锂电池用铝塑复合膜及其制备方法与流程

文档序号:25437300发布日期:2021-06-11 21:54阅读:200来源:国知局
锂电池用铝塑复合膜及其制备方法与流程

本发明提供一种电池用复合膜及其制备方法,特别涉及锂电池用铝塑复合膜领域及其制备方法。



背景技术:

锂电池体积小、能量密度高、寿命长,自放电小等特点,是计算机、通讯、便携式电子设备、交通、储能、军事、航空航天等多个领域的重要储能设备。特别是交通运输领域新能源汽车行业,每辆新能源汽车需要携带10-100度电,对锂电池需求量巨大,进一步推动锂电池的发展。铝塑复合膜作为新型包装材料,能够减轻锂电池重量,提高能量密度;并且铝塑复合膜可以使锂电池内部接触更紧密,减小锂电池内部的极化,减小内阻,提高循环寿命;凭借自身优势,铝塑复合膜已逐渐提高了在锂电池行业中的市场占有率。

而锂电池对水分含量要求极其苛刻,在制作过程中,通常要求锂电池内部水分含量控制在300ppm以内。当锂电池水分含量过高,水分子与电解液中的六氟磷酸锂反应,生成过量的氢氟酸。氢氟酸具有极强的腐蚀性,会使锂电池性能衰减,并且容易破坏锂电池包装材料,导致包装材料强度降低、穿孔,锂电池漏液。新能源汽车中的锂电池排布紧密,当锂电池氢氟酸超标时,新能源汽车续航里程下降,且泄露的电解液使电池模组短路,引起新能源汽车起火爆炸风险。

为解决该问题,发明专利cn103560213b提供了一种用于锂电池的铝塑膜包装材料,可促进锂电池具优异耐水性、耐高温及耐蚀性,并且提升锂电池的使用年限。发明专利cn103560213b提供了一种铝塑膜,包括依次设置的成型强度支撑层、胶黏剂层、第一耐腐蚀化学层、铝箔层、第二耐腐蚀化学层、高分子树脂粘接层、及三层共挤聚丙烯薄膜层,可有效提高铝箔的耐磨和耐腐蚀性能。发明专利cn105463428b提供一种铝箔表面钝化液及铝塑膜,钝化后的铝箔具有较好的耐腐蚀性能。

以上发明专利的铝塑膜虽然有一定的耐腐蚀能力,但均未揭示如何降低锂电池内氢氟酸的浓度,包装成锂电池在长期使用过程中仍有被腐蚀的可能,且锂电池性能衰减会越来越严重。



技术实现要素:

为解决铝塑复合膜被锂电池内氢氟酸腐蚀、锂电池性能下降的问题,本发明采用的一个技术方案是:提供一种锂电池用铝塑复合膜,从外表面至内表面依次由保护层、外粘结层、中间层、内粘结层、热封层构成,保护层和中间层之间由所述外粘结层连接,中间层和热封层之间由所述内粘结层连接;内粘结层和热封层中至少一处设有碱性物质。

进一步的,所述碱性物质为固态颗粒,颗粒直径为0.1μm~10μm。

进一步的,所述碱性物质为强碱弱酸盐、有机碱、生物碱,包括但不限于碳酸盐、硅酸盐、磷酸盐、亚硫酸盐、氢氰酸盐、醋酸盐、丙烯酸盐、苯甲酸盐、季铵盐、有机锂化合物、有机钠化合物中的至少一种。

进一步的,所述碱性物质设置于内粘结层中或者热封层中或者同时存在于内粘结层和热封层中至少一处。

进一步的,所述保护层材质包括但不限于尼龙、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、聚酰亚胺中的至少一种;所述保护层厚度为8μm~18μm。

进一步的,所述外粘结层材质包括但不限于改性环氧树脂、聚丙烯酸、聚氨酯、含氟树脂中的至少一种;所述外粘结层厚度为1μm~6μm。

进一步的,所述中间层包括但不限于铝箔、铝合金箔、铜箔、铜合金箔、铁箔、铁合金箔、镍箔、镍合金箔中的至少一种;所述中间层厚度为20μm~60μm。

进一步的,所述内粘结层材质包括但不限于改性环氧树脂、聚丙烯酸、聚氨酯、含氟树脂中的至少一种;所述内粘结层厚度为1μm~8μm。

进一步的,所述热封层包括但不限于聚丙烯、丙烯共聚物、聚乙烯、聚甲基丙烯酸甲酯中的至少一种;所述热封层厚度为10μm~100μm,优选30μm~80μm。

为解决上述技术问题,本发明采用的一种技术方案是:一种锂电池用铝塑复合膜的制备方法,所述方法包括:

将金属箔用去离子水进行去清洗、烘干和等离子处理后,对金属箔表面进行钝化,形成中间层;

将保护层通过外粘结层复合至所述中间层的上层面,至此,从外到内依次形成了保护层、外粘结层、中间层的结构;

再按照如下三种方式制备方式任一种将碱性物质添加至内粘结层和热封层中:

其中一种制备方法是将碱性物质添加至热封层原材料中混合搅拌,得到含有碱性物质的热封层,将所述热封层熔融挤出复合至所述中间层的下层面,得到锂电池用铝塑复合膜;

另一种制备方法是将碱性物质添加至内粘结层原材料中混合搅拌,得到含有碱性物质的内粘结层,将所述内粘结层上层面与所述中间层的下层面复合粘结,所述内粘结层的下层面与热封层复合粘结,得到锂电池用铝塑复合膜;

又一种制备方法是将含有碱性物质的内粘结层上层面复合至所述中间层的下层面,将含有碱性物质的内粘结层下层面复合至含有碱性物质的热封层。

本发明的有益效果是:区别于现有技术的情况,本发明在铝塑复合膜内粘结层和热封层中至少一处设置碱性物质,该碱性物质能够与氢氟酸发生置换反应,消耗锂电池内的氢氟酸,降低锂电池内氢氟酸的浓度,从而保护了铝塑复合膜不被腐蚀,避免锂电池因氢氟酸浓度升高而造成的性能衰减等问题。考虑到如果将碱性物质单层涂布到铝塑膜层间,会影响铝塑膜层间的剥离强度,因此本发明中将碱性物质混合在内粘结层和热封层的原料中,达到既不影响铝塑膜层间的剥离强度,又能有效降低锂电池内氢氟酸的浓度,提高铝塑复合膜的稳定性的效果。

附图说明

图1为本发明其中一种锂电池用铝塑复合膜的结构示意图

图2为本发明另一种锂电池用铝塑复合膜的结构示意图

图3为本发明又一种锂电池用铝塑复合膜的结构示意图

图中:1为保护层,2为外粘结层,3为中间层,4为内粘结层,5为热封层,6为碱性物质

具体实施方式

下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本实施例的一种锂电池用铝塑复合膜的其中一种结构如图1所示,依次由保护层1、外粘结层2、中间层3和热封层5构成,外层粘结层2连接保护层1和中间层3,中间层3和热封层5中至少一处设有碱性物质6,优选的,所述碱性物质6设置于热封层5中。

本实施例的一种锂电池用铝塑复合膜的另一种结构如图2所示,与第一种结构不同的是还有内粘结层4,内粘结层4连接中间层3和热封层5,中间层3和热封层5中至少一处设有碱性物质6,优选的,所述碱性物质6设置于内粘结层4中。

本实施例的一种锂电池用铝塑复合膜的又一种结构如图3所示,中间层3和热封层5中至少一处设有碱性物质6,优选的,所述碱性物质6设置于内粘结层4和热封层5中。

所述碱性物质,其状态为固态颗粒,颗粒直径为0.01um~10um。

所述碱性物质,其材质优选为强碱弱酸盐,例如:碳酸盐、硅酸盐、磷酸盐、亚硫酸盐、次氯酸盐、氢氰酸盐、醋酸盐、丙烯酸盐、苯甲酸盐等。

所述碱性物质,其设置在中间层、内粘结层、热封层中、同时存在于内粘结层及热封层,优选设置在内粘结层中、热封层中。

所述外粘结层,其材质可以是改性环氧树脂、聚丙烯酸、聚氨酯、含氟树脂等;其厚度为1um~6um。

所述内粘结层,其材质可以是改性环氧树脂、聚丙烯酸、聚氨酯、含氟树脂等;其厚度为1um~8um。

所述保护层,其材质可以是尼龙、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、聚酰亚胺等;其厚度为8um~18um。

所述中间层,其材质可以是铝箔、铝合金箔、铜箔、铜合金箔、铁箔、铁合金箔、镍箔、镍合金箔等;其厚度为20um~60um。

所述热封层,其材质可以是聚丙烯、丙烯共聚物、聚乙烯、聚甲基丙烯酸甲酯等。其厚度为0.01μm~100um,优选30um~80um。

下面将结合实施例和对比例对本发明提供的铝塑膜做进一步详细的说明。

1热封层耐电解液性测试

1.1剥离强度:

将铝塑复合膜切成15mm×100mm的试样,并将样品放入装有电解液的容器中,电解液(ec:dec:dmc=1:1:1,lipf61mol/l)需完全浸没样品,容器密封后放入烘箱,在(85±2)℃的环境中保持24小时,取出自然冷却至常温,逐条取出样品擦拭干净后立即检查样品外观并测试热封层剥离力(n)。

1.2热封强度:

将铝塑复合膜封装制成60mm×80mm的样袋,并注入3ml电解液,经热封闭合。将样袋放在温度为(85±2)℃的环境中保持24小时后取出,自然冷却至常温。先裁去一个热封边然后倒出电解液,再裁去其余热封边,然后将膜面残留的电解液擦拭干净,在5分钟内重新热封。沿封口垂直方向取宽度为15mm的样品进行热封层剥离测试(n)。

2锂电池循环测试

2.1制备成容量1200mah,电压4.20v,材料体系ncm523+石墨的锂电池,并注入500ppm的纯水。

2.2常温循环:在常温常压环境中,将步骤3.1制备的锂电池以1i1(a)放电至2.75v,搁置30min,以1i1(a)恒流充电至4.20v后转恒压充电直至充电终止电流降至0.05i1(a)时停止充电,搁置30min。以上步骤循环500次,记录循环500次的放电容量容量保持率(%)。

2.3高温循环:在60℃常压环境中,将步骤3.1制备的锂电池以1i1(a)放电至2.75v,搁置30min,以1i1(a)恒流充电至4.20v后转恒压充电直至充电终止电流降至0.05i1(a)时停止充电,搁置30min。以上步骤循环500次,记录循环500次的放电容量容量保持率(%)。

测试结果如表2所示。

【实施例1】

取长300m,宽520mm的铝箔,设置线速度40m/min依次通过3段去离子水的清洗槽和120℃的烘箱,将铝箔表面的异物和油脂洗脱。干燥后的铝箔经过电压3000v的等离子处理,进一步去除铝箔表面的油脂,且形成粗糙的表面增加吸附性。

取50份钝化液原液加入12.5份的纯水稀释,配制成ph值在2~5的钝化液,通过网线辊将配制好的钝化液涂敷在铝箔的两面,网线辊优选为200目。将涂敷了钝化液的铝箔在温度180℃下干燥,在铝箔表面生成致密不活泼的氧化层。

在20份外层胶原材料中添加80份乙酸乙酯溶剂进行溶解稀释配制成外层胶胶水,将外层胶胶水涂敷至上述铝箔其中一面形成3um厚的外粘结层,经过90℃的高温烘烤,将保护层薄膜通过0.3mpa的压力复合至外粘结层形成保护层。

将30份碱性物质添加至90份热封层原材料中充分混合均匀,在250℃温度下将热封层混合材料熔融挤出,且在温度40℃压力0.35mpa的条件下,将热封层混合熔融物复合至上述铝箔的另一面形成热封层。

所述碱性物质为碱性无机盐,优选的,所述碱性无机盐为硅酸钠,因硅酸钠比较难于溶解,可以与原料混合后进行加工,使之均匀地分散于材料中。理论上粉体粒径越小,碱性物质的比表面积越大,对于吸收氢氟酸效果更佳,鉴于此,分别选用粒径均值为0.1μm、1μm、5μm、15μm的硅酸钠做实验测试。

表1

对比实施例中各不同粒径区间的硅酸钠,发现硅酸钠粒径越小,锂离子电池的剥离强度、热封强度和稳定性能越佳,所以建议优选均值粒径0.1μm的碱性物质。

【实施例2】

与实施例1不同在于:将30份碱性物质添加至90份内粘结层原材料中充分混合均匀,将80份乙酸乙酯溶剂添加至内粘结层混合材料中溶解混合形成内层胶胶水悬浮液,再将内层胶胶水悬浮液涂敷至上述铝箔的另一面形成4um厚的内粘结层,经过90℃的高温烘烤,将热封层薄膜通过0.3mpa的压力复合至内粘结层形成热封层。

使用碱性物质为一种碱性有机盐,优选的,所述碱性物质为六甲基二硅胺基锂。相对于实施例1,因实施例2中所用的碱性物质易于溶解于溶剂中,所以固态粒径对使用效果影响不大。

【实施例3】

将30份碱性物质添加至90份内粘结层原材料中充分混合均匀,将80份乙酸乙酯溶剂添加至内粘结层混合材料中溶解混合形成内层胶胶水悬浮液,再将内层胶胶水悬浮液涂敷至上述铝箔的另一面形成4um厚的内粘结层,经过90℃的高温烘烤,将添加有碱性物质的热封层薄膜通过0.35mpa的压力复合至内粘结层形成热封层。

内粘结层材料中加入的碱性物质为六甲基二硅胺基锂,热封层薄膜中添加的碱性物质为硅酸钠。

与实施例1不同在于:在250℃温度下将热封层原材料熔融挤出,且在温度40℃压力0.35mpa的条件下,将热封层熔融物复合至上述铝箔的另一面形成热封层。

其他制备方法与实施例1相同。

【对比例1】

与实施例1不同在于:将80份乙酸乙酯溶剂添加至90份内粘结层原材料中充分混合均匀,再将内层胶胶水涂敷至上述铝箔的另一面形成4um厚的内粘结层,经过90℃的高温烘烤,将热封层薄膜通过0.3mpa的压力复合至内粘结层形成热封层。

其他制备方法与实施例1相同。

表2

对于对比例1,对于实施例1~3,对于热封层耐电解液性测试,数据显示,添加碱性物质显著提高了铝塑膜的耐腐蚀性。电解液由小分子溶剂组成,小分子易进入铝塑膜内对其结构进行破坏,即溶胀。且电解液中的游离酸会进一步破坏铝塑膜内的结构,导致铝塑膜强度和性能降低。如果将游离酸活性降低,则能够很好的保护铝塑膜。因此不难理解,经电解液浸泡后,添加了碱性物质的实施例的剥离强度和热封强度是未添加碱性物质的对比例的2倍。

对于对比例1、实施例1~3,进行锂电池循环测试,数据显示,添加碱性物质显著降低了锂电池性能衰减。电解液中的游离酸使电池内副反应的发生、破坏活性物质的结构,消耗温度越高这种现象就越严重。而添加碱性物质的铝塑膜能够置换游离酸的氢离子,降低游离酸的活性,停止副反应的发生和活性物质的破坏,从而延长锂电池寿命。60℃循环500周后,锂电池仍然能保持60%以上的容量。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1