数字catv调谐器的制作方法

文档序号:7521968阅读:233来源:国知局
专利名称:数字catv调谐器的制作方法
技术领域
本发明涉及数字CATV调谐器,特别涉及以单一转换模式用于前端的数字CATV调谐器。
背景技术
在1998年到2001年间,三种数字电视广播在全世界普及。为了接收这种数字电视广播,使用了数字机顶盒(下文中被称为STB)。在STB中,数字广播的数字流都是根据MPEG2的,而输出流都向电视接收机提供。特别地,不管是用于地面的、卫星的或电缆的电视广播,STB总的来说都采用同一结构。应该指出的是,取决于数据广播服务的前端电路、CA(有条件接受)模式和软件、用于连接于外部设备的数字接口等都随着服务类型或供应商而不同。
图2是传统单一模式转换调谐器的框图。在图2中,单一的转换调谐器适用于包括接收470-760MHz的UHF端(B3频带)、接收170-470MHz的VHF高频带(B2频带)以及接收54-170MHz的VHF低频带(B1频带)在内的分频的频带,而且为各个频带设置了接收电路。应指出的是,这种频带的划分并非仅限于以上的频率。
将CATV信号通过IF滤波器的HPF(高通滤波器)2,输入到输入转换电路3、4和5并由此转换到UHF频带、VHF高频带以及VHF低频带的相应高频放大器电路。HPF2是具有5-46MHz衰减频带和54MHz或大于54MHz通频带的滤波器,由此CATV信号54MHz或大于54MHz的频率部分可通过滤波器。
设置一个频带的电路使之对应于接收的信道可操作,同时其它频带的电路是不可操作的。
CATV信号通过输入转换电路3-5转换,此后通过高频放大器输入调谐电路7、8和9进行调谐,并通过高频放大器电路11、12和13进行放大,得到的结果可通过高频放大器输出调谐电路19、20和21进一步获得接收信号。通过高频放大器电路所获得的信号通过由混频器23、24和25以及本机振荡电路27、28和29所构成的频率转换器电路进行频率转换,输入到中间频率放大器电路31,并由此进行IF放大,且从IF输出终端32输出。向AGC端点18施加AGC电压,并随后通过电阻15、16和17向高频放大器电路11、12和13施加AGC电压。
在传统的数字CATV调谐器中,双重转换模式已变得普及,在该模式中,接收到的信号是频率转换成第一中间频率的信号,并再次被频率转换成第二中间频率信号并由此输出。但是,具有双重转换模式却难以满足接收调谐器的经济要求。
为了解决该问题已作了尝试,通过在一部分调谐器电路中应用IC,但无法达到相比模拟调谐器的性能。因此,从经济的角度考虑,图2中所示的单一转换模式的调谐器是相当有利的。但是会涉及以下的问题。
构成图2中所示的传统调谐器,以使VHF高频带和VHF低频带的信号通过混频器24和25被转换成中频信号,并随后输入到具有UHF频带中频信号的中频放大器电路31。在这种设置中,由于每个频带的中频信号是高电平,所以它会混入到邻近的频带中。如果,例如VHF频带的中频信号混入到VHF低频带中,则会产生失真。
当接收信号是数字信道信号时,失真分量以噪声出现,而当接收信号是模拟信道信号时,失真分量变成了脉动并在电视显示器上以条纹出现。因此,为了防止这些条纹出现在电视显示器上,脉动分量和信号电平的相对比例要求为57dB或更高。
在单一转换模式的传统调谐器中,由于图2中所示的高频放大器电路11、12和13提供了RF AGC功能,所以特别当衰减增益量为-10到-20dB时为非线性失真的CSO(合成系统顺序脉动)和CTB(合成三倍脉动)的失真IM(相间调制)和X-调制(交叉调制),近似为-50dBc,并因此应该需要改进。
另外,在单一转换模式的传统调谐器中,在信道之间出现近似为5到10dB的大灵敏度偏差,它应得到改进。另外,选择信道的传送特性会由于AGC特性而发生不理想的改变。
由于高频放大器输入调谐电路7、8和9是输入电路,所以难以补偿所有输入频带上的输入回波损耗。此外,局部漏电流是-20到-30dBmV,这不能满足-40dBmV的CSODOCSIS要求标准(北美电缆调制解调器的标准),并因此应该得到改进。除此以外,它通过高频放大器输入调谐电路7-9以及视频信号抑制比为-50dBc或以上的高频放大器输入调谐电路19-21来应用调谐模式,因此应该得到改进。
此外,隔离近似为40到50dB,而同样的在双重转换模式的调谐器中为70dB和大于70dB,因此这也应该得到改进。

发明内容
因此,本发明的主要目的是提供能改进上述多个特性的数字CATV调谐器。
在根据本发明的数字CATV调谐器中,控制多个频带的接收信号增益,高频放大选自接收信号的每个频带的接收信号,将对应于从多个本机振荡信号接收的频带的本机振荡信号与每个频带的高频放大的接收信号进行混合,从而输出中频信号,并从中频信号得到数字信号分量。因此,每个频带的增益偏差和所有频带的灵敏度偏差得到了改进。此外,由于所形成的每个频带的带宽窄于以传统方式得到的频带的带宽,所以可改进每个信道的跟踪特性。
除此以外,由于每个频带的频率转换都是由一个混频器电路完成的,所以可抑制如传统方式中所看到的可能进入邻近信道从而产生失真的中频信号的漏电流。
本发明的上述和其它目的、特征、方面和优点从本发明以下参考附图所作的详细说明中将变得更加明显。


图1是本发明一个实施例中数字CATV调谐器的框图;以及图2是单一转换模式的传统调谐器的框图。
具体实施例方式
参考图1,类似于图2所示的传统调谐器构成本发明调谐器,以便接收接收470-860MHz的UHF频带(B4频带)。另一方面,在本实施例中,将传统上被分成两个频带的VHF频带分成三个频带。特别是,这三个频带分别是接收240-470MHz的VHF高频带(B3频带)、接收120-240MHz的VHF中频带(B2频带)和接收54-120MHz的VHF低频带(B1频带),并且为每个频带提供接收电路。
特别是,对于CATV信号,上行信号在5-42MHz(或5-15MHz)操作,而下行信号在54-860MHz操作。将下行信号的电缆线与终端1连接,而将上行信号与数据终端41连接。上行信号是采用QPSK发送器进行四相移键控(QPSK)调制的数字信号,未显示出。将数据信号通过LPF(低通滤波器,或回波滤波器)构成的上行位流电路42与终端1连接。
下行位流信号,即来自于CATV站的通讯下行信号,通过IF滤波器的HPF2、支流电路43并从BPF(带通滤波器)44输出。随后,支流损耗在放大器电路45校正,并从FM Tap终端46,将信号输出到FSK解调器电路或QAM解调器电路,未示出。提供FM Tap终端46以完成CATV站和包括该调谐器在内的STB之间的通讯。该下行位流信号也被称为OOB(频带外),而且它是70-130MHz或50-130MHz频带的信号。
其它的下行信号(模拟和数字视频信号)通过HPF2、支流电路43、PIN AGC电路47和宽带放大器电路49,并被提供输入到转换电路3-6。输入转换电路3对应于UHF频带,输入转换电路4对应于VHF高频带,输入转换电路5对应于VHF中频带,而输入转换电路6对应于VHF低频带。PIN AGC电路47通过由AGC终端48提供的AGC控制信号进行控制。
HPF2衰减5-46MHz的分量,而通过54MHz和以上的分量。后续的高频放大器输入调谐电路7、8、9和10,高频放大器电路11、12、13和14以及高频放大器输出调谐电路19、20、21和22都连接于输入转换电路3、4、5和6的输出。输出转换电路50、51和52连接于分别对应于VHF高频带、VHF中频带和VHF低频带的高频放大器输出调谐电路20、21和22的输出,用于选择这些输出中的一个并输出相同的。将一个频带的电路设置为对应于接收信道的操作状态,同时其它频带的电路为不可操作的。当接收UHF频带的一个信号,比如HPF2时,输入转换电路3、高频放大器输入调谐电路7、高频放大器电路11、高频放大器输出调谐电路19、混频器23、本机振荡电路27、BPF53-模拟SAW滤波器56以及中频放大器电路58-中频AGC放大器电路是可操作的,同时输入转换电路4-6、高频放大器输入调谐电路8-10、高频放大器电路12-14、高频放大器输出调谐电路20-22、输出转换电路50-52、混频器24、本机振荡电路28-30以及本机振荡转换电路57是不可操作的。
将UHF频带的高频放大器输出调谐电路19的一个输出提供给混频器23,随后将该信号与来自本机振荡电路27的本机振荡信号进行混合,并随后将其频率转换成中频信号。任何一个VHF频带的信号都由输出转换电路50、51和52转换,并由此提供给混频器24。提供本机振荡电路28、29和30分别对应于VHF高频带、VHF中频带和VHF低频带。本机振荡转换电路57选择对应于接收VHF频带的本机振荡电路,而将选中的本机振荡信号提供给混频器24。
混频器24由输出转换电路50、51和52选择的VHF低频带、将VHF高频带、VHF中频带的任意信号与由本机振荡转换电路选择的本机振荡信号进行混合,从而完成频率转换以获得中频信号。向BPF 53和中频放大器电路58提供被混频器23和24频率转换的中频信号。当接收信号是模拟信道信号时,通过BPF 53从中频信号获得模拟信道信号。将由此获得的模拟信道信号向中频放大器电路54提供并将其放大,且通过LPF 55和模拟SAW滤波器56,随后从IF输出终端输出,从而被传送到模拟解调器电路,该过程未示出。
当接收信号是数字信道信号时,中频放大器电路58放大中频信号并提供给数字SAW滤波器59。数字SAW滤波器59从中频信号获得数字信道信号,并通过中频AGC放大器电路60将其提供给QAM解调电路,整个过程未示出。
混频器23和24、本机振荡电路27-30、本机振荡转换电路57以及中频放大器电路58,都被包括在图1中的虚线中,容纳在一通用IC中。通过使用这样的通用IC,可降低成本。
接着,将描述本发明实施例的操作。从终端1输入的CATV信号的增益由PINAGC电路47控制。AGC具有137CW的输入电平和+3dBmV的TOP(交接点),比如当为+15dBmV时,CSO可被改进至少-60dBc,并且CTB失真的IM和X模式可被分别改进至少-64dBc和-60dBc,从而可获得相对于在双重转换模式下的失真电平的性能。
将具有由此控制的增益的CATV信号提供给宽带放大器电路49,同时可在所有的接收频带上补偿输入回波损耗。由于宽带放大器电路49起到终端1和高频放大器输入调谐电路7-10的缓冲放大器的作用,所以可改进隔离和局部漏电。
此外,CATV信号通过输入转换电路3-6,在高频放大器输入调谐电路7-10处调谐,并随后通过高频放大器电路11-14进行高频放大。由于其增益通过PIN AGC电路47控制,所以高频放大器电路11-14被设置为以最高增益工作。高频放大器电路11-14的输出在高频放大器输出调谐电路19-22处进行调谐。当选择了UHF频带信号的时候,从高频放大器输出调谐电路19向混频器23提供UHF频带信号,随后将它与来自本机振荡电路27的本机振荡信号进行混合,并由此将其频率转换为中频信号。
当选择了VHF频带信号的时候,从高频放大器输出调谐电路20、21和22向混频器24提供VHF高频带信号、VHF中频带信号和VHF低频带信号中的任何一种,并随后将其与来自对应于本机振荡电路的本机振荡信号进行混合,从而将其信号频率转换为中频信号。
图2中所示的传统调谐器将54-560MHz的接收频带分割成UHF、VHF高频带和VHF低频带三个频带,而在本实施例中,它被分割成UHF、VHF高频带、VHF中频带和VHF低频带四个频带,并因此改进了每一个频带的增益偏差和所有频带的灵敏度偏差。另外,由于每个频带的带宽相对于传统的调谐器较窄,所以改进了每个信道的追踪特性和每个6MHz带宽的传输特性。
向BPF53提供中频信号,它在相对一侧具有邻近的信道陷波电路,以防止由于多波信号所引起的失真。因此,比起传统方式,甚至在通过尾级处的中频放大器电路54将中频信号放大后,都可以大大改进失真。选择LPF55使具有54MHz和大于54MHz的频率截止(fc),即通过中频信号54MHz和以上的分量,从而改进了隔离。
向LPF55提供中频信号,且当接收信号是模拟信道信号时,通过模拟SAW滤波器56从中频信号获得模拟信道信号。当接收信号是数字信道信号时,中频信号通过中频放大器电路58放大,并从所得的信号通过数字SAW滤波器59获得数字信道信号。在这以后,该信号通过中频AGC放大器电路放大,并从该处输出。
如上所述,根据本实施例,通过将接收频带分成UHF、VHG高频带、VHF中频带以及VHF低频带四个频带,每个频带的增益偏差和所有频带的灵敏度偏差得到了改进。另外,由于每个频带的带宽比起传统的调谐器较窄,所以每个信道的追踪特性也得到了改进。
此外,由于VHF频带是采用通过转换本机振荡电路28-30的混频器24来完成了每个带的频率转换,所以VHF的每个频带的中频信号不会漏进邻近的信道。因此,可将信号分量与失真分量的相对比例设置得较高,并由此可防止由于脉动所引起的条纹出现在电视显示器上。
虽然已详细描述并展示了本发明,但可以清楚理解的是,同样的部分只是为了展示和例子,且不是为了限制,本发明的精神和范围通过所附权利要求的项进行限制。
权利要求
1.一种接收包括多频带数字信号在内的接收信号的数字CATV调谐器,包含增益控制电路,它控制所述多频带接收信号的增益;输入调谐电路,它从在所述增益控制电路输出的所述接收信号选择每个频带的接收信号;高频放大器电路,它将所述输入调谐电路所选的每个频带的接收信号高频放大;多个本机振荡电路,每个都输出对应于每个所述频带的本机振荡信号;本机振荡转换电路,它选择对应于从所述多个本机振荡电路所接收的频带的本机振荡电路;混频器电路,它将每一个由所述高频放大器电路高频放大的频带的所述接收信号,与来自于通过所述本机振荡转换电路选择的所述本机振荡电路的本机振荡信号进行混合,从而输出中频信号;以及数字滤波器,它可从在所述混频器电路处输出的所述中频信号获得数字信号分量。
2.根据权利要求1所述的数字CATV调谐器,其特征在于,还包含在所述增益控制电路和所述输入调谐电路之间连接的宽带放大器电路。
3.根据权利要求1所述的数字CATV调谐器,其特征在于,还包含带通滤波器,它具有邻近的信道陷波电路从而从所述混频器电路输出的所述中频信号中获得模拟信号分量。
4.根据权利要求3的数字CATV调谐器,其特征在于,将用于改进隔离的低通滤波器与所述带通滤波器的输出进行连接。
全文摘要
在数字CATV调谐器中,多频带接收信号的增益由PIN AGC电路(47)控制,选自接收信号的每个频带的接收信号由高频放大器电路(11-14)高频放大,将从来自本机振荡电路(28-30)的多个本机振荡信号所对应于要接收频带的本机振荡信号与每个频带的高频放大接收信号通过混频器(24)进行混合,以输出中频信号,并从中频信号获得数字信号分量。因此,可改进多个特性。
文档编号H03J5/24GK1443005SQ02159778
公开日2003年9月17日 申请日期2002年12月25日 优先权日2002年3月6日
发明者松浦修二 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1