散热器的制作方法

文档序号:14685364发布日期:2018-06-12 23:27
散热器的制作方法

本发明涉及散出来自发热体的热的散热器。



背景技术:

近年来,随着电子设备的高性能化,电子设备的发热量增加。为了从热源散出热,通常将散热器等导热体安装于热源。于是,随着电子设备的发热量的增加,散热器也大型化。然而,为了电子设备的小型化、轻量化,谋求小型且能够散出大量的热的散热器,作为手段之一,着眼于使用导热系数高的石墨的散热器。

在使用石墨的散热器中,例如有专利文献1所记载的散热器。通常,散热器具有与热源接触的基座部、以及用于散出热的散热片部,在专利文献1的散热器中,散热片部使用导热系数高的石墨片从而提高散热性。

在先技术文献

专利文献

专利文献1:国际公开第2015/072428号

在专利文献1中,在散热片部与基座部的接合中利用了使用含有聚乙烯醇缩醛树脂的组合物而形成的粘接层。聚乙烯醇缩醛树脂的导热系数为一般的金属的导热系数的百分之一以下,因此与接合层仅由金属构成的情况相比,难以使热量从基座部向散热片部传递,无法确保足够的散热器的传热性。从而,如上述那样,专利文献1的接合层的导热系数比金属的导热系数小,因此为了减少接合层的热阻,需要减薄接合层的厚度。然而,在减薄接合层的厚度的情况下,接合层的接合强度也降低。在该情况下,较薄的接合层可能不具备对具有一定厚度的散热片部进行固定所需的足够的接合强度,因此无法增加散热片部的厚度,无法提高散热性。



技术实现要素:

发明所要解决的课题

本发明的课题在于提供解决所述以往的问题的散热性高的散热器。

用于解决课题的方案

为了解决上述课题,本发明的石墨散热器包括:由石墨材料形成的板状的散热片部、与所述板状的散热片部的下端接触的基座部、以及所述板状的散热片部与所述基座部的接合部,所述板状的散热片部具有1200W/mk以上的导热系数和100μm以上的厚度,所述接合部是金属。

本发明的石墨散热器由于具有上述结构而具有高散热性,因此即使在发热密度高的设备中也能够有效地使用。

发明效果

根据本发明,提供散热性高的散热器。

附图说明

图1是本发明的实施例的散热器的示意剖视图。

图2是本发明的实施例中使用的基座部的示意剖视图。

图3是用于进行散热性验证实验的装置的示意剖视图。

附图标记说明

1 基座部;

2 散热片部;

3 接合部;

4 狭缝;

5 发热体;

6 FAN;

7 测温部;

10 散热器。

具体实施方式

以下,对本发明的实施方式进行说明。

<基座部>

基座部用于保持散热片部。基座部的材料优选使用导热系数高的材料,以便能够高效地使热从热源向散热片部传递。基座部的材料例如能够使用铝、铜等金属、碳、树脂等,但并不限定于此,能够使用具有高导热系数的任意的材料。

<散热片部>

散热片部用于传递基座部的热并向大气散出,谋求高传热性。对于传热性而言,取决于散热片部所使用的材质的导热系数和厚度。导热系数与将热传递至散热片部的前端的速度相关,厚度与所处理的热量相关。为了用于发热密度高的设备,优选散热片部的导热系数为1200W/mk以上,厚度为100μm以上。通过使导热系数大于1200W/mk,能够使热迅速地传递至散热片部的前端,从而能够高效地进行散热。另外,通过使厚度为100μm以上,能够处理充分量的热量,从而能够提高作为散热器的散热性。

散热片部的材料使用石墨材料。在此,石墨材料是导电物质,因此作为防落尘对策,可以在散热片部的表面形成层压层、涂层。

<接合部>

接合部是将散热片部与基座部接合的构件。作为用于形成接合部的接合材料可以使用金属,例如使用含有锡(Sn)或钛(Ti)的合金等,但并不限定于此。接合部的热阻比其他物质的热阻低,通过使用金属的接合材料来形成,能够将基座部的热高效地向散热片部传递。

接合部的金属能够使用如下的接合材料,该接合材料含有0.1wt%以上且5wt%以下的能够与锡以及碳形成化合物的至少一种元素(化合物形成性元素),且余部含有锡作为主要成分。在本发明中使用上述接合材料,从而能够在接合部与形成散热片部的石墨材料之间形成包含锡、碳、以及化合物形成性元素的金属间化合物,由此能够更加有效地将石墨材料与接合部接合。化合物形成性元素例如能够使用钛、锆、钒中的至少一种,但并不限定于此。在化合物形成性元素使用钛、锆、钒中的至少一种的情况下,当发生上述金属间化合物的形成时,接合部包含含有钛、锆、钒中的任一方、锡、以及碳的化合物。接合部包含含有钛、锆及钒中的任一方、锡、以及碳的化合物,从而能够实现维持了石墨的特性的接合。

本说明书中的“能够与锡以及碳形成化合物的至少一种元素(化合物形成性元素)”是指与锡以及碳形成化合物的任意的元素。在化合物形成性元素具有两种以上时,接合材料中的化合物形成性元素的含有率(wt%)表示接合材料所含有的两种以上的化合物形成性元素的重量之和相对于接合材料的总重量的比例。

本说明书中的“主要成分”是指,在接合材料所含有的元素中存在比率最高的元素。

[实施例]

以下,参照附图示出实施例,从而更加具体地对实施方式进行说明。但是,以下的三个实施例并不限定实施方式。

图1是本发明的实施例1~3的散热器10的剖面示意图,散热器10包括与热源接触的基座部1、用于散出热的散热片部2、以及将基座部1与散热片部2接合的接合部3。以下,对各构件进行详细说明。

<基座部1>

在实施例1~3中,基座部1使用对铝进行加工而成的构件。基座部1的尺寸为40×40×5mm,作为供散热片部2插入的部分,以散热片部2的厚度的宽度等间隔地设置有九个深度为2mm的狭缝4。图2示出设置有狭缝4的基座部1的剖面示意图。

<散热片部2>

散热片部2使用通过重叠25μm的聚酰亚胺膜(东丽杜邦(TORAY DUPONT)株式会社制,卡普顿膜(kapton film))并进行加压且在2800度下进行烧制而制作的石墨材料。通过改变重叠的膜的张数,制作具有100、300以及500μm的厚度的三种石墨材料,分别作为实施例1、2以及3的散热片部2而使用。在实施例1~3中制作的膜状的散热片部2的面的尺寸均为横40mm纵42mm,插入深度2mm的狭缝4而使用,因此从膜状的散热片部2的上端向基座部1的外侧突出40mm。

<接合部3>

在实施例1~3中,接合部3使用了含有1.0wt%的钛且余部为锡的接合材料。

在实施例1~3中,通过如下方式进行散热器的制造:准备多个散热片部2、以及具有与多个散热片部2的厚度对应的宽度的狭缝4的基座部1,使形成接合部3的接合材料流入基座部1的狭缝4,并将散热片部2插入狭缝4,在氮环境下以600℃的温度进行烧制。

(比较例)

相对于上述的三个实施例,制作三个成为比较例的散热器。在比较例1中,将基座部1以及散热片部2的材料、散热片部2的厚度设为与实施例1相同,接合部3使用导热润滑脂(信越化学G-799)。在比较例2中,将基座部1、散热片部2以及接合部3的材料设为与实施例1相同,使散热片部2的厚度比实施例1的100μm薄,设为80μm。在比较例3中,通过以往经常使用的方法即进行铝的刮削加工,来制造散热器。比较例3的散热器由单一的铝构件构成,因此不需要接合部3。比较例3的散热片部2的厚度设为加工下限即500μm。

使用简单的夹具对所得到的散热器的散热性进行验证。图3示出效果验证夹具的剖面示意图。在将各散热器设置于发热体5后使FAN6旋转,将安装有热电偶的铜块用作测温部7来测定发热体5的温度。本发明的目的在于提高散热器的特性,在热源温度变化2℃的情况下判断为散热器的特性变化。在与比较例1相比热源温度降低2度的情况下评价为散热性○。在热源温度上升的情况下评价为散热性×,在温度的降低小于2℃的情况下评价为△。

在以下的表1中示出实施例1~3以及比较例1~3的、各构件的材料、散热片部2的导热系数以及厚度、通过上述验证而得到的热源温度以及评价的结果。

[表1]

通过对表1的实施例1的热源温度与比较例1的热源温度进行比较可知,通过使基座部1与散热片部2经由金属接合,从而实现了散热器的高散热性。这是由于,基座部1与散热片部2由热阻低的金属接合,从而基座部1的热高效地向散热片部2传递。

通过对表1的实施例1~3与比较例2进行比较可知,在散热片部2的厚度小于100μm的情况下,即使与基座部1进行金属接合,也无法得到散热性的改善效果。这是由于,传递热的石墨薄,因此所传递的热少,未能有效地提高散热性。

通过表1的比较例3可知,在散热片部2的导热系数低的情况下,即使散热片部2具有500μm的厚度,也无法得到散热性的改善效果。这是由于,散热片部2的导热系数低,因此无法将热迅速地传递至散热片部2的前端,无法高效地进行散热。

产业上的可利用性

通过本发明的制造方法制作的散热器的散热性高,因此能够用作例如服务器、服务器用计算机、投影仪等电子设备等的散热件。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1