具有TPU覆盖层的共挤出的交联聚烯烃泡沫的制作方法

文档序号:15742840发布日期:2018-10-23 22:35阅读:215来源:国知局

本发明的公开内容涉及具有TPU覆盖层的多层泡沫结构体。更具体地,本发明的公开内容涉及含TPU覆盖层的物理交联的闭孔连续多层泡沫结构体。



背景技术:

可在各种应用,例如车辆内部的装饰组件、地板衬层、带子和垫圈中使用聚烯烃泡沫。当在这些各种应用中使用时,聚烯烃泡沫可粘结到氨酯基粘合剂、聚氨酯泡沫和反应性氨酯泡沫上。常规地,为了在聚烯烃泡沫和(聚)氨酯之间获得满意的粘合,对泡沫施加表面改性处理,例如电晕、等离子体或化学品处理。

然而,聚烯烃泡沫的表面改性是在泡沫的制造和最终应用之间附加的加工步骤。这可增加成本,可使得对于商业目的来说该工艺不经济。另外,聚烯烃表面改性,尤其用电晕表面改性,也可能是暂时的,且不可能适合于其中在仓库或零售店中长时间段储存处理过的泡沫的情形。

发明概述

本申请人已发现,共挤出聚烯烃泡沫组合物与TPU覆盖层可克服与用电晕、等离子体或化学品处理聚烯烃泡沫表面以改性泡沫表面有关的问题。由于TPU覆盖层是氨酯基的,因此预期氨酯基粘合剂、聚氨酯泡沫和反应性氨酯泡沫容易粘结到TPU覆盖层上且不需要表面处理,因为这些材料的聚合物结构具有类似性。另外,与电晕不同,TPU覆盖层不具有“货架期”,其中在仓库或零售店中长时间段可使得产品对粘合到氨酯基粘合剂和聚氨酯泡沫上不那么敏感。

在一些实施方案中,多层泡沫结构体包括含聚丙烯、聚乙烯或聚丙烯和聚乙烯的组合的共挤出的泡沫层,和在所述泡沫层的侧面上的共挤出的覆盖层,所述覆盖层包含至少40wt%的热塑性聚氨酯(TPU)和聚丙烯、聚乙烯或聚丙烯和聚乙烯的组合。在一些实施方案中,共挤出的泡沫层包含5-20wt%的TPU。在一些实施方案中,共挤出的泡沫层包含至少70wt%的聚丙烯、聚乙烯,或聚丙烯和聚乙烯的组合。在一些实施方案中,泡沫层包含1-15wt%的添加剂。在一些实施方案中,覆盖层包含1-8wt%的添加剂。在一些实施方案中,聚丙烯在230℃下具有0.1-25g/10min的熔体流动指数。在一些实施方案中,聚乙烯在190℃下具有0.1-25g/10min的熔体流动指数。在一些实施方案中,多层泡沫结构体的密度为20-250kg/m3。在一些实施方案中,多层泡沫结构体的交联度为20-75%。在一些实施方案中,多层泡沫结构体具有0.05-1.0mm的平均闭孔尺寸。在一些实施方案中,多层泡沫结构体的厚度为0.2-50mm。

在一些实施方案中,层压体包括:多层泡沫结构体,其包括含聚丙烯、聚乙烯或聚丙烯和聚乙烯的组合的共挤出的泡沫层,和在所述泡沫层的侧面上的共挤出的覆盖层,所述覆盖层包含至少40wt%的TPU和聚丙烯、聚乙烯或聚丙烯和聚乙烯的组合;在覆盖层的侧面上与泡沫层相对的层压体层。在一些实施方案中,层压体层选自膜、织物、纤维层和皮革。在一些实施方案中,层压体层是压敏粘合剂层。在一些实施方案中,层压体层包括氨酯基粘合剂、聚氨酯泡沫或反应性氨酯泡沫。在一些实施方案中,共挤出的泡沫层包含5-20wt%的TPU。在一些实施方案中,共挤出的泡沫层包含至少70wt%的聚丙烯、聚乙烯或聚丙烯和聚乙烯的组合。在一些实施方案中,泡沫层包含1-15wt%的添加剂。在一些实施方案中,聚丙烯在230℃下具有0.1-25g/10min的熔体流动指数。在一些实施方案中,聚乙烯在190℃下具有0.1-25g/10min的熔体流动指数。

在一些实施方案中,地板系统包括顶部地板层、底层地板层和置于底层地板和顶部地板层之间的至少一个地板衬层,其中至少一个地板衬层包括多层泡沫结构体,所述多层泡沫结构体包括含聚丙烯、聚乙烯或聚丙烯和聚乙烯的组合的共挤出的泡沫层,和在所述泡沫层的侧面上的共挤出的覆盖层,所述覆盖层包含至少40wt%的TPU和聚丙烯、聚乙烯或聚丙烯和聚乙烯的组合。

本文中提到“约”一个数值或参数包括(且描述)涉及该数值或参数本身的变化。例如,提到“约X”的说明包括“X”的说明。另外,提到措辞“小于”、“大于”、“最多”、“至少”、“小于或等于”、“大于或等于”或其他类似措辞接着一串数值或参数是指将该措辞应用到该串数值或参数的每一数值或参数上。例如,一层具有小于约20wt%、约15wt%或约10wt%的化学发泡剂的声明是指该层内化学发泡剂的重量百分比可以小于约20wt%、小于约15wt%或小于约10wt%。

本文中所使用的单数形式“一个”、“一种”和“所述/该”拟同样包括复数形式,除非上下文清楚地另外指明。还要理解,本文中所使用的术语“和/或”是指且涵盖一种或多种有关列举项目的任何和所有可能的组合。进一步要理解,术语“包括”、“含”、“包含”和/或“含有”当在本文中使用时,指代存在所描述的特征、整数、步骤、操作、元素、组件和/或单元,但不排除存在或添加一种或多种其他特征、整数、步骤、操作、元素、组件、单元和/或其群组。

要理解,本文描述的方面和实施方案包括“由方面和实施方案组成”和/或“基本上由其组成”。对于本文描述的所有方法、系统、组合物和器件来说,该方法、系统、组合物和器件可或者包括所列出的组分或步骤,或者可“由所列出的组分或步骤组成”或“基本上由其组成”。当一个系统、组合物或器件被描述为“基本上由所列出的组分、系统、组合物或器件组成”时,其含有所列出的组分,且可含有实质上不影响系统、组合物或器件性能的其他组分,但不含有实质上影响除了明确地列出的那些组分以外的系统、组合物或器件性能的任何其他组分,或者不含有显著浓度或含量实质上影响系统、组合物或器件性能的额外的组分。当一种方法被描述为“基本上由所列出的步骤组成”时,该方法包括所列出的步骤,且可包括实质上没有影响方法结果的其他步骤,但该方法不包括除了明确地列出的那些步骤以外的实质上影响方法的结果的其它步骤。

在本发明的公开内容中,在各种实施方案中,“实质上不含”具体的组分、具体的组合物、具体的化合物或具体的成分是指存在以重量计小于约5%、小于约2%、小于约1%、小于约0.5%、小于约0.1%、小于约0.05%、小于约0.025%或小于约0.01%具体的组分、具体的组合物、具体的化合物或具体的成分。优选地,“实质上不含”具体的组分、具体的组合物、具体的化合物或具体的成分是指存在以重量计小于约1%具体的组分、具体的组合物、具体的化合物或具体的成分。

根据下述详细说明,额外的优点对本领域技术人员来说是容易显而易见的。本文中实施例和说明书被视为性质上是阐述性的而不是限制性的。

附图简述

参考附图,描述例举的实施方案,其中:

图1A是在30倍放大下和离主表面45o处实施例1A的图像。

图1B是在30倍放大下和离主表面45o处实施例1B的图像。

图2是在30倍放大下和离主表面45o处实施例2的图像。

图3是在30倍放大下和离主表面45o处实施例3的图像。

详细说明

本文描述了具有TPU覆盖层的交联的闭孔共挤出的聚烯烃泡沫以及生产这种结构体的方法。申请人已发现,共挤出聚烯烃泡沫组合物与TPU覆盖层可克服与用电晕、等离子体或化学品处理聚烯烃泡沫表面有关的问题。具体地,本文公开的结构体可容易地粘结到氨酯基粘合剂和聚氨酯泡沫上且可避免使得产品因货架期导致对粘合到氨酯基粘合剂和聚氨酯泡沫上不那么敏感。

生产具有TPU覆盖层的交联的闭孔共挤出的聚烯烃泡沫的方法可包括下述步骤:(a)共挤出、(b)辐照和(c)发泡。

共挤出是同时挤出材料的多层。这类挤出可利用两个或更多个挤出机递送稳定体积通量的材料到挤出头(模头)中,所述挤出头可以所需形式挤出各材料。在共挤出步骤中,可将组合物进料到多个挤出机中,形成未发泡的多层结构。例如,“A”泡沫组合物可进料到一个挤出机中,和“B”覆盖组合物可进料到第二挤出机中。将各成分进料到挤出机内的方法可基于挤出机的设计和可获得的材料处理设备。视需要,可在进料到挤出机内之前,进行泡沫和覆盖组合物中各成分的共混,以促进其分散。Henshel混合器可用于这种共混。可共混所有成分并通过挤出机内的单一端口进料。也可将各成分通过针对每一成分单独指定的端口单独进料。例如,若交联促进剂或任何其他添加剂是液体,则可将促进剂和/或添加剂通过挤出机上的一个或多个进料浇口或者通过挤出机上的排放开口(若配有排放口的话)添加,而不是与固体成分共混。也可使用共混成分和单独成分的端口进料的组合。

每一挤出机可递送稳定量的每一组合物到一个或多个岐管和接着挤片模头内,以生成未发泡的共挤出多层片材。存在共挤出材料的两种常见方法:(1)供料头岐管(feed block manifolds),和(2)模头内的多-岐管。供料头岐管的元件可包括:(a)用于上层、中间层和下层的入口端口;(b)流线形熔体层压区域,其将单独的流动物流引导为在供料头内的一个层压的熔体物流;(c)在供料头和挤片模头之间的连装板;和/或(d)挤片模头(与单层模头类似),其中层压的熔体物流进入到模头的中心并沿着岐管散开,从而作为单独的多层挤出物流出模头出口。多-岐管模头的元件可以是:(a)与单层模头类似,所不同的是存在大于一个进料通道;(b)每一熔体通道具有它自己的调节排以供流动控制;和/或(c)熔体物流聚集在出口附近的模头内部并作为单独的多层挤出物流出。

可通过岐管和/或模头的设计,确定层厚。例如,80/20供料头岐管可递送约4:1比值的组合物,当每一挤出机的速度和尺寸因此匹配时。这一比值可通过改变例如下述参数来变化:(a)进料到每一挤出机内的材料的量,(b)在一个挤出机和另一个之间的相对挤出速度,(c)每一挤出机的相对尺寸,和/或(d)各层的组成(即粘度)。

可通过总的模头间隙控制总的多层片材的厚度。然而,可例如通过拉伸(即“拉延”)熔融的多层挤出物和/或使熔融的多层挤出物压平通过间隙来进一步调节总的多层片材的厚度。

本文公开的多层结构可包括由不同组合物制成的至少两层,其中至少一层可含有TPU(热塑性聚氨酯)。另外,多层结构可包括由可发泡或已发泡组合物制成的至少一层。在一些实施方案中,多层结构可包括至少一个“A”聚烯烃泡沫层和至少一个“B”TPU覆盖层。在一些实施方案中,“B”TPU覆盖层也可包括聚烯烃。在一些实施方案中,“A”聚烯烃泡沫层也可包括TPU。在一些实施方案中,“B”TPU覆盖层也可以是可发泡或已发泡的。

进料到挤出机内的可发泡组合物可包括至少一种聚丙烯、至少一种聚乙烯、或其组合。在一些实施方案中,泡沫组合物可形成多层结构体的聚烯烃泡沫层(A)。在一些实施方案中,泡沫组合物可形成多层结构体的TPU覆盖层(B)。

聚丙烯可含有弹性或软化性组分,典型地乙烯或橡胶组分,和因此包括但不限于聚丙烯、抗冲改性的聚丙烯、聚丙烯-乙烯共聚物、抗冲改性的聚丙烯-乙烯共聚物、茂金属聚丙烯、茂金属聚丙烯-乙烯共聚物、茂金属聚丙烯烯烃嵌段共聚物(具有受控的嵌段序列)、聚丙烯基聚烯烃塑性体、聚丙烯基聚烯烃弹性-塑性体、聚丙烯基聚烯烃弹性体、聚丙烯基热塑性聚烯烃共混物和聚丙烯基热塑性弹性共混物。此外,聚丙烯可以用聚醚胺改性。

聚乙烯包括但不限于LDPE、LLDPE(均聚物、与丁烯或己烯或辛烯的共聚物、与丁烯和/或己烯和/或辛烯的三元共聚物)、VLDPE(均聚物、与丁烯或己烯或辛烯的共聚物、与丁烯和/或己烯和/或辛烯的三元共聚物)、VLLDPE(均聚物、与丁烯或己烯或辛烯的共聚物、与丁烯和/或己烯和/或辛烯的三元共聚物)、HDPE、聚乙烯-丙烯共聚物、茂金属聚乙烯、茂金属乙烯-丙烯共聚物和茂金属聚乙烯烯烃嵌段共聚物(具有受控的嵌段序列),它们中的任何一种可含有接枝的相容剂或含有乙酸酯和/或酯基团的共聚物。这些聚乙烯类物质可用聚醚胺改性。

进料到挤出机内的泡沫组合物也可包括至少一种TPU。TPU包括但不限于基于聚酯、聚醚、聚己内酯的热塑性聚氨酯,和TPU共聚物,例如聚己内酯共聚酯。TPU也可以是芳族或脂族变体。

在一些实施方案中,在泡沫组合物内至少一种聚丙烯和/或至少一种聚乙烯的量可以大于或等于约70PPHR、约75PPHR、约80PPHR、约85PPHR、约90PPHR、约95PPHR或约100PPHR的组合物。在一些实施方案中,在泡沫层内至少一种聚丙烯和/或至少一种聚乙烯的量可以是至少约50wt%、约60wt%、约65wt%、约70wt%、约75wt%、约80wt%、约85wt%或约90wt%的泡沫层。在一些实施方案中,在泡沫层内至少一种聚丙烯和/或至少一种聚乙烯的量可以是约50-95wt%、约65-90wt%、约70-90wt%或约70-85wt%的泡沫层。

在一些实施方案中,在泡沫组合物内TPU的量可以是小于或等于约30PPHR、约25PPHR、约20PPHR或约15PPHR的组合物。在一些实施方案中,在泡沫层内的TPU可以是最多约25wt%、约20wt%或约15wt%的泡沫层。在一些实施方案中,在泡沫层内的TPU可以是约0-25wt%、约1-22wt%、约5-20wt%、约10-20wt%或约10-15wt%的泡沫层。

进料到挤出机内的覆盖组合物可包括至少一种TPU和至少一种聚丙烯和/或至少一种聚乙烯-以上描述的TPU、聚丙烯和聚乙烯。在一些实施方案中,覆盖组合物可形成多层结构体的TPU覆盖层(B)。

在一些实施方案中,在覆盖组合物内TPU的量可以是大于或等于约40PPHR、约50PPHR、约55PPHR、约60PPHR、约70PPHR、约75PPHR、约85PPHR、约95PPHR或约100PPHR的组合物。在一些实施方案中,在覆盖层内的TPU可以是至少约40wt%、约45wt%、约50wt%、约55wt%、约60wt%、约70wt%、约75wt%、约85wt%、约95wt%或约100wt%的覆盖层。在一些实施方案中,在覆盖层内的TPU可以是约40-85wt%、约55-80wt%或约55-75wt%的覆盖层。

在一些实施方案中,在覆盖组合物内至少一种聚丙烯和/或至少一种聚乙烯的量可以是小于或等于约60PPHR、约55PPHR、约50PPHR、约45PPHR、约40PPHR、约30PPHR、约25PPHR、约15PPHR或约5PPHR的组合物。在一些实施方案中,在覆盖层内至少一种聚丙烯和/或至少一种聚乙烯的量可以是最多约60wt%、约55wt%、约50wt%、约45wt%、约40wt%、约30wt%、约25wt%、约15wt%、约10wt%或约5wt%的覆盖层。在一些实施方案中,在覆盖层内至少一种聚丙烯和/或至少一种聚乙烯的量可以是约15-60wt%、约20-45wt%或约20-40wt%的覆盖层。

由于可采用所公开的组合物制备宽范围的多层结构体和发泡制品,因此,可在组合物中使用宽范围的聚丙烯、聚乙烯和TPU,以满足各种工艺制造要求和商业最终使用要求。

可商购的“热塑性聚氨酯”(TPU)的非限制性实例包括但不限于获自Covestro的系列,获自BASF的系列,获自Lubrizol的系列和获自Huntsman的系列。

聚丙烯的非限制性实例是全同立构均聚丙烯。可商购的实例包括但不限于获自Braskem的FF018F,获自Petrochemicals的3271和获自Conoco的COPYLENE CH020。

“抗冲改性的聚丙烯”的非限制性实例是具有乙烯-丙烯(EP)共聚物橡胶的均聚丙烯。橡胶可以是无定形或半结晶的,但其量不足以赋予材料任何塑性或弹性性能。可商购的“抗冲改性的聚丙烯”的几个非限制性实例是获自Braskem的TI4003F和TI4015F,以及获自LyondellBasell的8623和SB786。

“聚丙烯-乙烯共聚物”是具有无规乙烯单元的聚丙烯。可商购的“聚丙烯-乙烯共聚物”的几个非限制性实例是获自Total Petrochemicals的6232,7250FL和Z9421,获自Braskem的6D20和DS6D81,以及获自LyondellBasell的RP311H和ADSYL 7415 XCP。

“抗冲改性的聚丙烯-乙烯共聚物”是具有无规乙烯单元和具有乙烯-丙烯(EP)共聚物橡胶的聚丙烯。所述橡胶可以是无定形或半结晶的,但其量不足以赋予材料任何塑性或弹性性能。可商购的抗冲改性的聚丙烯-乙烯共聚物的非限制性实例是获自Braskem的6910。

“茂金属聚丙烯”是茂金属间同立构均聚丙烯、茂金属无规立构均聚丙烯和茂金属全同立构均聚丙烯。“茂金属聚丙烯”的非限制性实例是以商品名METOCENE获自LyondellBasell和以商品名ACHIEVE获自ExxonMobil的那些。茂金属聚丙烯也可商购于Total Petrochemicals,且包括但不限于等级M3551、M3282MZ、M7672、1251、1471、1571和1751。

“茂金属聚丙烯-乙烯共聚物”是具有无规乙烯单元的茂金属间同立构、茂金属无规立构和茂金属全同立构聚丙烯。可商购的实例包括但不限于获自Total Petrochemicals的MR10MX0和MR60MC2,以及获自LyondellBasell的SM170G。

“茂金属聚丙烯烯烃嵌段共聚物”是具有非随机分布(即具有受控的嵌段序列)的交替的可结晶硬“嵌段”和无定形软“嵌段”的聚丙烯。“茂金属聚丙烯烯烃嵌段共聚物”的实例包括但不限于获自Dow Chemical Company的INTUNE产品系列。

“聚丙烯基聚烯烃塑性体”(POP)和“聚丙烯基聚烯烃弹性塑性体”是具有塑性和弹性塑性性能的茂金属和非茂金属丙烯基共聚物二者。非限制性实例是以商品名VERSIFY(茂金属)商购于Dow Chemical Company,商购于ExxonMobil的VISTAMAXX(茂金属),和商购于LyondellBasell的KOATTRO的那些(非-茂金属,丁烯-1基塑性聚合物系列,某些等级是丁烯-1均聚物基和其他是聚丙烯-丁烯-1共聚物基材料)。

“聚丙烯基聚烯烃弹性体”(POE)是具有弹性性能的茂金属和非-茂金属丙烯基共聚物二者。丙烯基聚烯烃弹性体的非限制性实例是以商品名VERSIFY(茂金属)商购于Dow Chemical Company和以VISTAMAXX(茂金属)商购于ExxonMobil的那些聚合物。

“聚丙烯基热塑性聚烯烃共混物”(TPO)是聚丙烯、聚丙烯-乙烯共聚物、茂金属均聚丙烯和茂金属聚丙烯-乙烯共聚物,其乙烯-丙烯共聚物橡胶含量足以大到使热塑性聚烯烃共混物(TPO)得到塑性、弹性塑性或弹性性能。聚丙烯基聚烯烃共混物聚合物的非限制性实例是以商品名EXCELINK商购于JSR Corporation,以THERMORUN和ZELAS商购于Mitsubishi Chemical Corporation,以ADFLEX和SOFTELL商购于LyondellBasell,和以TELCAR商购于Teknor Apex Company的那些聚合物共混物。

“聚丙烯基热塑性弹性体共混物”(TPE)是聚丙烯、聚丙烯-乙烯共聚物、茂金属均聚丙烯和茂金属聚丙烯-乙烯共聚物,其具有用量足以大到使热塑性弹性体共混物(TPE)得到塑性、弹性塑性或弹性性能的二嵌段或多嵌段热塑性橡胶改性剂(SEBS、SEPS、SEEPS、SEP、SERC、CEBC、HSB和类似物)。聚丙烯基热塑性弹性体共混物聚合物的非限制性实例是以商品名GLS DYNAFLEX和GLS VERSAFLEX商购于Polyone Corporation,和以商购于Teknor Apex Company,和以商购于A.Schulman的那些聚合物共混物。

“VLDPE”和“VLLDPE”是含有弹性或软化性组分(典型地丁烯和/或己烯和/或辛烯的α-烯烃)的甚低密度聚乙烯和线性甚低密度聚乙烯。VLDPE和VLLDPE的非限制性实例以商品名FLEXOMER商购于the Dow Chemical Company和以STAMYLEX的特定等级商购于Borealis。

“茂金属聚乙烯”是具有范围从非弹性到弹性性能的茂金属基聚乙烯。茂金属聚乙烯的非限制性实例以商品名ENGAGE商购于Dow Chemical Company,以ENABLE和EXCEED商购于ExxonMobil,和以QUEO商购于Borealis。

“茂金属聚乙烯烯烃嵌段共聚物”是具有非随机分布(即具有受控的嵌段序列)的交替的可结晶硬“嵌段”和无定形软“嵌段”的聚乙烯。“茂金属聚乙烯烯烃嵌段共聚物”的实例包括但不限于获自the Dow Chemical Company的INFUSE产品系列。

这些聚乙烯也可以是含有乙酸酯和/或酯基团的共聚物和三元共聚物。共聚单体基团包括但不限于乙酸乙烯酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸缩水甘油酯和丙烯酸。非限制性实例以商品名和商购于DuPont;以和商购于Arkema;以ESCORENE,ESCOR和OPTEMA商购于ExxonMobil。

通过在官能化聚丙烯和聚乙烯上接枝聚醚胺,生产聚醚胺改性的聚丙烯和聚乙烯。官能化聚丙烯和聚乙烯是其中单体典型地通过自由基反应接枝的那些。制备官能化聚丙烯和聚乙烯的合适单体例如是烯键式不饱和单羧酸,例如丙烯酸或甲基丙烯酸,和相应的叔丁酯,例如(甲基)丙烯酸叔丁酯,烯键式不饱和二羧酸,例如富马酸、马来酸和衣康酸和相应的单和/或二叔丁酯,例如富马酸单-或二-叔丁酯和马来酸单-或二-叔丁酯,烯键式不饱和二羧酸酐,例如马来酸酐,含磺基或磺酰基的烯键式不饱和单体,例如对苯乙烯磺酸,2-(甲基)丙烯酰胺基-2-甲基丙磺酸或2-磺酰基-(甲基)丙烯酸酯,含噁唑啉基的烯键式不饱和单体,例如乙烯基噁唑啉和乙烯基噁唑啉衍生物,和含环氧基的烯键式不饱和单体,例如(甲基)丙烯酸缩水甘油酯或烯丙基缩水甘油基醚。

最常见的可商购的官能化聚丙烯是用马来酸酐官能化的那些。非限制性实例是获自Mitsui Chemicals的QF和QB系列,获自LyondellBasell的6000系列,获自DuPont的5000系列和获自Arkema的PP系列。

最常见的可商购的官能化聚乙烯也是用马来酸酐官能化的那些。非限制性实例是获自Mitsui Chemicals的NF和SE系列,获自LyondellBasell的1000、2000和3000系列,获自DuPont的2100、3000、3800、3900、4000系列,以及获自Arkema的PE,T,和一些系列。

用其他接枝的单体官能化的聚乙烯也是可商购的。非限制性实例包括获自DuPont的1100、2200和3100系列,和获自Arkema的AX系列。

注意,除了用马来酸酐官能化的聚丙烯和聚乙烯以外的聚合物也是可商购的。例如,获自Addivant的系列是用马来酸酐官能化的系列EPDM橡胶。在另一实例中,获自Kraton的KRATON FG系列是用马来酸酐官能化的系列SEBS聚合物。

然后可在任何常规的混合装置,例如挤出机、间歇混合器、连续混合器或捏合机内,将聚醚胺接枝到这些官能团上。用于聚醚胺的合适聚醚嵌段包括聚乙二醇、聚丙二醇、聚乙二醇和聚丙二醇的共聚物、聚(1,2-丁二醇)和聚(1,4-丁二醇)。可使用公知的方法来胺化二醇类,以生产聚醚胺。一般地,使用公知方法,例如甲氧基或羟基引发的反应,由环氧乙烷、环氧丙烷或其组合制备二元醇。当使用环氧乙烷和环氧丙烷二者时,若期望无规聚醚,则该氧化物可同时反应,或者若期望嵌段聚醚,则按序反应。合适的可商购的聚醚胺包括单胺、二胺、三胺,仲、受阻、高转化率和聚1,4-丁二醇(PTMEG),和单胺,它们全部获自Huntsman。技术手册ThePolyetheramines(2007年5月由Hunstman Corporation出版)和Modification of Polyolefins withPolyetheramines(2009年10月由Huntsman Corporation出版)阐述了可用于接枝反应的宽范围的聚醚胺类型。这些技术手册在本文中通过参考全文引入。注意,聚醚胺改性的聚丙烯和聚乙烯有时称为AMAPPA(胺-马来酸化聚丙烯加合物)和AMAPEA(胺-马来酸化聚乙烯加合物)。

任何可发泡层和任何覆盖层的组合物可含有在230℃下熔体流动指数为约0.1-25g/10min的至少一种聚丙烯和/或在190℃下熔体流动指数为约0.1-25g/10min的至少一种聚乙烯。在一些实施方案中,聚丙烯和/或聚乙烯的熔体流动指数优选分别在230℃下和在190℃下为约0.3-20g/10min,和更优选分别在230℃下和在190℃下为约0.5-15g/10min。根据ASTM D1238,针对聚丙烯和聚丙烯基材料在230℃下,和针对聚乙烯和聚乙烯基材料在190℃下,使用2.16kg活塞共10分钟,定义并测量聚合物的“熔体流动指数”(MFI)值。针对相对高熔体流动的树脂可降低试验时间。

MFI可提供聚合物流动特征的量度,且是聚合物材料的分子量和可加工性的指示。若MFI值太高(这对应于低粘度),则不可能满意地进行根据本发明公开内容的挤出。与太高的MFI值有关的问题包括在挤出期间低的压力、设定厚度曲线的问题、因低熔体粘度导致不均匀的冷却曲线、差的熔体强度和/或机械问题。与太低的MFI值有关的问题包括在熔体加工期间高的压力、片材品质和轮廓问题和较高的挤出温度(它引起发泡剂分解和活化的风险)。

上述MFI范围对于发泡工艺来说也是重要的,因为它们可反映材料的粘度和粘度对发泡具有影响。在不束缚于理论的情况下,认为,存在为什么特定MFI值极其有效的若干原因。较低MFI的材料可改进一些物理性能,因为分子链长度较大,引起当施加应力时链流动所需的能量更多。此外,分子链(MW)越长,链可结晶的结晶实体越多,从而通过分子内连接提供更大的强度。然而,在太低的MFI下,粘度变得太高。另一方面,具有较高MFI值的聚合物具有较短的链。因此,在给定体积的具有较高MFI值的材料内,相对于具有较低MFI的聚合物,在微观水平上存在更多的链端,它们可旋转并因这种旋转所需的空间导致产生自由体积(例如,在聚合物的Tg或玻璃化转变温度以上出现旋转)。这可增加自由体积并使得能在应力作用下容易流动。

除了聚合物以外,进料到挤出机内的组合物也可含有与生产所公开的多层结构体相容的添加剂。常见的添加剂包括但不限于有机过氧化物、抗氧剂、润滑剂、热稳定剂、着色剂、阻燃剂、抗静电剂、成核剂、增塑剂、抗微生物剂、杀真菌剂、光稳定剂、UV吸收剂、防粘连剂、填料、除味剂、气味吸收剂、增稠剂、泡孔尺寸稳定剂、金属失活剂及其组合。

在一些实施方案中,在泡沫组合物和/或覆盖组合物内除了化学发泡剂和交联促进剂以外的添加剂的量可以小于或等于约20PPHR、约15PPHR、约10PPHR、约8PPHR、约6PPHR、约5PPHR或约4PPHR的组合物。在一些实施方案中,在泡沫组合物和/或覆盖组合物内除了化学发泡剂和交联促进剂以外的添加剂的量可以是约1-10PPHR、约1-8PPHR、约3-8PPHR、约5-8PPHR或约3-5PPHR的组合物。在一些实施方案中,在泡沫层内除了化学发泡剂和交联促进剂以外的添加剂的量可以是约1-15wt%、约3-10wt%、约5-10wt%或约5-7wt%的泡沫层。在一些实施方案中,在覆盖层内除了化学发泡剂和交联促进剂以外的添加剂的量可以是约1-10wt%、约2-6wt%或约3-5wt%的覆盖层。

与各成分如何进料到挤出机内无关,在挤出机内的剪切力和混合可足以产生均匀的层。同向旋转和逆向旋转的双螺杆挤出机可提供充足的剪切力和混合通过挤出机机筒,以挤出具有均匀性能的层。

比能是在挤出用于层的各成分期间施加多少功和挤出工艺如何强烈的指示。比能定义为施加到通过挤出机加工的材料上的能量,归一化成以kg为基础。以单位千瓦施加的能量/每小时进料的全部材料(kg)量化比能。根据下式计算比能:

其中

KW(施加)=(KW(电动机额定功率)x(%十进制形式可允许的最大扭矩)x RPM(实际运转的RPM)x0.97(齿轮箱效率))/(最大RPM(挤出机容量))

使用比能量化在挤出机内剪切并混合各成分的量。用于形成本文公开的多层结构体的挤出机可产生至少约0.090kW·hr/kg、优选至少约0.105kW·hr/kg和更优选至少约0.120kW·hr/kg的比能。

任何可发泡层可含有化学发泡剂(CFA)。用于任何可发泡层的挤出温度可以是比化学发泡剂的热分解起始温度低至少10℃。若挤出温度超过发泡剂的热分解温度,则发泡剂将分解,从而导致非所需的“预发泡”。任何覆盖层的挤出温度可以比与覆盖层相邻的任何可发泡层内的化学发泡剂的热分解起始温度低至少10℃。若覆盖层的挤出温度超过相邻层内发泡剂的热分解温度,则在相邻层内的发泡剂可分解,从而同样导致非所需的“预发泡”。

泡沫组合物可包括各种不同的化学发泡剂。化学发泡剂的实例包括但不限于偶氮化合物、肼化合物、卡巴肼、四唑、亚硝基化合物和碳酸盐。另外,可单独或以任何组合使用化学发泡剂。在一些实施方案中可使用的一种化学发泡剂是偶氮二碳酰胺(ADCA)。ADCA的热分解典型地在约190℃至230℃的温度下发生。为了防止ADCA在挤出机内热分解,挤出温度可以维持等于或低于190℃。

在泡沫组合物和/或覆盖组合物内化学发泡剂的量可以小于或等于约40PPHR、约30PPHR、约20PPHR、约15PPHR、约10PPHR或约8PPHR的组合物。在一些实施方案中,在泡沫组合物和/或覆盖组合物内化学发泡剂的量可以是约1-20PPHR、约2-15PPHR、约5-10PPHR或约6-8PPHR的组合物。在一些实施方案中,在泡沫层内化学发泡剂的量可以是约1-20wt%、约2-15wt%、约5-10wt%或约6-8wt%。在一些实施方案中,在覆盖层内化学发泡剂的量可以是约0.1-5wt%、约0.5-3wt%或约1-2wt%的覆盖层。化学发泡剂的量可取决于未发泡的片材厚度、所需的泡沫厚度、所需的泡沫密度、挤出的材料、交联百分比、化学发泡剂的类型(不同的发泡剂可产生显著不同量的气体)等。

注意,以上列出的化学发泡剂的量可能仅仅特定针对ADCA。其他发泡剂可产生变化量体积的气体/CFA质量,和可以相应地考虑。例如,当比较ADCA与化学发泡剂对甲苯磺酰基半卡巴肼(TSS)时,若可发泡层含有40PPHR ADCA,则要求约63PPHR TSS,以在发泡步骤期间生成大致相同量的气体。

若可热分解的发泡剂的分解温度和具有最高熔点的聚合物的熔点之间的差值大,则可使用使发泡剂分解的催化剂。例举的催化剂包括但不限于氧化锌、氧化镁、硬脂酸钙、甘油和脲。挤出的下限温度可以是具有最高熔点的聚合物的熔点。若挤出温度下降到低于具有最高熔点的聚合物的熔融温度,则出现非所需的“未熔体”。一旦发泡,则在这一温度下限以下挤出的挤出层可能显示出不均匀的厚度、不均匀的泡孔结构、泡孔坍塌夹气和其他非所需的特征。

挤出未发泡的多层片材相对于挤出已发泡的多层片材(常常称为“挤出发泡”)完全不同。可用物理发泡剂、化学发泡剂或物理和化学发泡剂的混合物进行挤出发泡。物理发泡剂可以是在高压下直接注入到聚合物熔体内的无机和有机气体(氮气、二氧化碳、戊烷、丁烷等)。当聚合物熔体离开挤出模头时,所述气体可以成核并膨胀,生成发泡的聚合物时。化学发泡剂(例如前面描述的那些实例)可以是在分解温度下放热或吸热分解以产生气体的固体。由化学发泡剂生成的典型的气体包括氮气、一氧化碳、二氧化碳、氨气等。为了挤出发泡化学发泡剂,化学发泡剂可分散在聚合物熔体内,且加热熔体到比化学发泡剂的分解温度高的温度,同时仍然在挤出机和模头内。当聚合物熔体离开挤出模头时,可制造发泡的聚合物。

与发泡剂是否是物理、化学发泡剂或其组合无关,典型的挤出发泡生成聚合物片材,其中两个主表面比在所公开的方法中生产的相当的结构体显著粗糙。在许多应用中,多层(以及单层)泡沫片材的表面状况可能是关键的,和因此挤出发泡片材不可能用于这些应用。这些应用可能要求平滑的泡沫表面,以获得所需的性能,例如容易层压到膜、织物、纤维层和皮革上,在层压体内的接触百分比,视觉美学等。PCT公布WO 2016109544(在本文中通过参考全文引入)包括阐述在挤出发泡聚合物片材和通过所公开的方法生产的相当的发泡聚合物片材之间表面粗糙度差异的实例。

一般地可通过较大尺寸的泡孔,引起挤出发泡的制品的比较粗糙的表面(当与根据本发明公开内容生产的泡沫相比时)。尽管泡孔尺寸和尺寸分布在大多数商业应用中不是关键的,但因为表面粗糙度是泡孔尺寸的函数,因此对于要求平滑泡沫表面的应用来说,与较小泡孔的泡沫相比,具有较大泡孔的泡沫不那么理想。

未发泡的共挤出的多层结构体的厚度可以是约0.1-30mm、约0.2-25mm、约0.3-20mm或约0.4-15mm。任何单独的A或B层可具有至少约0.05mm、至少约0.1mm、至少约0.15mm和至少约0.2mm的厚度。在一些实施方案中,未发泡的共挤出多层结构体中的覆盖层的厚度可以是约0.1-300微米、约25-250微米、约50-200微米、约60-150微米、约60-90微米、约80-110微米、约90-130微米或约120-150微米。未发泡的覆盖层厚度不限于它可能相对总的未发泡的共挤出的多层片材多薄,且可以是约0.1μm薄,这是在多层挠性包装和阻挡薄膜内所使用的非常薄的衔接层的典型厚度。在一些实施方案中,未发泡的共挤出的多层结构的泡沫层的厚度可以是约0.1-5mm、约0.5-3mm、约1-2mm或约1-1.5mm。

对于其中覆盖层不打算发泡或者仅仅轻微发泡的情况来说,覆盖层可以是薄的且当熔融时容易弯曲,以便在发泡步骤期间不显著妨碍可发泡层的膨胀。覆盖层的厚度、挠性、熔体强度和交联百分比在可能妨碍其他层的发泡膨胀的许多物理性能当中。类似地、可发泡层的厚度、挠性、熔体强度和交联百分比以及已发泡层的最终厚度和密度也是覆盖层是否可抑制可发泡层膨胀的因素。对于最大的覆盖层厚度来说一般指导原则是它应当不大于总的共挤出未发泡片材的约20%、约15%、约10%或约5%。若覆盖层的厚度大于总的共挤出未发泡片材的约20%,则当加热多层片材并发泡时,可能出现多层片材卷曲、弯曲和在自身上折叠的问题。

在(例如通过两个挤出机)生产共挤出的片材之后,可对挤出的多层片材进行用电离辐射在规定暴露下辐照,以交联多层片材的组合物,进而获得辐照过的交联多层结构体。电离辐射常常无法在聚丙烯、聚丙烯基材料、一些聚乙烯和一些聚乙烯基材料上产生充分的交联程度。因此,可添加交联促进剂到进料至挤出机内的组合物中,以促进交联。通过电离辐射交联的聚合物常常称为“物理交联的”。

重要的是区分“物理”交联和“化学”交联。在化学交联中,采用交联促进剂生成交联点,但不使用电离辐射。化学交联典型地牵涉使用过氧化物、硅烷或者乙烯基硅烷类。在过氧化物交联工艺中,典型地在挤出模头内发生交联。对于硅烷和乙烯基硅烷交联工艺来说,典型地在挤出后、在其中挤出材料的交联采用热和湿气加速的辅助操作中发生交联。与化学交联方法无关,化学交联的泡沫片材典型地显示出显著糙于在所公开的方法中生产的相当结构体的主表面。多层(以及单层)泡沫片材的表面状况在许多应用中可能是关键的和因此对于这些应用来说不可能使用化学交联的泡沫片材。这些应用可能要求平滑的泡沫表面,以获得所需的性能,例如容易层压到薄膜、织物、纤维层和皮革上,在层压体内的接触面积百分,视觉美学等。PCT公布WO 2016109544包括阐述在化学交联的发泡聚合物片材和由所公开的方法生产的相当的发泡聚合物片材之间的表面粗糙度差别的实例。

可通常通过较大尺寸的泡孔引起化学交联的发泡制品的比较粗糙的表面(当与根据本发明公开内容生产的泡沫相比时)。尽管在大多数商业应用中泡孔尺寸和尺寸分布不是关键的,但因为表面粗糙度是泡孔尺寸的函数,因此对于要求平滑泡沫表面的应用来说,与具有较小泡孔的泡沫相比,具有较大泡孔的泡沫不那么理想。

电离辐射的实例包括但不限于α,β(电子束)、x-射线、γ和中子。在它们中,可使用具有均匀能量的电子束,制备交联的聚烯烃泡沫/TPU覆盖结构体。当用电子束辐照时的暴露时间、辐照频率和加速电压可随所打算的交联度和多层结构体的厚度而宽泛地变化。然而,电离辐射通常可在约10-500kGy、约20-300kGy或约20-200kGy的范围内。若暴露太低,则发泡时泡孔稳定性不可能维持。若暴露太高,则所得多层泡沫结构体的可模塑性可能差。可模塑性是当多层泡沫片材用于热成形应用中时的所需性能。此外,未发泡的片材可以通过当暴露于电子束辐射下时放热的热量释放来软化,结果当暴露太高时,该结构体可能变形。另外,聚合物组分也可因过度的聚合物链切断而降解。

共挤出的未发泡的多层片材可单独辐照最多4次,优选不大于2次,和更优选仅仅一次。若辐照频率大于约4次,则聚合物组分可能遭受降解,结果当发泡时,例如在所得泡沫层内不会生成均匀的泡孔。当挤出的结构体的厚度大于约4mm时,可优选用电离辐射辐照多层型材的每一主表面,使得主表面和内层的交联程度更加均匀。

用电子束辐照提供的优点在于,可通过控制电子的加速电压,有效地交联具有各种厚度的共挤出的片材。加速电压范围一般地可以是约200-1500kV、约400-1200kV或约600-1000kV。若加速电压小于约200kV,则辐照不可能到达共挤出片材的里面部分。结果,当发泡时,在里面部分的泡孔可能粗糙和不均匀。另外,对于给定厚度的型材来说,太低的加速电压可引起电弧放电,从而在发泡结构体内导致“针孔”或“隧道”。另一方面,若加速电压大于约1500kV,则聚合物可能降解。

与所选的电离辐射线的类型无关,进行交联,以便挤出结构体的组合物交联约20-75%或约30-60%,这通过“Toray Gel Fraction Percentage Method”来测量。根据“Toray Gel Fraction Percentage Method”,使用四氢化萘溶剂溶解组合物内的未交联组分。原则上,将未交联的材料溶解在四氢化萘中,且交联度表达为在整个组合物内交联材料的重量百分比。测定聚合物交联百分比所使用的装置包括100目(0.0045英寸线材直径)、304型不锈钢袋、编号的线材和夹子、Miyamoto恒温油浴装置、分析天平、通风橱、气体燃烧器、高温烘箱、抗静电枪和三个具有盖子的3.5升宽嘴不锈钢容器。所使用的试剂与材料包括四氢化萘高分子量溶剂、丙酮和硅油。具体地,称重空的线网袋并记录重量。对于每一样品来说,称取100mg±5mg样品并转移到线网袋中。记录典型地线网袋和薄切片的泡沫切割物形式的样品的重量。将每一袋子附着到相应编号的线材和夹子上。当溶剂温度达到130℃时,将这一捆(袋子和样品)浸渍在溶剂内。上下摇动样品约5或6次,以使任何空气泡松散并完全润湿样品。将样品附着到搅拌器上并搅拌三小时,以便溶剂可溶解所述泡沫。然后在通风橱内冷却该样品。通过在第一丙酮的容器内上下摇动约7或8次,洗涤样品。在第二丙酮洗涤中第二次洗涤样品。将洗涤过的样品在与以上一样的新鲜丙酮的第三容器内再次洗涤。然后在通风橱内悬挂样品,蒸发丙酮约1-5分钟。然后在干燥烘箱内,在约120℃下干燥样品约1小时。冷却样品最小约15分钟。在分析天平上称重线网袋,并记录重量。然后使用式100*(C-A)/(B-A),计算交联,其中A=空的线网袋重量;B=线网袋重量+在四氢化萘内浸渍之前泡沫样品的重量;和C=线网袋重量+在四氢化萘内浸渍之后溶解的样品重量。

合适的交联剂包括但不限于可商购的双官能、三官能、四官能、五官能和更高官能团的单体。这种交联单体以液体、固体、粒料和粉末形式获得。实例包括但不限于丙烯酸酯类或甲基丙烯酸酯类,例如1,6-己二醇二丙烯酸酯,1,6-己二醇二甲基丙烯酸酯,乙二醇二丙烯酸酯,乙二醇二甲基丙烯酸酯,三羟甲基丙烷三甲基丙烯酸酯,四羟甲基甲烷三丙烯酸酯,1,9-壬二醇二甲基丙烯酸酯和1,10-癸二醇二甲基丙烯酸酯;羧酸的烯丙酯(例如偏苯三酸三烯丙酯,均苯四酸三烯丙酯,和草酸二烯丙酯);氰尿酸或异氰尿酸的烯丙酯,例如氰尿酸三烯丙酯,和异氰尿酸三烯丙酯;马来酰亚胺化合物,例如N-苯基马来酰亚胺和N,N'-间亚苯基双马来酰亚胺;具有至少两个三键的化合物,例如邻苯二甲酸二炔丙酯和马来酸二炔丙酯;和二乙烯基苯。另外,这种交联剂可单独或以任何组合的方式使用。二乙烯基苯(DVB),一种双官能的液体交联性单体,可在本发明的公开内容中用作交联剂。

在泡沫组合物和/或覆盖组合物内交联剂的量可以小于或等于约4PPHR、约3PPHR、约2.5PPHR、约2PPHR、约1.5PPHR、约1PPHR或约0.5PPHR的组合物。在一些实施方案中,在泡沫组合物和/或覆盖组合物内交联剂的量可以是约0.1-5PPHR、约0.5-3PPHR、约1-3PPHR或约2-3PPHR的组合物。在一些实施方案中,在泡沫层内交联剂的量可以是约0.5-5wt%、约1-3wt%或约1.5-2.5wt%的泡沫层。在一些实施方案中,在覆盖层内交联剂的量可以是约0.1-2wt%、约0.3-1wt%或约0.4-0.6wt%的覆盖层。

注意,以上列出的交联剂用量可能仅仅特定针对DVB。与DVB相比,其他交联剂在交联中可能或多或少有效。因此,应当考虑对其它交联剂所要求的量。交联剂的交联效率可以根据但不限于电离辐射的剂量、待交联的聚合物、单体的化学结构、单体上的官能团数量和单体是液体或粉末而变化。

可使用各种不同技术生成交联点,且可以在分子间、在不同聚合物分子之间、在分子内、以及在单一聚合物分子的不同部分之间形成。这种技术包括但不限于提供独立于聚合物链的交联剂,和提供掺入含官能团的交联剂的聚合物链,所述官能团可形成交联点或者被活化形成交联点。

在辐照共挤出的片材之后,可通过加热交联的多层片材到比可热分解的发泡剂的分解温度高的温度来实现发泡。可在连续工艺中,在约200-260℃或约220-240℃下进行发泡。与生产连续泡沫片材的间歇方法相比,可优选连续发泡方法。

典型地可通过用熔融盐、辐射加热器、垂直或水平的热空气烘箱、微波能量或这些方法的组合,加热交联的多层片材,进行发泡。也可在在高压釜内、在浸渍工艺中使用例如的氮气,接着借助熔融盐、辐射加热器、垂直或水平热空气烘箱、微波能量或这些方法的组合而自由发泡,从而进行发泡。任选地,在发泡之前,可用预加热软化交联的多层片材。这可辅助稳定发泡时结构体的膨胀,尤其在采用厚和坚硬片材情况下。

可使用根据JIS K6767测量的截面或“总”密度而不是“芯”密度定义并测量多层泡沫片材的密度。使用以上描述的方法生产的多层泡沫片材可得到截面或“总”密度为约20-250kg/m3、约30-125kg/m3、约50-100kg/m3或约60-95kg/m3的泡沫。可通过发泡剂的量和挤出结构体的厚度来控制截面密度。若多层泡沫片材的密度小于约20kg/m3,则因实现该密度所需的化学发泡剂的量大导致该片材不可能有效地发泡。另外,若片材的密度小于约20kg/m3,则在发泡步骤期间片材的膨胀可能变得愈加难以控制。此外,若多层泡沫片材的密度小于约20kg/m3,则所述泡沫可能变得愈加易于泡孔坍塌。因此,可能难以在小于约20kg/m3的密度下,生产均匀截面密度和厚度的多层泡沫片材。

多层泡沫片材不限于约250kg/m3的截面密度。也可生产截面密度为约350kg/m3、约450kg/m3或约550kg/m3的泡沫。然而,可优选泡沫片材的密度小于约250kg/m3,因为较大的密度通常可能成本太高,当与可在给定应用中使用的其他材料相比时。

使用上述方法生产的泡沫层可具有闭孔。优选地,至少90%的泡孔具有未损坏的泡孔壁,优选至少95%,和更优选大于98%。平均泡孔尺寸可以是约0.05-1.0mm,和优选约0.1-0.7mm。若平均泡孔尺寸低于约0.05mm,则泡沫结构的密度典型地可以大于250kg/m3。若平均泡孔尺寸大于1mm,则所述泡沫可具有不均匀的表面。还可能的情形是,泡沫结构体非所需地撕裂,若在泡沫内的泡孔群不具有优选的平均泡孔尺寸。当泡沫结构体拉伸或其部分进行辅助工艺时,可出现这一问题。在泡沫层内的泡孔尺寸可具有双峰分布,这代表在相对圆形的泡沫结构的芯内的泡孔群和在相对平坦、薄和/或椭圆的泡沫结构表面附近的表皮内的泡孔群。

多层聚烯烃泡沫/TPU覆盖片材的总厚度可以是约0.2mm-50mm、约0.4mm-40mm、约0.6mm-30mm或约0.8mm-20mm。若厚度小于约0.2mm,则因从主表面中显著损失气体导致不可能有效地发泡。若厚度大于约50mm,则在发泡步骤期间的膨胀可能变得愈加难以控制。因此,可能愈加困难的是生产具有均匀截面密度和厚度的多层聚烯烃泡沫/TPU覆盖片材。在一些实施方案中,发泡的共挤出的多层结构体中的覆盖层的厚度可以是约0.1-100微米、约1-100微米、约5-75微米、约10-60微米、约15-50微米、约15-25微米、约20-50微米、约20-35微米或约25-30微米。在一些实施方案中,发泡共挤出的多层结构中的泡沫层的厚度可以是约0.1-5mm、约0.5-5mm、约1-5mm、约2-5mm或约2-4mm。

在一些实施方案中,可通过辅助工艺,例如切割、切片或粘结,获得所需的厚度。切割、切片或粘结可产生约0.1-100mm的厚度范围。

对于拟不发泡或轻微发泡的覆盖层来说,当多层片材发泡时,可减少覆盖层的厚度。这可能是由于可发泡层膨胀和因此拉伸覆盖层所致。因此,例如,若多层片材膨胀到其起始面积的两倍,则覆盖层的厚度可以预期为约一半。若多层片材膨胀到其起始面积的四倍,则可预期覆盖层的厚度下降到其起始厚度的约1/4。

所公开的多层聚烯烃泡沫/TPU覆盖片材可用于其中要求粘合到氨酯基粘合剂上的应用中。例如在泡沫带子和垫圈,地板衬层泡沫,层压到薄膜、织物、纤维层和皮革上的泡沫,和粘合到基底上的泡沫上,使用氨酯基粘合剂。

闭孔泡沫带子常用于例如窗玻璃之类的领域中,其中泡沫带子的长条置于两个窗格之间,以密封玻璃之间的空气。这可改进窗户的热绝缘性能。所述泡沫也可充当玻璃窗的缓冲垫以避免建筑物和窗框因每日和季节温度变化导致的热膨胀和收缩效果。同样,闭孔泡沫垫圈常用于密封和缓冲。手持电子器件和家用器具是可含有泡沫垫圈的两个实例。柔软的挠性泡沫片材通常可适合于作为带子或垫圈。

当多层泡沫片材用作带子或垫圈时,可在至少一部分TPU覆盖层上布置压敏粘合剂层。可使用本领域已知的任何压敏粘合剂。这种压敏粘合剂的实例包括但不限于丙烯酸类聚合物、聚氨酯、热塑性弹性体、嵌段共聚物、聚烯烃、硅氧烷类、橡胶基粘合剂、丙烯酸乙基己酯和丙烯酸的共聚物、丙烯酸异辛酯和丙烯酸的共聚物、丙烯酸类粘合剂和橡胶基粘合剂的共混物、以及前述的组合。然而,聚氨酯尤其适合于粘结到TPU覆盖层上。

一些实施方案包括所公开的多层泡沫结构体的第一层,和选自实心硬木地板镶板、工程木地板镶板、层压地板镶板、乙烯基树脂地板砖、陶瓷地板砖、搪瓷地板砖、石头地板砖、石英地板砖、水泥地板砖和混凝土地板砖中的第二层。在这些层压体中,第一层可借助化学键合、机械方式或其组合连接到相邻的镶板或瓷砖上。也可通过任何其他方式,其中包括利用具有相反电磁电荷的材料之间的吸引力或者具有主要疏水特征或主要亲水特征二者的材料之间存在的吸引力,将相邻的层压体层固定到彼此上。

将所公开的多层泡沫附着到地板镶板(尤其是实心硬木地板镶板、工程木地板镶板和层压体地板镶板)上的方法可借助可置于至少一部分覆盖表面和/或镶板表面上的压敏粘合剂层。可使用本领域已知的任何压敏粘合剂。这种压敏粘合剂的实例是丙烯酸类聚合物、聚氨酯、热塑性弹性体、嵌段共聚物、聚烯烃、硅氧烷类、橡胶基粘合剂、丙烯酸乙基己酯丙烯酸的共聚物、丙烯酸异辛酯和丙烯酸的共聚物、丙烯酸类粘合剂和橡胶基粘合剂的共混物、以及前述的组合。然而,聚氨酯尤其非常适合于粘结到TPU覆盖层上。

在另一实施方案中,所公开的多层泡沫可借助可置于至少一部分泡沫表面(而不是覆盖表面)和/或镶板表面上的压敏粘合剂层,附着到地板镶板(尤其是实心硬木地板镶板、工程木地板镶板和层压体地板镶板)上。在这一实施方案中,暴露覆盖层。使用单组分氨酯粘合剂和双组分的氨酯粘合剂的最终使用者(地板安装者)可实现与不具有TPU覆盖层的泡沫相比对底层地板改进的粘合。

附着到地板镶板(尤其是实心硬木地板镶板、工程木地板镶板和层压体地板镶板)上的多层泡沫可起到若干目的的作用。所述泡沫可降低所反射的声音压力水平,当镶板受到冲击时,例如当靴子或高跟鞋在镶板上行走时。所述泡沫也可在镶板和底层地板之间充当湿蒸汽阻挡层且可辅助在多个镶板当中提供更加均匀的铺设,因为在底层地板上的任何不均匀度、隆起或尖状物(例如突出的钉头)将受到泡沫缓冲。这些地板镶板和瓷砖常安装在住宅室内、办公室建筑物和其他商业建筑物中。

另一实施方案可提供地板系统,所述地板系统包括顶部地板层、底层地板层和一层或多层地板衬层,其中至少一个地板衬层含有置于底层地板和顶部地板层之间的所公开的多层泡沫结构体。在这一系统中,泡沫层可以或者可以不连接到任何相邻层(其中包括底层地板或顶部地板层)上。可借助化学键合、机械方式或其组合进行附着。也可通过任何其他方式,其中包括使用在具有相反电磁电荷的材料之间的吸引力或者在具有主要疏水特征或主要亲水特征二者的材料之间存在的吸引力,将相邻层固定到彼此上。附着的方法可以使用单组分的氨酯粘合剂、双组分的氨酯粘合剂、单组分的丙烯酸类粘合剂或双组分的丙烯酸类粘合剂。在这些粘合剂当中,聚氨酯尤其非常适合于粘结到TPU覆盖层上。可在住宅室内、办公室建筑物和商业建筑物中,在安装系统期间施加粘合剂。

在这一系统中的泡沫可以用于若干目的。所述泡沫可降低所反射的声音压力水平,当顶部地板层受到冲击时,例如用靴子或高跟鞋在镶板上行走时。所述泡沫也可在镶板和底层地板之间充当湿蒸汽阻挡层且可辅助在多个镶板当中可辅助提供更加均匀的铺设,因为在底层地板上的任何不均匀度、隆起或尖状物(例如突出的钉头)将受到泡沫缓冲。对于其中顶部地板层由通过水泥浆连接的陶瓷地板砖、搪瓷地板砖、石头地板砖、石英地板砖、水泥地板砖和混凝土地板砖组成和其中在地板系统中的所有层被连接的情况,通过缓冲在该系统内各层变化的热膨胀和收缩,泡沫可辅助降低水泥浆断裂。

在一些实施方案中,多层泡沫结构体是含有多层泡沫和层压体层的层压体。优选地,层压体层可施加到多层泡沫的TPU覆盖侧上。在这些层压体中,多层泡沫结构体可例如与薄膜和/或箔结合。用于这种层的合适材料的实例包括但不限于聚氯乙烯(PVC),热塑性聚烯烃(TPO),热塑性氨酯(TPU),织物、例如聚酯、聚丙烯、布料和其他织物,皮革和/或纤维层,例如非织造织物。然而,热塑性氨酯尤其非常适合于粘结到TPU覆盖层上。这种层可使用本领域普通技术人员公知的标准技术制造。重要的是,本发明公开内容的多层泡沫可与这些材料一起层压到一面或两面上且可包括多层其他层。若多层泡沫层压到两面上,则优选这些层压体层可施加到多层泡沫的覆盖层上。

在另一实施方案中,多层泡沫结构体是含有多层泡沫和聚氨酯泡沫的层压体。优选地,聚氨酯泡沫层可以施加到多层泡沫结构体的TPU覆盖侧上。多层泡沫和聚氨酯泡沫可例如在火焰层压机器内粘结,其中控制的火焰使聚氨酯泡沫的表面熔融,接着立即接触(典型地采用压缩,例如辊隙)多层泡沫/覆盖结构和聚氨酯泡沫。在这一实施方案中同样典型的是多层聚烯烃泡沫/覆盖结构或聚氨酯泡沫可以是与薄膜和/或箔结合的层压体。用于这种层的合适的材料的实例包括但不限于聚氯乙烯(PVC),热塑性聚烯烃(TPO),热塑性聚氨酯(TPU),织物、例如聚酯、聚丙烯、布料和其他织物,皮革和/或纤维层,例如非织造织物。这种层,尤其当层压到聚氨酯泡沫上时,可在相同的火焰层压机器上层压。可事先、同时或之后层压所述层到聚氨酯泡沫上。

在另一实施方案中,多层聚烯烃泡沫/TPU覆盖结构可在反应注塑(RIM)中使用。在RIM工艺中,多层泡沫结构体可典型地是含多层泡沫结构体和例如聚氯乙烯(PVC)、热塑性聚烯烃(TPO)、热塑性聚氨酯(TPU)、织物(例如聚酯、聚丙烯、布料和其他织物)、皮革和/或纤维层(例如非织造织物)的层压体层的层压体。所述层压的多层泡沫结构体中的TPU覆盖层可优选与暴露于模具注射侧的TPU覆盖层一起置于模具内。(典型地,硬的塑料基底、金属或塑料框架等在注射之前也置于模具内)。可在高压下,在在线静态或碰撞混合器内一起混合两部分的聚合物和然后注入到模具内,从而当混合物反应并进一步聚合时填充模腔。双组分聚氨酯泡沫系统是在商业RIM制造中最常见的。TPU覆盖层可以非常适合于与注射的聚氨酯泡沫一起良好粘结。然而,也可使用其他双组分系统,例如但不限于聚脲、多异氰脲酸酯和多环氧化物。

也可热成形多层泡沫结构体。为了热成形多层泡沫结构体,对于在多层泡沫/TPU覆盖结构内的所有层来说,可加热泡沫到共混物的熔点。若任何层具有不混溶的聚合物,则多层泡沫结构体可显示出大于一个熔点。在这一情况下,典型地可以热成形多层泡沫结构体,当泡沫被加热到在多层泡沫组合物的最低熔点和最高熔点中间的温度时。另外,可在基底,例如硬的聚丙烯、ABS或木纤维复合材料上热成形多层泡沫结构体。在其中基底是ABS或木纤维复合材料的情况下,可使用热活化的粘合剂,以改进基底对覆盖层的粘结。在各种粘合剂当中,聚氨酯尤其非常适合于粘结到TPU覆盖层上。基底本身也可与多层泡沫结构体同时热成形。

在一些实施方案中,可在机动车内部部件,例如门板、门辊、门插件、门填充物、行李箱填充物、扶手、中央控制台、弹性座垫、椅背、靠头、椅背面板、仪器面板、膝垫或顶篷中使用多层泡沫结构体或层压体(它们可以或可以不热成形)。也可在家具(例如,商业、办公室和住宅家具),例如弹性座垫、椅背、沙发垫、沙发装饰物、可躺式椅座垫、可躺式椅装饰物、长沙发椅座垫、长沙发椅装饰物、卧铺垫或卧铺装饰物中使用这些多层泡沫结构体或层压体(它们可以或可以不热成形)。也可在墙壁,例如模件墙、可移动墙、墙面板、模件面板、办公室系统面板、室内隔断、便携式隔板中使用这些多层泡沫结构体或层压体(它们可以或可以不热成形)。也可在可以是移动或者静置的储存外壳(例如商业、办公室和住宅)中使用多层泡沫层压体或结构。此外,也可在覆盖物,例如椅子垫覆盖物、椅背覆盖物、扶手覆盖物、沙发覆盖物、软沙发覆盖物、可躺式椅垫覆盖物、可躺式椅覆盖物、长沙发垫覆盖物、长沙发覆盖物、卧铺垫覆盖物、卧铺覆盖物、墙覆盖物和建筑覆盖物中使用多层泡沫层压体和结构(它们可以或可以不热成形)。

为了满足任何上述应用的要求,可对本发明公开内容所公开的结构体进行各种辅助工艺,其中包括且不限于压花、电晕或等离子体处理、表面糙化、表面光滑化、穿孔或微穿孔、劈开、切割、切片、层压、粘结和钻孔。

实施例

用于实施例的原材料

下表1提供在下述实施例中所使用的各种组分的列表和那些组分的说明。

表1

用于实施例的薄膜转化工艺

下表2提供实施例1-3的配制剂。

在图1A、1B、2和3中分别可发现在30X放大下和在离主表面45o下,实施例1A、1B、2和3的多层结构的图像。

本申请在正文和附图中披露了若干数值范围。所公开的数值范围固有地支持在所公开的数值范围内的任何范围或数值,其中包括端点,即使在说明书中没有字面上描述精确的范围极限,因为可在所公开数值范围当中实践这一公开内容。

列出上述说明,使得本领域技术人员能制造并利用本发明的公开内容,且在特定应用及其要求的上下文中提供。优选实施方案的各种改性对本领域技术人员来说是容易显而易见的,和在没有脱离本发明公开内容的精神和范围情况下,本文中定义的通用原理可应用到其他实施方案和应用上。因此,本发明的公开内容并不打算限制到所示的实施方案上,但符合与本文公开的原理与特征一致的最宽范围,最后,在本申请中提到的专利和公布申请的全部公开内容因此在本文中通过参考引入。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1