可低温烧结的电介质陶瓷组合物、多层陶瓷片状电容器及陶瓷电子器件的制作方法

文档序号:8036391阅读:320来源:国知局
专利名称:可低温烧结的电介质陶瓷组合物、多层陶瓷片状电容器及陶瓷电子器件的制作方法
技术领域
本发明涉及温度补偿用电介质陶瓷组合物,它可以与贱金属制内电极一起在还原氛中低温烧结,并具有低介电常数和高的电介质品质因数(Q),本发明还涉及使用该陶瓷组合物的多层陶瓷片状电容器和陶瓷电子器件。
背景技术
近年来,随着信息时代的到来,越来越需要增加处理速度及改善射频特性的电子器件。例如用在高频电路滤波器中的多层陶瓷片状电容器也需要低介电常数和高电介质品质因数。它们作为可以提供稳定的基准电容(reference capacitance)的电子器件被广泛应用。
近来,有(Ca,Sr)(Zr,Ti)O3系、MgO-TiO2系、BaO-TiO2系、和BaO-TiO2-REO系电介质陶瓷组合物可用于多层陶瓷片状电容器。这些电介质陶瓷组合物可在1200℃或1200℃以上的高温下烧结。在这一点上,为将由这样的电介质组合物制成的介质层与内电极一起烧结,必须使用高熔点金属如钯(Pd)和铂(Pt)作为内电极。但是,Pd和Pt比贱金属如Ag和Cu更贵、电阻率更高。由于电阻率高,等效串联电阻(ESR)和等效串联电感(ESL)在高频下增加,导致介电损耗高及电介质品质因数低。
因此,为使用贱金属如Cu作为内电极,需要使用可在低温下烧结的电介质陶瓷组合物。贱金属制内电极在空气中烧结时可能被氧化。因此,必须在还原氛中进行介质层和内电极的共烧。
日本专利申请公开5-190020号公报、美国专利5,756,408和4,988,651、及日本专利申请公开1-102806号公报中公开了典型的可低温烧结的电介质陶瓷组合物。
日本专利申请公开5-190020号公报公开了一种电介质陶瓷组合物,它包括由通式a(xBa-yCa-zSr)O-bSiO2-cZrO2-(d/2)Al2O3-eTiO2(其中5mol%≤a≤6mol%,10mol%≤b≤70mol%,0mol%<c≤30mol%,0mol%<d≤30mol%,0mol%<e≤30mol%,a+b+c+d+e=100mol%;以及x+y+z=1)表示的主成分。该电介质陶瓷组合物不具有不可还原性(non-reducibility),因此贱金属如Cu不能用作内电极。另外,由于采用将原料混合物加热至1600℃或1600℃以上的高温的玻璃化法(glassprocess),然后迅速淬火,因此不仅难以分散玻璃粉末,而且难以控制其粒径。
美国专利5,756,408号公开了一种玻璃陶瓷烧结体,它含有30-70重量%(Ca,Sr)-Al-Zn-Si-O型复合氧化物,以及30-70重量%氧化钙和氧化锆或CaZrO3作为填料。不幸的是,没有考虑该陶瓷烧结体的电介质品质因数。
美国专利4,988,651公开了一种由通式xBaO-ySiO2-z{ZrO2(1-β)TiO2(β1)SnO2(β2)}(其中x,y和z为各成分的重量百分数;x+y+z=100;β=β1+β2,0≤β1,0≤β2,0.01≤β≤0.03)表示的电介质陶瓷组合物。但是,由于使用TiO2,使不可还原性变差。
日本专利申请公开1-102806号公报公开了一种由通式[x(Ba(1-a)Sra)O-ySiO2-zZrO2]-Al2O3表示的电介质陶瓷组合物。该电介质陶瓷组合物可在非还原氛下低温烧结。但是,存在电容温度特性为±100(ppm/℃)、电介质品质因数(Q)为1,000、以及绝缘电阻为1012Ωcm水平上的极低水平的缺点。
可低温烧结的电介质陶瓷组合物也可以用在电子器件的多层陶瓷电路板上。这是因为多层陶瓷电路板用的电介质组合物必须与低熔点的贱金属制内电极一起烧结。使用高熔点金属作为内电极会不合需要地导致高电阻。使用多层陶瓷电路板作为安装有半导体元件或各种电子元件的基片,从而将电子器件小型化。

发明内容
因此,鉴于以上问题进行了本发明。本发明的一个目的是提供一种电介质陶瓷组合物,它可与内电极一起在还原氛下低温烧结,并且满足±30(ppm/℃)的电容温度特性,低介电常数和高电介质品质因数。
本发明的另一个目的是提供一种多层陶瓷片状电容器,由可以低温烧结,具有低介电常数和高频下的高电介质品质因数的电介质组合物制成。
本发明的再一个目的是提供一种使用由电介质组合物制成的多层陶瓷电路板的电子器件,所述的电介质组合物可以低温烧结,具有低介电常数及高频下的高电介质品质因数。
根据本发明的一方面,通过提供一种电介质陶瓷组合物达到上述及其它目的,它含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分。
优选本发明的电介质组合物用的Zn-B-硅酸盐含有15-25重量%SiO2、20-30重量%B2O3、和40-50重量%ZnO。它另外含有7重量%或7重量%以下的选自碱金属如Li、K和Na的至少一种、以及5重量%或5重量%以下的Al2O3。
根据本发明的另一方面,提供一种多层陶瓷片状电容器,具有多个电介质陶瓷层,配置在电介质陶瓷层内的内电极,以及与内电极电连接的外电极,其特征在于,电介质陶瓷层为电介质陶瓷组合物的烧结体,所述的电介质陶瓷组合物含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分,并且内电极由导电贱金属材料制成。
根据本发明的再一方面,提供一种陶瓷电子器件,它具有多层陶瓷电路板和安装在多层陶瓷电路板上的至少一种电子元件,其特征在于,多层陶瓷电路板具有多个电介质陶瓷层,配置在电介质陶瓷层内的内电极,以及与内电极电连接的外电极,电介质陶瓷层为电介质陶瓷组合物的烧结体,所述的电介质陶瓷组合物含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分,并且内电极由导电贱金属材料制成。


图1是显示{BaO+SrO},{SiO2}和{ZrO2+Al2O3}的组成比的三元相图;图2是显示多层陶瓷片状电容器的一个实施方案的图;图3是显示电子器件的一个实施方案的图。
具体实施例方式
通过下面结合附图进行的详细说明,将更清楚地理解本发明的上述及其它目的、特征和其它优点。
以下,将更详细地说明本发明。
本发明的电介质组合物的电容温度特性为±30(ppm/℃),电介质品质因数(Q)为2000或2000以上,绝缘电阻为1×1013Ωcm或1×1013Ωcm以上,介电常数为13或13以下。另外,由于具有不可还原性,它可以与贱金属制内电极一起在1000℃或1000℃以下的低温下烧结。因此,它适合用于制备需要低熔点贱金属作为内电极的多层陶瓷片状电容器和电子器件用的多层陶瓷电路板。
下面说明本发明的电介质陶瓷组合物。
图1是显示{BaO+SrO},{SiO2}和{ZrO2+Al2O3}的组成比的三元相图。附图中的数字指示下述的图2中所列多层陶瓷片状电容器试样。由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}表示的本发明的主成分落在一个多边形区域中,该区域由点A(x=75重量%,y=20重量%,z=5重量%),B(x=75重量%,y=10重量%,z=25重量%),C(x=60重量%,y=10重量%,z=30重量%),D(x=55重量%,y=15重量%,z=30重量%),E(x=55重量%,y=35重量%,z=10重量%)和F(x=60重量%,y=35重量%,z=5重量%)限定。
{αBaO,(1-α)SrO}55-75重量%(α为摩尔;0.4≤α≤0.8)如果{αBaO,(1-α)SrO}的含量低于55重量%,电介质品质因数(Q)下降,并且电容温度特性在±30(ppm/℃)范围以外。另一方面,如果超过75重量%,包括介电常数、电介质品质因数(Q)、电容温度特性和电阻率在内的电性质变差。当{αBaO,(1-α)SrO}的含量变大时,电容温度特性负向增加,而当{αBaO,(1-α)SrO}的含量变小时,电容温度特性正向增加。最优选将{αBaO,(1-α)SrO}的含量限制在60-65重量%的范围内。
优选将α值限制在0.4-0.8范围内。当α值变大时,电容温度特性负向增加,而α值变小时,电容温度特性正向增加。如果α值在上述范围之外,则电容温度特性就在±30(ppm/℃)范围以外。
SiO210-35重量%如果SiO2的含量超过35重量%,电介质品质因数低于1000,并且电容温度特性在±30(ppm/℃)范围以外。如果SiO2的含量变大,电容温度特性正向增加,而如果其含量变小,则电容温度特性负向增加。如果SiO2的含量低于10重量%,电介质品质因数(Q)、电容温度特性和电阻率变差。最优选将SiO2的含量限制在20-25重量%范围内。
{(1-β)ZrO2,βAl2O3}5-30重量%(β为摩尔;0.01≤β≤0.07)如果{(1-β)ZrO2,βAl2O3}的含量在上述范围之外,电介质品质因数(Q)低于1500,电容温度特性在±30(ppm/℃)范围以外。如果{(1-β)ZrO2,βAl2O3}的含量变大,电容温度特性正向增加,而如果该含量变小,电容温度特性负向增加。最优选将{(1-β)ZrO2,βAl2O3}的含量限制在10-20重量%范围内。
如果β值在上述范围以外,电容温度特性在±30(ppm/℃)范围以外。如果β值变大,电容温度特性正向增加,以及由于在电介质烧结体表面形成玻璃相,使电阻率低于1.0×1012Ωcm。另一方面,如果β值变小,电容温度特性负向增加,并且不能得到致密的电介质烧结体,导致电介质品质因数(Q)低于1000。
根据本发明,在落在由图1中的A、B、C、D、E和F点限定的多边形区域内的主成分中加入Zn-B-硅酸盐玻璃成分。如果主成分的一组x、y和z落在图1的边ABC以外的区域,不管玻璃成分的添加量是多少,电介质烧结体的表面都存在玻璃相,导致电阻率低于1.0×1012Ωcm。另外,电容温度特性在±30(ppm/℃)范围以外,并且难以形成电极。
Zn-B-硅酸盐玻璃成分2-10重量份(以100重量份主成分为基准)优选本发明的Zn-B-硅酸盐玻璃成分含有SiO2、B2O3和ZnO。当在800-1000℃的温度烧结时,这样的玻璃成分与主成分的Al2O3反应,导致某些玻璃成分结晶化。这样的结晶化提高了介质层的机械应力。优选Zn-B-硅酸盐玻璃成分含有15-25重量%SiO2、20-30重量%B2O3和40-50重量%ZnO。如果SiO2含量低于15重量%,可能引起全部玻璃成分的结晶化,使得难以降低烧结温度。另一方面,如果SiO2含量高于25重量%,可能升高玻璃成分的熔点,这样难以进行低温烧结。如果B2O3的含量低于20重量%,或ZnO的含量低于40重量%,玻璃成分的熔点升高,从而难以进行低温烧结3另一方面,如果B2O3的含量超过30重量%,或ZnO的含量超过50重量%,引起所有玻璃成分的结晶化,使得难以降低烧结温度。优选玻璃成分另外含有7重量%或7重量%以下选自碱金属如Li、K和Na的至少一种、以及5重量%或5重量%以下Al2O3。碱金属起降低烧结温度的作用。在这一点上,如果碱金属的含量超过7重量%,电介质组合物形成玻璃相的介质层,因此不能得到烧结体。Al2O3起促进玻璃相形成的作用。在这一点上,如果Al2O3的含量超过5重量%,可能阻碍玻璃相的形成。Zn-B-硅酸盐玻璃成分的一个实施方案如下表1所示。
表1

以100重量份主成分为基准,优选本发明的Zn-B-硅酸盐玻璃成分的含量为2-10重量份。如果玻璃成分的含量在该范围以外,则电容温度特性在±30(ppm/℃)范围以外。具体地,当玻璃成分的含量变大时,电容温度特性正向增加。另外,在电介质烧结体的表面上形成玻璃相,导致电阻率低于1.0×1012Ωcm。另一方面,当玻璃成分的含量变小时,电容温度特性负向增加。另外,不能得到致密的烧结体,也不能进行低温烧结。基于100重量份主成分,最优选本发明的玻璃成分的含量为4-8重量份。
本发明的电介质组合物满足±30(ppm/℃)的电容温度特性、2000或2000以上的电介质品质因数(Q)、1×1013Ωcm或1×1013Ωcm以上的绝缘电阻、以及13或13以下的介电常数。它也可以与贱金属制内电极一起在中性或还原氛下、在1000℃的低温下烧结,并且表现出高频(100MHz或100MHz以上)下的高电介质品质因数。因此,它可用于制造需要尺寸小、重量轻和厚度薄的多层陶瓷片状电容、及电子器件用的多层陶瓷电路板。
接下来,说明本发明的多层陶瓷片状电容器。
本发明的电介质组合物可与低熔点贱金属制内电极一起在中性或还原氛下烧结,并且满足±30(ppm/℃)的电容温度特性、2000或2000以上的电介质品质因数(Q)、1×1013Ωcm或1×1013Ωcm以上的绝缘电阻、以及13或13以下的介电常数。因此,它可以用于制造需要上述电性质的多层陶瓷片状电容器。
图2是显示多层陶瓷片状电容器的一个实施方案的图。该多层陶瓷片状电容器具有多个电介质陶瓷层13、配置在电介质陶瓷层13内的内电极15、以及与内电极15电连接的外电极17。
根据本发明,电介质陶瓷层为电介质陶瓷组合物的烧结体,所述的电介质陶瓷组合物含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分。
内电极由导电贱金属材料如Cu、Ag、Ni以及它们的合金制成。外电极由添加有玻璃粉(glass frit)的导电金属粉末的烧结层构成。可以在它上面形成镀层。镀层由Ni、Cu或Ni-Cu合金构成,或者可以在它上面形成含有锡或焊料的第二镀层。
制备本发明的多层陶瓷片状电容器的一种方法如下所述。首先,通过高温煅烧氧化物或碳酸盐的固相法、或湿式合成法如水热合成法和醇盐法制备本发明的电介质陶瓷组合物用的粉末状起始材料。将制备的主成分粉末与玻璃粉末以规定的配比予以混合。通过加入有机粘合剂将混合粉末转变成浆料。此时,优选将主成分粉末的平均粒径限制在0.3-1μm范围内。如果粒径在该范围以外,会形成不需要的第二相,或剩下未反应的原料粉末。
将浆料成形为板状。然后在板的一个面上形成导电贱金属制内电极。可使用包括丝网印刷、真空淀积和镀法的各种方法形成内电极。然后,将所需数目的具有内电极的板层压,压制后形成层压体。将层压体在还原氛下、规定的温度下予以烧结。根据本发明,烧结在1000℃或1000℃以下进行。烧结可以在低氧气分压状态,即由式{Log(PH2/PH2O)}表示的氢气分压为-2至-4的的中性或还原氛中进行。如果氢气分压大于-2,粘合剂的碳保持未氧化,因此可能造成烧结体的内部缺陷。结果,可能降低绝缘电阻或可能形成内部破裂。如果氢气分压小于-4,在烧结温度的范围内,内电极可能被氧化。
在层压体的两侧端上形成一对外电极,从而与内电极电连接。这样就完成了多层陶瓷片状电容器。或者,也可以在烧结前在层压体上施加外电极。如果需要,可以在外电极上形成镀层。
最后,说明本发明的电子器件。
本发明的电介质组合物可与低熔点贱金属制内电极一起在还原氛下烧结,并且满足±30(ppm/℃)的电容温度特性、2000或2000以上的电介质品质因数(Q)、1×1013Ωcm或1×1013Ωcm以上的绝缘电阻、以及13或13以下的介电常数。因此,它可用于制备需要上述电性质的电子器件用多层陶瓷电路板。
图3是显示电子器件的一个实施方案的图。陶瓷电子器件包括多层陶瓷电路板2和至少一个电子元件8,电子元件8安装在多层陶瓷电路板2上,并与多个内电极5一起构成电路。多层陶瓷电路板包括多个电介质陶瓷层,配置在电介质陶瓷层内的内电极,以及与内电极电连接的外电极。
根据本发明,多层陶瓷电路板的电介质陶瓷层为电介质陶瓷组合物的烧结体,所述的电介质陶瓷组合物含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,Al2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分。
内电极由导电贱金属材料如Cu、Ag、Ni以及它们的合金制成。
用于本发明的多层陶瓷电路板的内电极5可与电介质陶瓷层3的至少一部分一起,用于制备多层陶瓷片状电容器。
本发明的多层陶瓷电路板可用作多片组件(multi-chip module)、混合集成电路等的基片。在多层陶瓷电路板上安装各种电子元件,从而形成电子器件。有代表性的电子器件是LTCC(低温共烧陶瓷)。
以下,将通过下面的非限制性实施例更详细地说明本发明。
实施例将纯度为99%或99%以上的BaCO3、SrCO3、ZrO2、Al2O3和SiO2作为起始陶瓷材料进行称量,并用球磨机充分混合,得到浆料。在不发生分层的情况下干燥浆料,得到平均粒径为0.3-1.0μm的陶瓷粉末混合物。然后,在750℃-950℃煅烧陶瓷粉末1-4小时。
使用水或乙醇,用氧化锆球将Zn-B-硅酸盐玻璃成分的各成分湿磨成粒径为0.3-1.0μm的玻璃成分粉末混合物。该玻璃成分由20.57重量%SiO2、22.94重量%B2O3、43.93重量%ZnO、3.04重量%Li2O、3.30重量%K2O、3.95重量%Al2O3以及其它杂质构成。
将陶瓷粉末与玻璃粉混合,制成浆料。通过压铸机将浆料转变成厚度15-70μm的板。在转变成的板上印刷Cu制内电极,然后一层接一层地层叠3-10层印刷有图案的板。在低氧气分压(N2-H2气体氛),即Log(PH2/PH2O)-2至-4的气氛下切割并烧结得到的层压体。烧结在下表2所列的温度下进行1-4小时,从而形成10mm×10mm×0.5mm的板状烧结体。
为得到多层陶瓷片状电容器试样,在烧结体的两端面上施加In-Ga合金,形成外电极。评价上面得到的电容器试样的电性质如介电常数(K)、电介质品质因数(Q)、电容温度特性(TCC)、和电阻率(Ωcm)。
介电常数(K)和电介质品质因数(Q)在1MHz、1Vrms、25℃下使用HP4278A进行测定。
电容温度特性使用25℃的标准电容(C25)、-55℃的电容(C-55)、以及125℃的电容(C125),通过下面的公式进行评价TCC(ppm/℃)={(CT-C25)/C25(T-25℃)}×106(其中CT是T温度的电容)。
电阻率(ρ25)通过在25℃施加250V直流电压60秒后,使用测定的漏电流,以Ωcm为单位进行评价。
表2

表2(续)

如表2所示,{BaO+SrO}含量超过75重量%的试样7的电容器表现出数值为14的高介电常数,以及低于1000的低电介质品质因数(Q)。{BaO+SrO}含量低于55重量%的试样10的电容器表现出低于1500的电介质品质因数(Q),并且电容温度特性在±30(ppm/℃)范围以外。
对于SiO2含量超过35重量%的试样11的电容器,电介质品质因数(Q)低于1000,电容温度特性在±30(ppm/℃)的范围以外。
对于{ZrO2+Al2O3}含量在范围以外的试样9和12的电容器,电介质品质因数(Q)低于1500,电容温度特性在±30(ppm/℃)的范围以外。
对于α值在范围以外的试样22和24的电容器,电容温度特性在±30(ppm/℃)的范围以外。
对于β值在范围以外的试样25和27的电容器,电容温度特性在±30(ppm/℃)的范围以外。试样25的电容器不具有致密的烧结体,因此表现出低于1000的电介质品质因数(Q)。试样27的电容器表现出低于1.0×1012Ωcm的电阻率,原因是在电介质烧结体的表面上形成了玻璃相。
对于Zn-B-硅酸盐玻璃成分的含量在范围以外的试样28和31的电容器,电容温度特性在±30(ppm/℃)的范围以外。对于试样28的电容器,没有得到致密烧结体,且烧结温度高达1050℃。试样31的电容器表现出低于1.0×1012Ωcm的电阻率,原因是在电介质烧结体的表面上形成了玻璃相。
从上面的说明明显可以看出,本发明的电介质组合物可以与低熔点贱金属制内电极一起在1000℃或1000℃以下的低温烧结。另外,它满足±30(ppm/℃)的电容温度特性、2000或2000以上的电介质品质因数(Q)、1×1013Ωcm或1×1013Ωcm以上的25℃绝缘电阻、以及13或13以下的介电常数。因此,它可以用于制造需要上述电性质的多层陶瓷片状电容器和电子器件用的多层陶瓷电路板。
尽管为举例公开了本发明的优选实施方案,但本领域的普通技术人员将理解,在不偏离附带的权利要求所公开的本发明的精神和范围的情况下,可以进行各种变化、添加和替代。
权利要求
1.一种可低温烧结的电介质陶瓷组合物,含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分。
2.如权利要求1所述的组合物,其中x为60-65重量%,y为20-25重量%,z为10-20重量%。
3.如权利要求1所述的组合物,其中Zn-B-硅酸盐玻璃成分含有15-25重量%SiO2、20-30重量%B2O3以及40-50重量%ZnO。
4.如权利要求3所述的组合物,其中Zn-B-硅酸盐玻璃成分进一步含有7重量%或7重量%以下的选自碱金属如Li、K和Na的至少一种、以及5重量%或5重量%以下的Al2O3。
5.如权利要求1所述的组合物,其中,以100重量份主成分为基准,Zn-B-硅酸盐玻璃成分的含量为4-8重量份。
6.一种多层陶瓷片状电容器,具有多个电介质陶瓷层,配置在电介质陶瓷层内的内电极,以及与内电极电连接的外电极,其特征在于,电介质陶瓷层为电介质陶瓷组合物的烧结体,所述的电介质陶瓷组合物含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分,并且内电极由导电贱金属材料制成。
7.如权利要求6所述的电容器,其中x为60-65重量%,y为20-25重量%,z为10-20重量%。
8.如权利要求6所述的电容器,其中Zn-B-硅酸盐玻璃成分含有15-25重量%SiO2、20-30重量%B2O3以及40-50重量%ZnO。
9.如权利要求6所述的电容器,其中Zn-B-硅酸盐玻璃成分进一步含有7重量%或7重量%以下的选自碱金属如Li、K和Na的至少一种、以及5重量%或5重量%以下的Al2O3。
10.如权利要求6所述的电容器,其中,以100重量份主成分为基准,Zn-B-硅酸盐玻璃成分的含量为4-8重量份。
11.如权利要求6所述的电容器,其中在800-1000℃烧结后,电介质陶瓷层含有某些玻璃成分的结晶相。
12.一种陶瓷电子器件,它具有多层陶瓷电路板和安装在多层陶瓷电路板上的至少一种电子元件,其特征在于,多层陶瓷电路板具有多个电介质陶瓷层,配置在电介质陶瓷层内的内电极,以及与内电极电连接的外电极,电介质陶瓷层为电介质陶瓷组合物的烧结体,所述的电介质陶瓷组合物含有由通式x{αBaO,(1-α)SrO}-y{SiO2}-z{(1-β)ZrO2,βAl2O3}(其中x,y和z为重量百分数;x+y+z=100,55≤x≤75,10≤y≤35,以及5≤z≤30,α和β为摩尔;0.4≤α≤0.8以及0.01≤β≤0.07)表示的主成分,并且以每100重量份主成分为基准,含有2-10重量份Zn-B-硅酸盐玻璃成分,并且内电极由导电贱金属材料制成。
13.如权利要求12所述的电子器件,其中x为60-65重量%,y为20-25重量%,z为10-20重量%。
14.如权利要求12所述的电子器件,其中Zn-B-硅酸盐玻璃成分含有15-25重量%SiO2、20-30重量%B2O3以及40-50重量%ZnO。
15.如权利要求12所述的电子器件,其中Zn-B-硅酸盐玻璃成分进一步含有7重量%或7重量%以下的选自碱金属如Li、K和Na的至少一种、以及5重量%或5重量%以下的Al2O3。
16.如权利要求12所述的电子器件,其中,以100重量份主成分为基准,Zn-B-硅酸盐玻璃成分的含量为4-8重量份。
17.如权利要求12所述的电子器件,其中在800-1000℃烧结后,电介质陶瓷层含有某些玻璃成分的结晶相。
全文摘要
可低温烧结的电介质陶瓷组合物、以及多层陶瓷片状电容器和陶瓷电子器件。该电介质陶瓷组合物含有由通式x{αBaO,(1-α)SrO}-y{SiO
文档编号H05K1/03GK1510703SQ03149099
公开日2004年7月7日 申请日期2003年6月26日 优先权日2002年12月24日
发明者徐东焕, 金宗熙, 姜晟馨, 崔洵牧, 尹赫晙 申请人:三星电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1