构与上述第一实施方式相同,因此对于相同的结构附加相同的附图标记并省略说明。

在本第二实施方式中,振动发电元件10a和负半波整流电路20a的结构与上述第一实施方式不同,但除此以外的结构与第一实施方式相同。

图7是表示第二实施方式的振动发电装置100a具备的振动发电元件10a的概要图。振动发电元件10a为如下结构:相对于上述图4的振动发电元件10,将另一个振动发电元件10上下反转以间隔保持部14的方式并列配置在图中的下侧。

作为2个固定电极的第二电极12a和第二电极12b分别固定在支持框13的+x侧和﹣x侧的端部的内侧。另一方面,作为2个可动电极的第一电极11a和第一电极11b设置在构成保持部14的电极保持部14a的各个+x侧和﹣x侧。因此,与上述第一实施方式同样地,如果由于来自外部的振动使得保持部14振动,则第一电极11a、11b相对于第二电极12a、12b在x方向上振动。在第二电极12a、12b各自的梳齿部分16a、16b中的与第一电极11a、11b的梳齿部分15a、15b相向的面的表面的区域17a、17b,形成了具有负电荷的驻极体。

负半波整流电路20是图6所示的结构,构成为并列配置2个图1所示的负半波整流电路20。与第二电极12a连接的输出线w2a与上述第一实施方式同样,与作为负半波整流电路20的输入部的第一二极管d1的阴极和第二二极管d2的阳极连接。另外,与第二电极12b连接的输出线w2b与作为负半波整流电路20的另一个输入部的第三二极管d3的阴极和第四二极管d4的阳极连接。

与第一电极11a和11b连接的输出线w1与上述第一实施方式同样地接地,并且与第二二极管d2的阴极和第四二极管d4的阳极连接。

第一二极管d1的阳极和第三二极管d3的阳极是负半波整流电路20的输出部。

该第二实施方式具备的负半波整流电路20a看上去像二极管桥型的全波整流电路,但其实是并列配置了2个负半波整流电路,不是全波整流电路。对于从一对输出线w2a和输出线w2b分别输入的电压,以从输出线w1输入的电压为基准只有在为负的情况下,向输出部输出该电力,在输入的电压为正的情况下,电流经过第二二极管d2和第四二极管d4流向接地。

这样,负半波整流电路20a作为只使交流电压中的负电压的部分通过的半波整流电路发挥功能。因此,通过组合振动发电元件10a和负半波整流电路20a,与上述第一实施方式同样地能够防止振动发电元件10a内的电场e2的减弱,能够得到高的发电效率。

并且,关于第二实施方式的振动发电装置100a具备的振动发电元件10a,如上所述并列配置了2个第一实施方式的振动发电元件10,因此能够得到比第一实施方式的振动发电装置100更高的发电效率。

在上述第一实施方式和第二实施方式中的任意一方式中,振动发电元件10、10a都将第一电极11、11a、11b设为可动电极,将第二电极12、12a、12b设为固定电极,但并不限于该结构。即,也可以将第一电极11、11a、11b设为固定电极,将第二电极12、12a、12b设为可动电极。

另外,也可以在第一电极11、11a、11b的表面区域形成具有正电荷的驻极体,来代替在第二电极12、12a、12b的表面区域形成具有负电荷的驻极体。在该情况下,如上所述,能够防止在两个电极之间的电场e2减弱的状态下从振动发电元件10获取电力,能够提高发电效率。

负半波整流电路20、20a内的各二极管(d1~d4)也可以使用串联连接多个二极管而提高耐压的结构。

另外,反转斩波电路30内的控制电路35中的齐纳二极管d6也可以使用串联连接多个齐纳二极管的结构。

在上述各实施方式中,反转斩波电路30内的控制电路35中的齐纳二极管d6的阴极直接接地,但并不限于此,也可以是经由电阻元件接地的结构。

但是,在该情况下,在比较器电路cp的负侧输入(第一输入)输入的电压相对于齐纳二极管d6的击穿电压,向负侧位移因流过该电阻元件的电流而产生的电压降的量。因此,希望设定电阻元件r2和电阻元件r3的电阻值,使得在比较器电路cp的正侧输入(第二输入)输入的分压部p2的电压也以同样程度向负侧位移。在齐纳二极管d6的阴极经由电阻元件接地的情况下,也可以省略阳极侧的电阻元件r1。

关于反转斩波电路30内的整个控制电路35,并不限于上述结构,也可以是其他结构。例如,也可以代替比较器电路cp,而使用将输入部p1的电压变换为数字值的a/d变换电路和控制用逻辑电路。在该情况下,构成为以下即可:在数字变换后的电压值是上述第一基准负电压v1和第二基准负电压v2时,控制用逻辑电路将开关元件t1接通和断开。

(实施方式的效果)

(1)上述各实施方式和各变形例的电源电路50、50a是向外部负载输出从振动发电元件10、10a输入的电力的电源电路,其具备:负半波整流电路20、20a,其将从振动发电元件10、10a输入的交流电力半波整流为负电压输出;反转斩波电路30,其将从负半波整流电路20、20a输出的负电压输出反转为正电压输出并输出。

通过该结构,能够使振动发电元件10、10a高效地发电,能够将环境振动的能量高效地转换为电能。

(2)在(1)中,构成为还具备电压变换电路40,其对从反转斩波电路30输出的正电压输出进行电压变换后输出到外部负载,由此能够从电源电路50输出适合于外部负载r0的电压,由此能够实现适合于各种外部负载r0的电源电路50。

(3)在(1)或(2)中,构成为还具备第一电容器c1,第一电容器c1的一端与负半波整流电路20、20a的输出部连接,另一端接地,积蓄从负半波整流电路20、20a输出的负电压输出,并输出到反转斩波电路30,由此能够将电力稳定后提供给反转斩波电路30,能够提高反转斩波电路30的电力传递的效率。

(4)在(3)中,构成为还具备第二电容器c2,第二电容器c2的一端与反转斩波电路30的输出部连接,另一端接地,积蓄从反转斩波电路30输出的正电压输出,并输出到电压变换电路40,由此能够将电力稳定后提供给电压变换电路40,能够提高电压变换电路40的电力传递的效率。

(5)在(4)中,构成为还具备控制电路35,当第一电容器c1的一端的电压为第一基准负电压时,控制电路35将对反转斩波电路30中的斩波定时进行控制的开关元件t1接通,当第一电容器c1的一端的电压成为相对于第一基准负电压靠向正侧的第二基准负电压时,控制电路35将开关元件t1断开,由此,能够将第一电容器c1的电压保持在振动发电元件10的发电效率最高的最优电压v0的附近,能够进一步提高发电效率。

(6)在(5)中,还构成为控制电路35具备:齐纳二极管d6,其阳极朝向第一电容器c1的一端侧地配置在第一电容器c1的一端和另一端之间;电阻元件r1,其配置在第一电容器c1与齐纳二极管d6之间;分压器r2、r3,其配置在第一电容器c1的一端与另一端之间,对第一电容器c1的一端的电压和第一电容器的另一端的电压进行分压,控制电路35根据在齐纳二极管d6的两端施加的电压与分压器r2、r3的输出电压的高低比较结果,接通和断开开关元件t1,由此,能够根据第一电容器c1的电压,正确地接通和断开开关元件t1。由此,能够将第一电容器c1的电压更准确地保持在最优电压v0的附近,能够进一步提高发电效率。

(7)在(6)中,还构成为电阻元件r1的一端与第一电容器c1的一端连接,另一端与齐纳二极管d6的阳极连接,齐纳二极管d6的阴极与第一电容器的另一端连接,由此能够使齐纳二极管d6的阳极侧的电压为相对于接地的齐纳二极管d6的击穿电压。由此,能够容易地比较上述在齐纳二极管d6的两端施加的电压与分压器r2、r3的输出电压的高低,能够降低反转斩波电路30的成本。

(8)在(6)或(7)中,还构成为控制电路35具备比较器电路cp、输入侧反馈电阻r4、输出侧反馈电阻r5,向比较器电路cp的第一输入输入齐纳二极管d6的阳极的电压,经由输入侧反馈电阻r4向比较器电路cp的第二输入输入分压器r2、r3的输出电压,并且经由输出侧反馈电阻r5向比较器电路cp的第二输入输入比较器电路cp的输出,根据比较器电路cp的输出来接通和断开开关元件t1,由此能够实现低消耗功率的控制电路35,向外部负载r0供给更多的电力。

(9)上述各实施方式和各变形例的振动发电装置100、100a具备上述(1)至(8)中的任意一个的电源电路50、50a、向电源电路50、50a供给电力的振动发电元件10、10a。

通过该结构,能够高效地将环境振动的能量转换为电能。

(10)在(9)中,振动发电元件10、10a构成为形成了具有负电荷的驻极体的电极12、12a、12b与电源电路50、50a的负半波整流电路20的输入部连接,并且没有形成驻极体的电极11、11a、11b与电源电路50、50a中的接地连接,或者,没有形成驻极体的电极与电源电路50、50a的负半波整流电路20的输入部连接,并且形成了具有正电荷的驻极体的电极与电源电路50、50a的接地连接,由此能够防止驻极体型振动发电元件10、10a的电场的弱化,得到更高的发电效率。

以上说明了各种实施方式和变形例,但本发明并不限于这些内容。另外,各实施方式和变形例既可以分别单独地应用,也可以组合使用。在本发明的技术思想的范围内能够考虑到的其他实施方式也包含在本发明的范围内。

将以下优先权基础申请的公开内容作为引用文章组合在此。

日本专利申请2018年第105435号(2018年5月31日申请)

附图标记说明

100、100a:振动发电装置;10、10a:振动发电元件;20、20a:负半波整流电路;30:反转斩波电路;35:控制电路;40:电压变换电路;c1:第一电容器;c2:第二电容器;c3:第三电容器;r0:外部负载;t1:开关元件;cp:比较器电路;d6:齐纳二极管。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1