卫星定位系统利用高度信息的方法和系统的制作方法

文档序号:7617603阅读:121来源:国知局
专利名称:卫星定位系统利用高度信息的方法和系统的制作方法
本申请是申请人于1999年4月13日提交的、申请号为“99808172.8”的、发明名称为“卫星定位系统利用高度信息的方法和系统”的发明专利申请的分案申请。
背景技术
本发明涉及利用卫星定位系统接收机中有关高度信息的加强或辅助的卫星定位系统。
诸如美国全球定位系统(GPS)这种传统的卫星定位系统(SPS)利用卫星信号确定其位置。传统的SPS接收机通常通过计算由多样的地球轨道GPS卫星同时发送的信号所到达的相对时间来确定其位置。作为其消息的一部分,上述卫星发送的是卫星定位数据以及关于某些时刻规定卫星位置的时钟定时数据(该数据往往称为卫星天文历数据)这两者。传统的SPS接收机通常搜索获取SPS信号,对多样的卫星读出天文历数据,确定至这些卫星的伪距,并根据卫星的伪距和天文历数据来计算SPS接收机位置。
传统的SPS系统有时利用高度来辅助两种情形卫星几何条件较差的情形,或缺少三维定位测量的情形。大多数情况下,卫星几何条件较差是由垂直方向上较差的观察能力造成的。例如,若指向解决方案中所用的全部卫星的单位向量均处于任意半角的圆锥上,并且单位向量仅在二维空间展开的话,便能够在各单位向量尖端上置一平面。与该平面正交的第三方向或第三维中的误差是无法观察的,这称为奇异性(singularity)条件。在GPS接收机天线周围环绕有高楼大厦的城市峡谷环境中,只有那些大仰角的卫星才是可见的。这些信号条件类似于这里所说明的奇异性条件。而且,大的多径误差往往造成垂直方向上大的误差。
传统的高度辅助基于对高度的伪测量,可按以地心为其球心的球面来显现。这种球面所具有的半径包括地球半径和相对于通常按椭圆体定义的地表的高度。(WGS84是该椭圆体模型其中之一)。有许多技术可用来执行高度辅助,但全部技术都依赖于需要定义球面作为高度伪测量量度的现有高度知识。通常,一预估的高度可由GPS接收机操作员手工提供,或可设定为某些预置值,诸如地表,或者设定为先前三维解决方案中的高度。
现有的GPS技术对移动GPS接收机接收GPS信号但不计算其位置、而依赖一基站对其执行位置运算这种情况,也利用了高度辅助。美国专利U.S.Pat.No.5,225,842说明这样一种系统,利用高度辅助来允许仅使用3颗GPS卫星。该预估高度通常从诸如拓扑或大地测量数据库这种变换信息当中得到,基站的高度信息也可资利用。
该方法其弱点在于,在可应用具有合理高度预估的高度辅助之前,通常制作的是一最初的二维解决方案。然后该高度才能够作为经度和纬度座标的函数从一垂直数据库当中提取。
上述方法虽提供利用高度信息所带来的某些优点,但在移动GPS接收机可能处于相对较大地理区域中任意位置的分布式处理系统情况下,并没有很好地起作用。而且,即使特定的伪距存在不足,上述现有方法仍将高度信息与全部可资利用的伪距一并利用。
发明概述本发明提供利用高度信息确定移动卫星定位系统(SPS)接收机位置的种种方法和装置。本发明一例方法中,确定的是单元区对象信息。该单元区对象信息包括至少一个单元区对象位置或单元区对象标识。在一个例子中,该单元对象可以是一单元站点,标识可以是该单元站点的标识符,位置可以是该单元站点的经度和纬度。根据基于一单元站点发送器选择的单元区对象信息来确定高度,该单元站点发送器与同移动SPS接收机相连(并且通常集成在一起)的基于单元区的通信系统处于无线通信当中。也就是说,根据与同移动SPS接收机的通信系统处于通信当中的单元站点发送器相关联的单元区对象信息来确定高度。采用根据该单元区对象信息确定的高度来运算移动SPS接收机的位置。
本发明另一例方法中,确定的是高度伪测量结果,该伪测量结果采用的是移动SPS接收机高度其预估值。该预估高度可以根据基于单元区的通信系统中基于单元区的信息源得到,或可以是非基于单元区系统中无线基站覆盖区域中(各)高度的平均高度或其它数学表示。在某一实施方案中,预估高度与根据相对于SPS卫星的伪距(或根据伪距和高度伪测量结果)计算出的高度所进行的比较,确定SPS卫星和移动SPS接收机之间至少一个伪距的状况。另一实施方案中,可以将高度伪测量结果用作一(具有相对于SPS卫星的伪距)冗余的测量结果,并可以采用缺陷检测和隔离技术,来利用冗余测量结果来确定至少一个伪距或导航结果的状况(例如缺陷或非缺陷)。该例一实施例中,根据位置求解算法来确定位置,若伪距的状况处于第一状态,例如非缺陷状态,便在位置求解算法中采用该至少一个伪距。(识别过缺陷伪距并将其从导航结果的重新计算当中排除后),可仅采用非缺陷的伪距对导航结果进行重新计算。
在此还说明了种种移动SPS接收机和基站。下面进一步说明本发明各种其他方面和实施例。
附图简要说明附图中各图以举例、非限定方式示出本发明,其中相同标号表示相应单元。
图1示出具有多个单元区的基于单元区的通信系统,每一个单元区由一单元站点提供服务、并与有时称为移动交换中心的基于单元区的交换中心连接。
图2示出本发明一实施例位置服务器系统的实施方案。
图3A示出本发明一实施例一例组合的SPS接收机及通信系统。
图3B示出本发明一实施例一例SPS基准站。
图4示出一例可用于确定移动SPS接收机预估高度的基于单元区的信息源。
图5示出本发明一利用高度辅助方法的流程图。图5A和图5B所示的另两幅流程图示出本发明利用高度辅助的方法。
图6是表示本发明利用高度辅助的其他方法的流程图。
详细说明本发明提供与卫星定位系统一起利用高度辅助的种种方法和装置。下列说明书和


本发明的,不应解释为对该革新的限制。所说明的许多具体细节用以提供对本发明的全面理解。但某些实例中,为了避免不必要地使本发明细节朦胧,不作说明的是公知或常规细节。
就高度辅助信息的利用说明种种细节之前,说明利用本发明某一方面的来龙去脉是会有助益的。因而,探讨基于单元区的通信系统中利用高度辅助之前,首先参照图1、图2、图3A和图3B进行说明。
图1示出一例基于单元区的通信系统10,它包括多个单元站点,每一站点专门用于服务特定地理区域或位置。本领域中这种基于蜂窝区或基于单元区的通信系统例子是公知的,例如有基于单元区的电话系统。基于单元区的通信系统10包括2个单元区12和14,两者均定义为处于一蜂窝服务区域11内。另外,系统10还包括单元区18和20。将会理解,系统10中还可以包括具有相应单元站点和/或蜂窝服务区域的多个其他单元区,与一个或多个蜂窝区交换中心(诸如蜂窝区交换中心24和蜂窝区交换中心24b)连接。
每一单元区,例如单元区12内,有一个无线单元区或诸如单元站点这样的蜂窝区站点,其包括的天线13a专门用于经无线通信介质与可以同图1所示的移动GPS接收机(例如接收机16)组合在一起的通信接收机进行通信。图3A示出一例这样一种具有GPS接收机及通信系统的组合系统,它可以包括GPS天线77和通信系统天线79这两者。
每一单元站点与一蜂窝区交换中心连接。图1中,单元站点13、15以及19分别经连接13b、15b以及19b与交换中心24相连,单元站点21则经连接21b与不同的交换中心24b相连。上述连接通常是各自单元站点和蜂窝区交换中心24及24b之间的导线连接。每一单元站点包括一用于与该单元站点所服务的通信系统进行通信的天线。一例子中,该单元站点可以是与该单元站点所服务区内的移动蜂窝电话通信的蜂窝电话单元站点。将会理解,在某一单元区内的通信系统,诸如在单元区4内的接收机22,实际上因信号阻塞(或单元站点21不能与接收机22通信的其他原因)可以与单元区18中的单元站点19通信。而且,多单元站点可与包括一通信系统的移动GPS接收机进行数据(不过往往不是话音)通信也是确实的。
本发明典型的实施例中,移动GPS接收机16包括一基于单元区的通信系统,它与GPS接收机结合在一起,该GPS接收机和通信系统两者封闭在相同壳体内。其中一例是蜂窝式电话,其具有的结合在一起的GPS接收机与蜂窝式电话收发机共用共同的电路。当这种组合系统用于蜂窝式电话通信时,便发生接收机16和单元站点13之间的发送。接收机16至单元站点13的发送接着在至蜂窝区交换中心24的连接13b上传播,接着到该蜂窝区交换中心24所服务的单元区内的另一蜂窝式电话,或通过一连接30(通常为有线的)经基于地面的电话系统/网络28到另一电话。将会理解,该术语“有线”包括光纤以及其它非无线连接,例如铜质电缆等。与接收机16通信的其它电话其发送则按常规方式从蜂窝区交换中心24经连接13b和单元区站点13传递,回到接收机16。
系统10中包括远程数据处理系统26(在某些实施例中可称为SPS服务器或位置服务器),其在一实施例中用于利用SPS接收机接收到的SPS信号确定移动SPS接收机(例如接收机16)的位置。该SPS服务器26可以经一连接27与基于地面的电话系统/网络28相连,也可以可选地经连接25(可以是通信网络)与蜂窝区交换中心24相连,也可以可选地经连接25b(可以是与连接25相同或不同的通信网络)与中心24b相连。将会理解,连接25和27虽然可以是无线的,但通常是有线的连接。还作为系统10中一可选部件所示,为一可以包括经网络28与SPS服务器26相连的另一计算机系统的查询终端29。该查询终端29可以向SPS服务器26发送一对于某个单元区内特定SPS接收机位置的请求,该SPS服务器26接着通过蜂窝区交换中心始发一与特定SPS接收机的通话,来确定GPS接收机的位置并将该位置回报给查询终端29。另一实施例中,对GPS接收机的定位可以由移动GPS接收机用户始发,例如移动GPS接收机用户可在单元区电话上按911表示该移动GPS接收机位置有一紧急状况,这可以按这里说明的方式始发一位置处理。本发明另一实施例中,每一单元站点可包括一GPS位置服务器,经单元站点向移动GPS接收机和由移动GPS接收机进行数据通信。本发明还可以与诸如点对点架构这种采用非基于单元区系统的不同通信架构一起被采用。
应注意,基于蜂窝区或基于单元区的通信系统是具有超过一个发射机的通信系统,每一发射机服务不同的地理区域,这在时间上任意瞬时都预先确定。尽管所覆盖区域取决于特定蜂窝区系统,但通常每一发射机是服务其地理半径小于20英里的单元区的无线发射机。有许多种类的蜂窝区通信系统,例如蜂窝式电话,PCS(个人通信系统),SMR(专门化的移动无线),单向和双向寻呼系统,RAM,ARDIS以及无线数据包系统。通常,预先确定的地理区域称为单元区和合并在一起形成一蜂窝式服务区(诸如图1所示的蜂窝式服务区11)的多个单元区,这些多个单元区与提供连接至基于地面的电话系统和/或网络的一个或多个蜂窝区交换中心相连。服务区通常用于记帐用途。因此,可以是超过一个服务区内的单元区与一个交换中心连接的情况。例如,图1中,单元区1和2在服务区11内,而单元区3则在服务区13内,但这三个单元区全部与交换中心24连接。作为替代,有时是这种情况,一个服务区内的各单元与不同的交换中心连接,尤其与人口密集区域中的交换中心连接。总之,服务区定义为地理上互相接近的单元区的集合。满足上述说明的另一类蜂窝区系统是基于卫星的,该蜂窝区基站或单元站点是典型的地球轨道的卫星。上述系统中,单元扇区和服务区是作为时间的函数移动的。这些系统的例子包括铱星、全球星、轨道通信以及奥德赛(Odyssey)。
图2示出一例可用作图1中SPS服务器26的SPS服务器50。图2中SPS服务器50包括一可以是容错数字计算机系统的数据处理单元51。该SPS服务器50还包括一调制解调器或其它通信接口52和一调制解调器或其它通信接口53和一调制解调器或其它通信接口54。上述通信接口提供在三个不同网络(示出的是网络60,62和64)之间与图2所示的位置服务器交换信息的连接能力。网络60包括蜂窝区交换中心和/或基于地面的电话系统交换局或单元站点。这样,可以考虑网络60包括蜂窝区交换中心24和24b,基于地面的电话系统/网络28,蜂窝式服务区11以及单元区18和20。可以考虑网络64包括图1中的查询终端29或“PSAP”,这是“公共安全应答点”(PublicSafety Answering Point),通常为应答911紧急电话呼叫的控制中心。为查询终端29的情况下,该终端可用来查询服务器26,以便从位于基于单元区的通信系统不同单元区中指定的移动SPS接收机获得位置信息。本实例中,由移动GPS接收机用户以外的某些人来始发定位操作。包括蜂窝式电话在内的移动GPS接收机发出911电话呼叫的情况下,由蜂窝式电话用户始发定位处理。表示图1中GPS基准网络32的网络62是一GPS接收机网络,是专用于向数据处理单元提供差分GPS校正信号、并提供包括卫星天文历数据(通常为整个原始卫星导航消息中的一部分)在内的GPS信号数据的GPS基准接收机。当服务器50服务一很大的地理区域时,一本地的可选GPS接收机,例如可选GPS接收机56,不会有能力观察在整个该区域内移动SPS接收机视野内的全部GPS卫星。因而,网络62选择并提供按照本发明适用较宽区域的卫星天文历数据(通常为整个原始卫星导航消息中的一部分)以及差分GPS校正数据。
如图2所示,大规模存储设备55与该数据处理单元51连接。通常,该大规模存储55将包括从移动SPS接收机(例如图1中的接收机16)接收伪距后进行GPS位置运算所用数据及软件的存储。这些伪距通常经单位站点和蜂窝区交换中心和调制解调器或其它接口53接收。在至少一个实施例中,大规模存储设备55还包括软件,用于经调制解调器或其它接口54接收并利用GPS基准网络32所提供的卫星天文历数据。大规模存储设备55通常还包括一数据库,存储单元区对象信息,诸如单元站点识别符、单元站点地理位置以及相应高度,该相应高度通常为与单元站点地理位置相关的高度,进而为与特定单元站点进行无线通信中的移动SPS接收机的预估高度。该单元对象信息和相应高度是一基于单元区的信息源,其中一例示于图4,并在下面说明。
本发明典型的实施例中,不需要该可选GPS接收机56,因为图1中GPS基准网络32(图2中示出为网络62)提供差分GPS信号、GPS测量,并且提供GPS基准网络中不同基准接收机视野内卫星所发出的原始卫星数据消息。会理解,经调制解调器或其它接口54从网络获得的卫星天文历数据通常可按常规方式与从移动GPS接收机获得的伪距一起被利用,来计算移动GPS接收机的位置信息。接口52、53和54可以分别为用于将数据处理单元与其它计算机系统相连的调制解调器或其它合适的通信接口,在网络64的情况下,则用于与基于蜂窝区的通信系统相连,而在网络60的情况下,则用于与发送设备诸如网络62中的计算机系统相连。将会理解,在一实施例中,该网络62包括分布在大地理区域上的GPS基准接收机的分散集合。在某些实施例中,从通过基于蜂窝区的通信系统与移动GPS接收机进行通信的单元站点或蜂窝式服务区附近接收机56所获得的差分GPS校正信号,将提供对于移动GPS接收机靠近位置合适的差分GPS校正信息。其他情况下,可以组合来自网络62的差分校正,来计算适合移动SPS接收机位置的差分校正。
图3A示出包括GPS接收机和通信系统收发机的总体组合系统。一实施例中,该通信系统收发机是蜂窝式电话。该系统75包括一具有GPS天线77的GPS接收机76和具有通信天线79的通信收发器78。该GPS接收机76经图3A所示的连接80与通信收发器78相连。在一操作方式下,通信系统收发器78经天线79接收近似多普勒信息,并在链路80上向GPS接收机76提供该近似多普勒信息,该GPS接收机76通过经GPS天线77接收GPS卫星的GPS信号来执行伪距确定。该伪距接着经通信系统收发器78发送至一位置服务器,例如图1中所示的GPS服务器26。通常该通信系统收发器78经天线79将一信号发送至一单元站点,接着将该信息发送回GPS服务器,例如图1中的GPS服务器26。本领域中公知的有系统75种种实施例的例子。例如,美国专利U.S.Pat.No.5,663,734说明了一例利用改进的GPS接收机系统的组合GPS接收机及通信系统。于1996年5月23日申请的共同待审的美国专利申请Ser.No.08/652,833中说明了另一例组合的GPS及通信系统。图3A中系统75以及具有SPS接收机的许多替代通信系统可以与本发明方法一起用于与本发明GPS基准网络一起运作。
图3B示出GPS基准站一实施例。将会理解,每一基准站可以按本方法构建,并与通信网络或介质相连。通常,每一GPS基准站,例如图3B中GPS基准站90,可以包括与GPS天线91相连的双频GPS基准接收机92,接收天线91视野范围内GPS卫星的GPS信号。作为替代,GPS基准接收机可根据覆盖有关区域所需的校正正确度,采用单频接收机。GPS基准接收机在本领域是公知的。根据本发明一实施例,GPS基准接收机92至少提供两种信息作为接收机92的输出。向处理器和网络接口95提供伪距输出93,这些伪距输出用于按常规方式对GPS天线91视野内那些卫星计算伪距差分校正。该处理器和网络接口95可以是一常规数字计算机系统,本领域众所周知,其具有用以从GPS基准接收机接收数据的接口。处理器95将通常包括专用于处理伪距数据来确定GPS天线91视野内每一卫星相应的伪距校正的软件。这些伪距校正接着经网络接口发送至其他GPS基准站通常也与其连接的通信网络或介质96。本发明另一例中,基准接收机的伪距数据经网络96送至诸如GPS服务器26这种中心位置,在这里计算差分校正。还有另一实施例中,输出93包含基准接收机92所生成的差分校正。该GPS基准接收机92还提供一卫星天文历数据输出94。该数据提供给处理器和网络接口95,接着该网络接口再将该数据发送到通信网络96上。
该卫星天文历数据输出94通常提供从各个GPS卫星接收到的实际GPS信号中编码的全部原始的50波特导航二进制数据中至少一部分。该卫星天文历数据是按来自GPS卫星的GPS信号中的50位/秒数据流广播、并在GPS ICD-200文件中有更详细说明的部分导航消息。处理器和网络接口95接收该卫星天文历数据输出94,并将它实时或接近实时地发送至通信网络96。卫星天文历数据发送至通信网络,经按照本发明各形式的不同位置服务器的网络接收。
本发明某些实施例中,仅仅是导航消息中某些分段,例如卫星天文历数据可送至位置服务器,以降低网络接口和网络通信的带宽要求。通常,这种数据也可以毋需连续提供。例如,可以仅仅将包含卫星时钟及天文历信息的前3帧而非全部5帧一起有规律地发送给通信网络96。将会理解,本发明一实施例中,位置服务器可接收从一个或多个GPS基准接收机实时或接近实时地发送至网络的全部导航消息,以执行测量与卫星数据消息相关时间的方法,例如Norman F.Krasner于1997年2月3日申请的共同待审的美国专利申请Ser.No.08/794,649中所述的方法。如这里所用的那样,术语“卫星天文历数据”包括的数据只是GPS卫星所发送的卫星导航消息(例如50波特消息)中一部分或至少是该卫星天文历数据的数学表示。例如,该术语卫星天文历数据指编码为GPS卫星所发送GPS信号的50波特数据消息中至少一部分表示。还会理解,该GPS基准接收机92对基准接收机92视野内不同GPS卫星所输出的不同GPS信号进行解码,以提供包含卫星天文历数据的二进制数据输出94。
图4示出一例在某一实施例中可保存在诸如图1中所示的GPS服务器26这种数据处理站的基于单元区的信息源。作为替代,该信息源可保存在蜂窝区交换中心,诸如图1中的蜂窝区交换中心24,或保存在每一单元站点,诸如图1中所示的单元站点13。但通常该信息在与蜂窝区交换中心相连的位置服务器中加以保存并按例行方式更新。该信息源可以按不同格式保存该数据,将会理解,图4所示格式仅图示一例格式。通常,每一预估的高度,例如预估高度203将包括一相应位置,诸如一单元站点位置或者一单元站点或服务区的标识。基于单元区信息源201的信息可以在一数据库中保存,该数据库包括单元区对象信息,例如分别按列208和210所示的单元服务区或单元站点的标识,还可以包括单元站点位置,例如按列212所示的信息。每一预估高度的情况下,通常有至少一个单元站点位置或单元站点标识。将会理解,每一预估高度可以是单元站点的无线信号可及范围所覆盖的地理区域的平均高度。可以采用单元站点周围高度的其它数学表示。采用单元站点周围的高度而非这样一种站点高度较为有益,尤其是这种场合,单元站点其位置不可以表示这样一种高度,该高度下可在特定区域内发现移动SPS接收机。
现结合表示一例本发明方法的图5说明对基于单元区的信息源201的利用。下面说明当中,将假定移动SPS接收机会接收SPS信号并根据那些信号确定那些信号的伪距,但不会在移动接收机处完成位置结果的运算。更为合理的是,移动接收机会将这些伪距发送给与之进行无线通信的特定单元站点,该单元站点会将该伪距送至一移动交换中心,该移动交换中心进而会将该伪距送至位置服务器,例如图1中的GPS服务器26。该GPS服务器接下来将根据本发明例子采用高度辅助信息来完成位置运算。该特定例中,在步骤301中确定单元区对象信息。这可以由接收单元站点标识或者与同移动SPS接收机(例如图3A中所示的接收机)相连的移动基于单元区的通信系统处于无线通信当中的单元区站点其位置的GPS服务器生成。例如,该单元站点可以将其标识或将其位置与移动SPS接收机的伪距信息一起送至GPS服务器。步骤303中,GPS服务器根据该单元区对象信息对移动SPS接收机确定一预估高度。在一例子中,SPS服务器将通过把该单元区对象信息用作数据库的索引,执行一数据库查找操作,来获得该预估高度。该数据库可以保存在图2中所示的大规模存储器55中。若通过给出经度和纬度来提供该单元站点位置,该服务器便可以利用该经度和纬度来查找该位置地表高度。作为替代,单元站点标识提供的是诸如单元站点号或其它标识这种场合,便利用该单元区对象信息来获得预估高度;预估高度205是该单元区站点号B1用于标识预估高度205这种场合的一个例子。步骤305中,GPS服务器采用该预估高度来确定移动GPS接收机的位置。已知有种种方法,可利用该高度来加强或辅助位置结果运算。
图5A和图5B示出本发明其中可利用预估高度的方法。图5A方法从311开始,其中确定的是单元区对象信息。接着在图5A的313中利用该信息,根据单元区对象信息对移动SPS接收机确定初始的预估地理位置(可规定为经度、纬度和高度)。本方法一例子中,将该单元区对象信息用作一索引来查找数据库中与该单元区对象信息相关的预估位置。接下来在图5A的315中利用该预估位置来运算移动SPS接收机的位置(例如运算出的经度和纬度)。接着在图5A的317中利用该运算出的经度和纬度来确定一预估高度;这可以通过在第二个数据库上执行一数据库查询操作来完成,以根据该运算出的经度和纬度获得预估高度。在此情况下,除了图5A中所用的第二数据库对很多经度和纬度更为可能的组合提供的高度有更大范围以外,第二数据库与图4所示的数据库类似;但图5A中用的该第二数据库不可以对全部可能的经度和纬度组合都具有一高度,可以利用插补逻辑,通过对数据库中与运算出的经度和纬度相近经度和纬度的高度间进行插补来确定高度。图5A的317中所获得的高度可用于319中再一次计算位置(较为有效地为一精细的位置运算)。
第二数据库由于其使用时通过每当确定所计算出的位置便增加经度/纬度/高度组合,所以可随时间的延续得到改进。具体来说,通过利用本发明系统多次(例如每当单元区电话用户按“911”时),可将输入项增加到数据库,给定经度和纬度处相冲突的任何高度可以被平均(或加上标志以便由一正确的GPS接收机读出来“人工”检验)。这会随时间的延续产生一健康的地表三维数据库。图5B示出一例将输入项增加至第二数据库这种方法。步骤325中,用移动SPS接收机位置的初始预估值来运算移动SPS接收机的位置。接下来,利用该运算出的位置(经度、纬度以及高度的组合)更新第二数据库(步骤329中称为高度数据库)。
但上述说明假定的是一特定架构,将会理解,本发明可以用于许多架构和许多其它例子。例如,高度信息可以存储在单元站点处,并与移动SPS接收机的伪距信息一起发送给位置服务器或GPS服务器。这会消除每一GPS服务器保存数据库的需要,但存在服务器与其通信而且其没有本身高度信息的单元站点的情况下,这种保存数据库的需要,对服务器来说或许还是有优点的。另一替代方案中,可将高度信息发送给通过俘获并跟踪SPS卫星、确定伪距、从该SPS卫星读出卫星天文历信息并确定其位置,按常规方式确定其本身位置的移动SPS接收机。再一替代方案中,不是将高度发送给移动单元,而是可以将单元区对象信息,例如单元站点标识符或单元站点位置发送给保存其本身数据库以便对给定单元区对象信息表明预估高度的移动SPS接收机。按此方式,移动SPS接收机可确定其本身位置,而且自行执行高度辅助。还有一替代实施例中,移动SPS接收机仅收集SPS信号,将它们数字化,接着将该数字化的SPS信号发送至根据该数字化信息确定伪距并完成该位置运算的GPS服务器。再有一替代实施例中,可从一个源例如SPS服务器,将卫星天文历数据经单元站点送至移动SPS接收机,该卫星天文历数据与移动SPS接收机所确定的伪距相结合用来提供移动SPS接收机处的位置结果。美国专利U.S.Pat.No.5,365,450中说明了一例这种架构。
现参照示出本发明方法的图6说明本发明另一方面。图6所示方法涉及SPS接收机中的缺陷检测和隔离。但各种缺陷检测和隔离(FDI)技术是本领域公知的(参见例如美国航空航天研究公司B.W.Parkinson和J.J.Spilker,Jr.编著的第2卷《全球定位系统理论以及应用》中第5章和第8章;以及“导航”导航研究院期刊,Vol.35,No.4,1988-1989冬季,p.483起,由Mark A.Sturza著的《采用冗余测量结果的导航系统完备性监测》),上述技术在识别缺陷卫星伪距存在的方法中没有利用过高度辅助。一旦识别出缺陷卫星伪距,便可以将它从重新计算的导航结果当中排除,来改善最终的定位。
图6中的方法可以在确定相对于若干个SPS卫星的伪距的步骤351中开始。步骤353中确定一高度伪测量结果。该高度伪测量结果可以考虑为地心处相对于卫星的伪距,可以按现有技术中采用的对高度辅助伪测量结果进行确定的常规方式确定。这样,例如该高度伪测量结果可以视为一半径,它包括从地心至地球假定的球面上相对于定义为椭圆体的地表具有预估高度的一点的地球半径。该预估高度可以如图5(步骤301和303)所示得到。步骤355中,运算出该移动SPS接收机高度,并将该运算出的高度与预估高度相比较。可根据基于步骤351所确定伪距的导航结果来获得该运算出的高度。这两个数值之间的差,若足够大,便表明会存在于象城市峡谷条件下往往出现的在垂直方向造成很大误差的大多径误差这种情况下可能的缺陷卫星伪距或可能的缺陷导航结果。步骤357中,可根据这种比较确定至少一个伪距这种状况。若该比较显示该预估高度和该运算出的高度之间有很小的差异,则这种伪距状况可以是它们未处于缺陷状态这种状况。相反,若该预估高度和该运算出的高度之间差异足够大(例如差异超过一阈值)的话,则至少其中一个伪距(和/或导航结果)可能为缺陷。
步骤357中还示出一替代方法,其并不依赖于预估高度和所运算高度之间的比较。可执行该替代方法来代替比较,或除了比较以外还执行该替代方法。该替代方法将(步骤353的)高度伪测量结果用作冗余测量结果(与步骤351的伪距冗余),并采用FDI技术,以利用冗余测量结果来检测是否存在缺陷的伪距(或缺陷的导航结果),若存在便识别至少一个缺陷的伪距。这些FDI技术在文献中有说明,参见例如上面提及的Sturza著的《采用冗余测量结果的导航系统完备性监测》。识别该缺陷伪距后,可以将它们从重新计算出的导航结果当中排除。将会理解,(于1998年4月22日申请的题为“利用无线通信信号的卫星定位系统加强”的共同待审美国专利申请Ser.No.09/064,673中所述的)蜂窝区伪距可以用作与上述FDI技术冗余的测量结果。一例蜂窝区伪距是CDMA或其它蜂窝区(基于单元区的)通信系统中通信射频信号到达的时间差,该蜂窝区伪距通常表示一已知位置的单元站点和一包括基于单元区的通信系统的移动SPS接收机之间通信信号的传播时间。
即使特定卫星的SPS信号具有较高的信噪比(SNR),图6中的方法仍会将相对于特定卫星的特定伪距标识为“差”。在这种情况下,该发明可以不理该标识,而继续采用该FDI技术来发现另一缺陷的伪距。
图6中的方法可以用于非基于单元区的系统,其中单个基站处于与移动SPS接收机进行的点对点无线通信中。该例中,预估高度可以是至或来自基站的无线信号所覆盖地理区域中的平均高度。该特定例子中,没有单元区对象信息需要经一网络发送。另一替代方案中,图6的方法可以用于基于单元区的通信系统,其中从网络部件发送一单元对象信息,并最终用作数据库索引来获得预估高度。
但上述说明总体上假定的是其中移动SPS接收机确定伪距并将这些伪距发送给远程位置的SPS服务器的系统架构,将会理解,本发明还适用于其他系统架构。举例来说,本发明可以用于其中移动SPS接收机将数字化的SPS信号(与表明接收时间的时间标记一起)发送给远程位置的SPS服务器(不必计算相对于SPS卫星的伪距),并且处于远程位置的SPS服务器确定预估高度并确定位置结果(也可利用这里所说明的FDI技术来检查)的系统。另一例中,本发明可以用于其中移动SPS接收机在或未在处于远程位置的SPS服务器辅助下确定其自己位置的系统。没有这种辅助,移动SPS接收机可在用户提供的预估高度或从单元站点发送给移动SPS接收机的预估高度的辅助下根据预估高度执行FDI技术(移动SPS接收机可以根据其与单元基站进行的基于单元区的通信确定单元基站的标识,并在其自己的数据库中查找与单元基站相对应的预估高度)。有这种辅助,移动SPS接收机可通过接收SPS服务器的卫星天文历数据和/或多普勒信息和/或卫星历书(例如从单元站点发送至移动SPS接收机)确定其自己的位置,还可以接收并利用来自SPS服务器的高度预估值,在此情况下,移动SPS接收机可以(在确定卫星伪距后)确定其位置,并可以采用高度预估值对位置结果执行FDI技术。
虽然是参照GPS卫星对本发明方法和装置加以说明的,但应理解,该教导等同地适用于采用伪卫星(pseudolite)或者卫星和伪卫星组合的定位系统。伪卫星是基于地面、广播PN码(与GPS信号类似)的发射机,可以在L波段载频信号上调制,通常与GPS时间同步。每一发射机可以分配一独特的PN码以允许远程接收机标识。伪卫星对可能无法提供轨道卫星GPS信号这种地方,例如隧道、矿区、建筑或其他封闭区域,是有助益的。术语“卫星”如在此所用的那样,要包括伪卫星或伪卫星的等效物,GPS信号这一术语如在此所用的那样,则要包括来自伪卫星或伪卫星等效物的类似GPS信号。
上述讨论中,是结合对美国全球定位卫星(GPS)系统的应用说明本发明的。但应清楚,上述方法等同地适用于类似的卫星定位系统,尤其是俄罗斯的Glonass系统。该Glonass系统与GPS系统的主要差异在于,不同卫星的发射是通过采用稍稍不同的载频来相互区分,而非采用不同的伪随机码来相互区分。在此使用的术语“GPS”包括这种替代的卫星定位系统,包括俄罗斯的Glonass系统。
上述说明书中,本发明是参照其特定示范性实施例说明的。但会清楚,在不脱离所附权利要求中提出的较宽实质和范围的情况下,可进行种种修改和变化。因而说明书和附图将按说明性而非限制性方式认定。
权利要求
1.一种数据处理站,其特征在于,包括处理器;与所述处理器相连的存储设备;与所述处理器相连的收发器,所述收发器用于将所述数据处理站与无线单元站点相连,所述存储设备存储包括所述无线单元站点至少一个单元区对象位置或单元区对象标识的单元区对象信息,其中所述处理器根据所述单元区对象信息确定高度,而所述单元区对象信息是根据与移动卫星定位系统(SPS)接收机的基于单元区的通信接收机处于无线通信当中的所述无线单元站点选定的,所述处理器采用所述高度运算所述移动SPS接收机的位置。
2.如权利要求1所述的数据处理站,其特征在于,所述处理器接收SPS信号源,所述收发器接收所述无线单元站点的至少一个伪距,所述处理器采用所述SPS信号和所述至少一个伪距来确定所述位置。
3.如权利要求1所述的数据处理站,其特征在于,所述存储设备存储一数据库,其中包含单元区对象信息和与所述收发器相连的多个无线单元站点中每一站点的相应高度。
4.一种确定移动卫星定位系统(SPS)接收机位置的方法,该接收机具有基于单元区的通信接收机,其特征在于,所述方法包括根据相对于多个SPS卫星的多个伪距确定运算出的高度;将所述运算出的高度与所述移动SPS接收机高度的预估值相比较;确定至少一个所述伪距的状况,所述状况基于所述运算出的高度与所述预估值的所述比较。
5.如权利要求4所述的方法,其特征在于,所述位置根据位置求解算法确定,若所述状况是第一状态,所述伪距便用于所述位置求解算法。
6.如权利要求5所述的方法,其特征在于,若所述状况是第二状态,所述伪距便不用于所述位置求解算法。
7.如权利要求6所述的方法,其特征在于,还包括在所述移动SPS接收机处确定所述多个伪距;确定单元区对象信息,所述单元区对象信息包括至少一个单元区对象位置或单元区对象标识;根据所述单元区对象信息确定所述高度的所述预估值,所述单元区对象信息是根据与同所述移动SPS接收机相连、基于单元区的通信系统处于无线通信当中的单元站点发射机选定的。
8.如权利要求7所述的方法,其特征在于,所述移动SPS接收机将所述多个伪距发送给确定所述状况和所述位置的数据处理站。
9.如权利要求7所述的方法,其特征在于,所述单元区对象信息是表明所述单元区站点发射机至少一个位置或标识的信息。
10.如权利要求9所述的方法,其特征在于,所述高度是所述单元站点发射机附近地理区域内至少一个高度的数学表示。
11.如权利要求7所述的方法,其特征在于,所述单元区对象信息和所述高度存储在计算机可读的存储媒体中。
12.如权利要求8所述的方法,其特征在于,所述数据处理站接收卫星天文历数据。
13.一种数据处理站,其特征在于,包括处理器;与所述处理器相连的存储设备;与所述处理器相连的收发器,所述收发器用于将所述数据处理站与无线通信系统相连,所述存储设备对所述无线通信系统无线覆盖范围内至少一个区域存储高度预估值,所述收发器从与移动卫星定位系统(SPS)接收机相连的移动无线通信系统接收包括第一伪距在内的多个伪距,所述处理器确定一高度,并将所述预估值与所述高度相比较,并确定所述第一伪距的状况,所述状况基于所述预估值与所述高度伪测量结果的所述比较。
14.如权利要求13所述的数据处理系统,其特征在于,所述处理器接收一SPS信号源,所述处理器根据位置求解算法确定所述移动SPS接收机的位置,若所述状况是第一状态,所述伪距便用于所述位置求解算法。
15.如权利要求14所述的数据处理系统,其特征在于,若所述状况是第二状态,所述第一伪距便不用于所述位置求解算法。
全文摘要
一种确定移动卫星定位系统(SPS)接收机位置的方法和装置。在一例方法中,确定的是单元区对象信息;该单元区对象信息包括至少一个单元区对象位置或单元区对象标识。根据基于一单元站点发送器选定的单元区对象信息来确定高度,该单元站点发送器与同移动SPS接收机相连(并且通常集成在一起)的基于单元区的通信系统处于无线通信中。采用根据该单元区对象信息确定的高度来运算移动SPS接收机的位置。另一例方法中,根据移动SPS接收机高度其预估值确定高度伪测量结果。该预估高度可以来自基于单元区的通信系统中基于单元区的信息源,或可以是非基于单元区系统中无线基站覆盖区域中的平均高度。可以与缺陷检测和隔离技术一起将高度伪测量结果用作一冗余测量结果,来确定是否至少一个伪距具有缺陷状况。作为替代(或是另外的)方案,预估高度与运算出高度的比较,确定SPS卫星和移动SPS接收机之间至少一个伪距的状况。该例子的一实施例中,根据位置求解算法确定该位置,若该状况是第一状况(非缺陷状态),便在该位置求解算法中采用该至少一个伪距。
文档编号H04Q7/34GK1670543SQ20051006682
公开日2005年9月21日 申请日期1999年4月13日 优先权日1998年5月5日
发明者L·希恩布莱特 申请人:施耐普特拉克股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1