使用离子束制造扫描探针显微镜和临界尺寸扫描探针显微镜纳米针探针的方法与由其制...的制作方法

文档序号:84010阅读:1473来源:国知局
专利名称:使用离子束制造扫描探针显微镜和临界尺寸扫描探针显微镜纳米针探针的方法与由其制 ...的制作方法
技术领域
本发明涉及使用离子束制造扫描探针显微镜(SPM)纳米针探针的方法和由其制造的纳米针探针。更具体而言,本发明涉及一种制造SPM纳米针探针的方法和由其制造的SPM纳米针探针,该探针能够容易地被调整,以使附着于SPM纳米针探针尖端上的纳米针具有期望的指向,且该探针能够容易被准直,使附着于SPM纳米针探针尖端上的纳米针沿着期望的指向。
而且,本发明涉及一种使用离子束制造临界尺寸SPM(CD-SPM)纳米针探针的方法和由其制造的CD-SPM,该探针能够精确地扫描纳米尺度的样品物体的侧壁。更具体而言,本发明涉及一种制造CD-SPM纳米针探针的方法和由其制造的CD-SPM纳米针探针,该探针能够通过将附着于SPM纳米针探针尖端上的纳米针末端的一部分向着除了附着于SPM纳米针探针尖端上的纳米针所延伸出去的初始方向之外的特定方向弯曲特定角度,来精确地扫描纳米尺度的样品物体的侧壁。
背景技术
下文中,术语“纳米针”包括术语“纳米管”和“纳米线”所指的内容。
SPM是一种在纳米尺度技术中使用的装置,其功能非常强大且有用,而且很精密。SPM分成多种,例如利用施加于探针和样品物体之间的原子力的原子力显微镜(AFM)、利用施加于探针和样品物体之间的磁力的磁力显微镜(MFM)、利用施加于探针和样品物体之间的静电力的静电力显微镜(EFM)、以及利用样品物体的光学特性的扫描近场光学显微镜(SNOM)等。
尽管广为人知的是这样的SPM具有原子水平的分辨率,仍然存在着使探针的末端(或尖端)变尖的需求,以更好地提高SPM的分辨率。因为利用半导体微机械加工技术来提高探针长宽比的常规技术在改善分辨率方面具有固有局限,对于替代方法的需求一直在增加以使探针的末端变尖。结果,出现了使用碳纳米管的方法作为新的可选方案。
如所周知,碳纳米管具有高长宽比以及优异的电和机械特性。因此,已经展开了一项研究,研究用于通过附着于SPM探针(母探针)尖端上的碳纳米管来扫描样品物体的方法。
作为与上述研究相关的技术,有美国专利6,528,785和美国专利6,759,653,美国专利6,528,785披露了一种使用涂层膜将碳纳米管附着于SPM探针尖端的技术,美国专利6,759,653披露了一种利用聚焦的离子束将碳纳米管附着于SPM探针尖端上且以所需长度切断附着于SPM尖端上的碳纳米管的技术。
然而,在根据这一系列技术使用附着于SPM探针尖端上的纳米针的时候,存在几个重要的技术因素。这些因素如下首先,纳米针在SPM探针尖端上的附着强度;第二,附着于SPM探针尖端上的纳米针的长度调整;第三,无论SPM探针的形状如何,附着于SPM探针尖端上的纳米针的指向和形状的调整。
上面提到的美国专利6,528,785和6,759,653成功地满足了上述这三个技术因素中的两个因素,即附着强度和长度调整。然而,迄今为止,任何方法都未解决第三个因素。
由本发明的申请人提交的韩国专利申请第10-2002-0052591号披露了调整附着于SPM探针尖端上的纳米针的指向的制造设备和用于制造这种纳米针的方法。然而,韩国专利申请第10-2002-0052591号仍具有制造纳米针SPM探针所需的处理时间长和成本高以及低产出的技术劣势,因为该专利申请使用了附着于探针尖端的纳米操纵器和介质来调整纳米针的指向。
此外,尽管附着于SPM探针尖端上的纳米针的指向变化必须要在2到3度之内来以临界尺寸(CD)进行扫描,但常规方法几乎不可能以这种精度正确调整纳米针的指向。此外应当指出,不仅如上所述以CD扫描需要调整纳米针的指向的精度,为了使用一般纳米针SPM探针获得正确的扫描图像也需要调整该精度。特别是在附着于探针尖端上的纳米针长的情况下,调整纳米针指向精度成为更为重要的技术因素。
此外,在一些情况下,由于某些制造问题,附着于SPM探针尖端上的纳米针被弄弯或卷曲。因此,对于这种情况需要一种技术手段来使附着于SPM探针尖端上的纳米针变直。
而且,具有直线形末端的常规SPM探针或SPM纳米针探针在扫描具有纳米尺度级的不规则的样品物体的时候具有局限。换言之,在使用如图12所示的探针扫描具有纳米尺度级的不规则的样品物体的侧壁的情况下,因为探针扫描如图13所示的侧壁,所以如图14所示获得了不同于样品物体侧壁的实际形状的扭曲图像。
尽管美国专利6,246,054披露了具有如图15所示的形状的末端的SPM探针,它仍具有一缺点,即,制造这种探针的方法和扫描方法太复杂。此外,在扫描将被扫描的样品物体的侧壁时的精度方面其具有一定局限。
由于上述问题,需要一种替代方法来解决与SPM纳米针探针相关的技术问题。

发明内容因此,本发明的目的在于提供一种制造SPM纳米针探针的方法和由其制造的SPM纳米针探针,该探针能够容易地被调整,以使附着于SPM纳米针探针尖端上的纳米针具有期望的指向,且该探针能够容易被准直,使附着于SPM纳米针探针尖端上的纳米针沿着期望的指向。
本发明的另一个目的在于提供一种制造CD-SPM纳米针探针的方法以及由其制造的CD-SPM纳米针探针,该探针能够精确地扫描样品物体的侧壁。
本发明的目的是通过使用离子束制造扫描探针显微镜(SPM)纳米针探针的方法实现的,该方法包括向着辐照所述离子束的方向定位其上附着有纳米针的SPM探针的尖端;以及通过沿着其上附着有所述纳米针的所述探针的尖端的方向辐照所述离子束,采用所述离子束平行地排列附着于所述探针的所述尖端上的所述纳米针,其中所述排列所述纳米针包括沿着辐照所述离子束的方向准直附着于所述SPM探针的尖端上的纳米针。
优选制造SPM纳米针探针的方法还包括以相对于附着于平行于所述离子束排列的所述探针的尖端上的所述纳米针的特定角度,辐照聚焦离子束来以预定长度切断附着于所述探针的尖端上的所述纳米针。
而且,优选在排列所述纳米针中使用的离子束为聚焦的离子束。
此外,优选所述聚焦的离子束的加速电压应当在5kV和30kV之间,电流量应当在1pA和1nA之间,且纳米针暴露于FIB的时间在1和60秒之间。
此外,优选所述聚焦的离子束为Ga离子束、Au离子束、Ar离子束、Li离子束、Be离子束、He离子束和Au-Si-Be离子束之一。
而且,本发明的目的是通过使用离子束制造的SPM的纳米针探针而实现的,其特征在于通过沿着朝向其上附着有纳米针的SPM探针的尖端的方向辐照所述离子束,附着于所述SPM探针的尖端上的纳米针与所述离子束平行排列,且在于通过朝向所述SPM探针的尖端辐照的所述离子束,沿着所述离子束的方向准直附着于SPM探针尖端上的纳米针。
优选通过与离子束平行排列的附着于所述SPM探针的尖端上的纳米针成特定角度辐照离子束,以预定长度切断附着于所述SPM探针的尖端上的纳米针。
此外,本发明的另一目的是通过使用离子束制造CD-SPM纳米针探针的方法以及由其制造的CD-SPM纳米针探针实现的,该方法包括使用掩模屏蔽附着于SPM探针的尖端上的纳米针的特定部分;通过在暴露于所述掩模之外的纳米针的部分上辐照所述离子束,弯曲暴露于所述掩模之外的纳米针的所述部分,以在所辐照的离子束的方向排列所述纳米针的所述部分。
本发明的这些目的将通过下文所述的实施方式变得明显且被其阐明,尽管本发明不限于所述实施方式。
在附图中图1示意性地示出了根据本发明的实施方式的在扫描探针显微镜(SPM)中使用的纳米针探针的制造方法。
图2和图3分别为辐照离子束之前和辐照离子束之后附着有纳米针的扫描电子显微镜(SEM)的尖端的照片。
图4示意性地示出了分配聚焦的离子束(FIB)系统的构图区域。
图5和图6为在图3所示的构图区域上辐照离子束之后的SEM的照片。
图7示意性地示出了根据本发明另一实施方式制造CD-SPM纳米针探针的方法。
图8示意性地示出了图7所示的方法处理的CD-SPM纳米针探针的形状。
图9为用图7所示的方法处理之前的SPM纳米针探针的照片。
图10为用图7所示的方法处理之后的SPM纳米针探针的照片。
图11示意性地示出了根据本发明制造的CD-SPM纳米针探针是如何扫描样品物体的凹入侧壁的。
图12到图14示意性地示出了使用常规SPM探针扫描凹入侧壁的工艺和扫描获得的结果。
图15示出了为了扫描样品物体的不同侧壁特征而制造的常规SPM探针的末端的各种形状。
具体实施方式现在将详细参考本发明的诸方面,其实例在附图中示出,其中类似的附图标记通篇表示类似的元件。以下通过参考附图描述诸方面以便解释本发明。
如上所述,下文所用的术语“纳米针”包括术语“纳米管”和“纳米线”所指的内容。而且,根据本发明的制造SPM纳米针探针或CD-SPM纳米针探针的方法能够用于所有种类的纳米管,其包括诸如碳纳米管的通用纳米管、BCN纳米管或BN纳米管、单壁纳米管、双壁纳米管、或多壁纳米管,而无论纳米管的种类如何。
在下文中,将参考附图作为实例详细描述根据本发明的优选实施方式。
由于上述现有的专利文献已经披露了在SPM探针的尖端上附着纳米针的方法,本申请省略对这类方法的详细技术的描述。
图1示意性地示出了根据本发明实施方式在扫描探针显微镜(SPM)中使用的纳米针探针的制造方法。图1底部示出了SPM,其具体描述了原子力显微镜(AFM)的尖端,该原子力显微镜包括悬臂14和从悬臂14突出的尖端13,以及附着于尖端13的末端的纳米针15’或15。稍后将会解释为什么一个纳米针被表示为两个数字15’和15。通常,通过用杂质16焊接的方法将附着于尖端13上的纳米针15’或15附着于探针的尖端13的末端上。图1的顶部示意性地示出了离子柱11以及从离子柱11向纳米针15’或15辐照的离子束12。
如以上在背景技术的说明所述,在使用杂质16将纳米针15’附着于探针的尖端13的末端上时不容易调整纳米针15’的指向,因为探针的尖端13具有如金字塔或锥形的形状。
前述韩国专利文献披露了一种方法,其特征在于在探针的尖端上附着介质,使得在附着纳米针之前,能够准备将要附着纳米针的表面,以便调整纳米针的指向,或者其特征在于使用纳米针操纵器调整纳米针的指向。然而,这种方法不同提供附着于探针尖端上的纳米针的方向的所需精度(大约2到3度),而这一精度是扫描临界尺寸(CD)所需的。此外,即使偶然能够获得所需精度,也将需要很多次的试验和失败。因此产出极低。
同时,根据本发明的制造SPM中所用的纳米针探针的方法可以解决与现有技术相比如此基本的问题。
在图1中,数字15’表示纳米针,其附着于探针的尖端13上并具有在从离子柱11向纳米针15’辐照离子束12之前的方向和形状。数字15表示纳米针,其附着于探针的尖端13上并具有在从离子柱11向纳米针15’辐照离子束12之后的方向和形状。
如图所示,可以指出,不仅因为离子束12纳米针15’的方向变得平行于离子束12,而且附着于探针尖端上的弯曲的纳米针15’被准直。
换言之,在放置探针的尖端13使得探针的尖端13面对将要辐照离子束12的方向之后,向其上附着于纳米针15’的探针的尖端13辐照离子束12。然后,附着于探针尖端13上的纳米针15’与离子束12平行排列。此外,图中明显示出,沿着辐照离子束12的方向准直了附着于探针尖端13上的纳米针15’。
图2和图3为实验结果的照片,更为清晰地支持了上述事实。图2示出了在辐照离子束之前其上附着有纳米针的扫描电子显微镜(SEM)的尖端的照片,而图3示出了辐照离子束之后SEM的照片。
如图2和3所示,可以看出,不仅附着于探针的尖端13上的纳米针沿辐照离子束的方向排列,而且纳米针被沿着离子束的方向准直。使用聚焦的离子束(FIB)系统进行展示了附图结果的实验,且用Ga离子束作为离子束。
本发明的发明人通过若干次实验改变离子束的加速电压、离子束的电流量和纳米针暴露于离子束的时间,以获得制造具有最佳特性的SPM纳米针探针所需的最优条件。
从这种实验的结果可以看出,随着加速电压和离子束电流量变大且暴露时间变长,容易向着辐照离子束的方向改变纳米针的指向。除了这些一般结果之外,本发明的发明人发现,优选离子束的加速电压应当为5kV到30kV,离子束的电流量为1pA到1nA,且纳米针暴露于离子束的时间为1到60秒。
可以用在根据本发明实施方式制造SPM纳米针探针的方法中的离子束包括各种离子束,例如Au离子束、Ar离子束、Li离子束、Be离子束、He离子束、和Au-Si-Be离子束以及Ga离子束。
本发明的发明人进行了另一个实验以更为明确地确认附着于探针尖端上的纳米针的指向和形状按照需要改变的现象。图4示意性地示出了在FIB系统辐照之前指定离子束将要通过的构图区域。在图4中,构图区域被表示为横贯探针尖端上附着的纳米针的矩形。换言之,在实验中,在如图4所示分配完构图区域之后向着矩形上部辐照离子束。
图5为在分配完构图区域之后由FIB系统向纳米针辐照聚焦离子束之后的SEM照片。图6为在附着有纳米针的探针尖端的末端的放大的SEM的照片。
如图5和图6所示,明确地看出,不仅附着于探针尖端上的纳米针沿着离子束的方向排列,而且纳米针被沿着离子束的方向准直。
利用这种结果,即如上所述,附着于探针尖端上的纳米针平行于所辐照的离子束排列,附着于探针尖端上的纳米针的指向必然会实现所需的精度(在2到3度的范围之间),这是不能由常规技术实现的。而且,利用同样的结果,必然会实现这样的纳米针探针,其具有精确度足以能以临界尺寸(CD)扫描的形状和指向。
本发明能够实现具有精确度好到足以扫描临界尺寸(CD)的指向和形状的纳米针探针,这是常规技术所未解决的。
本发明的发明人在如图4所示分配构图区域之后以增大强度的聚焦离子束进行了同样的实验。在这种情况下,要指出如美国专利6,759,653所述切断纳米针。
利用这种结果,本发明的发明人得出结论尽管在辐照于纳米针上的离子束的强度的特定阈值之内,由离子束的效应调整了纳米针的指向和形状,在阈值之上纳米针被切断。
因此,本领域的技术人员能够清楚地理解通过适当地调整辐照到附着于SPM探针的尖端上的纳米针上的离子束的加速电压、电流量和暴露时间,调整纳米针的指向和形状。
在实验得到的这种结果的基础上,图7示意性地示出了根据本发明另一实施方式制造CD-SPM纳米针探针的方法。以与图1所示相同的方式,在图7的底部示出了SPM探针,图7示意性地示出了AFM的尖端,该AFM包括悬臂14和从悬臂14突出的尖端13,以及附着于尖端13的末端上的纳米针15’或15。如上所述,通过利用杂质16焊接的方法将附着于探针尖端13上的纳米针15附着于探针尖端的末端上。
以和图1所示相同的方式,在图7的左侧示出了离子柱11和从离子柱11向纳米针15辐照的离子束。与图1唯一的不同之处在于图7包括掩模17,以屏蔽纳米针特定部分之下的部分。
照此一来,如图7所示,如果附着于探针的尖端13上的纳米针15的特定部分被掩模17屏蔽且从一侧辐照离子束,暴露于离子束的纳米针15的部分如图8所示弯曲。
可以通过调整由掩模17屏蔽的纳米针15的区域来调整纳米针15的弯曲部分的长度L。而且,可以通过调整离子柱11辐照离子束12的角度来调整纳米针15弯曲的角度θ。
因此,可以通过适当地调整掩模17的屏蔽程度以及辐照离子束12的角度来制造期望形状的CD-SPM纳米针探针。
而且,可以在根据图1所示的方法使用离子束排列附着于探针尖端13上的纳米针之后通过图7所示的工艺制造CD-SPM纳米针探针,或者可以无需如此排列纳米针而仅仅通过图7所示的工艺制造该探针。
图9为用图7所示的方法处理之前的SPM纳米针的照片,而图10为用图7所示的方法处理之后的SPM纳米针探针的照片。如图10所示,可以明显发现,纳米针的末端弯曲了。
图11示意性地示出了根据本发明制造的CD-SPM纳米针探针是如何扫描具有不规则21的样品物体的侧壁22的。如上所述,根据图7所示的方法,根据样品物体的不规则程度,通过适当调整纳米针弯曲部分的长度和角度,能够精确地扫描样品物体具有不规则性的侧壁。以上述方式制造的CD-SPM纳米针探针可以用来获得样品物体具有不规则性的侧壁的精确图像,而没有样品物体的侧壁表面的图像上的任何失真。
本发明具有的优点在于通过提供制造SPM纳米针探针的方法以及提供由该方法制造的纳米针探针,改善了SPM纳米针探针的指向和形状的精确度,在该方法中,探针能够容易地被调整,以使附着于SPM纳米针探针尖端上的纳米针具有期望的指向,且该探针能够容易被准直,使附着于SPM纳米针探针尖端上的纳米针沿着期望的指向。此外,本发明具有利用这种方法提高SPM纳米针探针产出的优点。
此外,本发明通过提供制造CD-SPM纳米针探针的方法和由其制造的CD-SPM纳米针探针,该探针能够精确地扫描样品物体的侧壁,从而具有以下优点能够精确地扫描纳米尺度的样品物体的侧壁。
尽管已经展示和描述了本发明的几个实施方式,本领域的技术人员将理解,在不背离本发明的原理和精神的情况下可以在这些方面中做出变化,本发明的范围在所附权利要求
及其等同物中界定。
权利要求
1.一种使用离子束制造扫描探针显微镜(SPM)纳米针探针的方法,包括定位所述探针,使得其上附着有所述纳米针的所述探针的尖端面向辐照所述离子束的方向;以及通过向其上附着有所述纳米针的所述探针的尖端辐照所述离子束,与所述离子束平行地排列附着于所述探针的所述尖端上的所述纳米针。
2.根据权利要求
1所述的方法,其特征在于排列所述纳米针包括沿着辐照所述离子束的方向准直附着于所述探针的所述尖端上的所述纳米针。
3.根据权利要求
1或权利要求
2所述的方法,还包括以相对于附着于平行于所述离子束排列的所述探针的尖端上的所述纳米针的特定角度,辐照聚焦离子束来以预定长度切断附着于所述探针的尖端上的所述纳米针。
4.根据权利要求
1或权利要求
2所述的方法,还包括使用掩模屏蔽由所述离子束排列的所述纳米针的特定部分;以及相对于所述纳米针的排列方向成特定角度,通过在暴露于所述掩模之外的所述纳米针的部分上再次辐照所述离子束,沿着所述再次辐照的离子束的方向,弯曲暴露于所述掩模之外的所述纳米针的部分,以排列所述纳米针的所述部分。
5.根据权利要求
1或权利要求
2所述的方法,其特征在于所述离子束为聚焦的离子束。
6.根据权利要求
5所述的方法,其特征在于所述聚焦的离子束的加速电压为5kV到30kV,电流量为1pA到1nA,且所述纳米针暴露于所述聚焦的离子束的时间为1到60秒。
7.根据权利要求
5所述的方法,其特征在于所述聚焦的离子束为Ga离子束、Au离子束、Ar离子束、Li离子束、Be离子束、He离子束和Au-Si-Be离子束之一。
8.根据权利要求
1或权利要求
2所述的方法,其特征在于所述纳米针为纳米管和纳米线之一。
9.一种使用离子束制造的SPM纳米针探针,其特征在于,通过向其上附着有纳米针的所述探针的尖端辐照所述离子束,从而平行于所述离子束排列附着于所述探针的尖端上的所述纳米针。
10.根据权利要求
9所述的SPM纳米针探针,其特征在于通过向所述探针的所述尖端辐照的所述离子束,沿着所述离子束的方向准直附着于所述探针的所述尖端上的所述纳米针。
11.根据权利要求
9或权利要求
10所述的SPM纳米针探针,其特征在于通过相对于附着于所述探针的尖端上的所述纳米针成特定角度辐照聚焦的离子束,以预定长度切断附着于所述探针的尖端上的所述纳米针,并平行于所述离子束排列所述纳米针。
12.根据权利要求
9或权利要求
10所述的SPM纳米针探针,其特征在于由所述离子束排列的所述纳米针的特定部分被掩模屏蔽;且其特征在于通过相对于所述纳米针的排列方向成特定角度在所述纳米针暴露于所述掩模之外的部分上再次辐照离子束,沿着所述再次辐照的离子束的方向,弯曲所述纳米针暴露于所述掩模之外的部分,以排列所述纳米针的所述部分。
13.根据权利要求
9或权利要求
10所述的SPM纳米针探针,其特征在于所述离子束为聚焦的离子束。
14.根据权利要求
13所述的SPM纳米针探针,其特征在于所述聚焦的离子束的加速电压为5kV到30kV,电流量为1pA到1nA,且所述纳米针暴露于所述聚焦的离子束的时间为1到60秒。
15.根据权利要求
13所述的SPM纳米针探针,其特征在于所述聚焦的离子束为Ga离子束、Au离子束、Ar离子束、Li离子束、Be离子束、He离子束和Au-Si-Be离子束之一。
16.根据权利要求
9或权利要求
10所述的SPM纳米针探针,其特征在于所述纳米针为纳米管和纳米线之一。
17.一种使用离子束制造临界尺寸扫描探针显微镜(CD-SPM)纳米针探针的方法,包括使用掩模屏蔽附着于所述探针的尖端上的所述纳米针的特定部分;以及通过在暴露于所述掩模之外的所述纳米针的部分上辐照所述离子束,从而沿着所述辐照的离子束的方向弯曲暴露于所述掩模之外的所述纳米针的所述部分,以排列所述纳米针的所述部分。
18.根据权利要求
17所述的方法,其特征在于所述离子束为聚焦的离子束。
19.根据权利要求
18所述的方法,其特征在于所述聚焦的离子束的加速电压为5kV到30kV,电流量为1pA到1nA,且所述纳米针暴露于所述聚焦的离子束的时间为1到60秒。
20.根据权利要求
18所述的方法,其特征在于所述聚焦的离子束为Ga离子束、Au离子束、Ar离子束、Li离子束、Be离子束、He离子束和Au-Si-Be离子束之一。
21.根据权利要求
17到20中任一项所述的方法,其特征在于所述纳米针为纳米管和纳米线之一。
22.一种使用离子束制造的CD-SPM纳米针探针,其特征在于用掩模屏蔽附着于所述探针的尖端上的所述纳米针的特定部分;且其特征在于通过在暴露于所述掩模之外的所述纳米针的部分上辐照所述离子束,从而沿着所述辐照的离子束的方向弯曲暴露于所述掩模之外的所述纳米针的所述部分,以排列所述纳米针的所述部分。
23.根据权利要求
22所述的CD-SPM纳米针探针,其特征在于所述离子束为聚焦的离子束。
24.根据权利要求
23所述的CD-SPM纳米针探针,所述聚焦的离子束的加速电压为5kV到30kV,电流量为1pA到1nA,且所述纳米针暴露于所述聚焦的离子束的时间为1到60秒。
25.根据权利要求
23所述的CD-SPM纳米针探针,其特征在于所述聚焦的离子束为Ga离子束、Au离子束、Ar离子束、Li离子束、Be离子束、He离子束和Au-Si-Be离子束之一。
专利摘要
本发明涉及一种使用离子束制造扫描探针显微镜(SPM)的方法以及由其制造的纳米针探针,该离子束优选为聚焦的离子束。更具体而言,本发明涉及一种制造SPM纳米针探针的方法和由其制造的SPM纳米针探针,该探针能够容易地调整,以使附着于SPM纳米针探针尖端上的纳米针具有期望的指向,且该探针能够容易被准直,使附着于SPM纳米针探针尖端上的纳米针沿着期望的指向。而且,本发明涉及一种使用离子束制造临界尺寸SPM(CD-SPM)纳米针探针的方法和由其制造的CD-SPM,该探针能够精确地扫描纳米尺度的样品物体的侧壁,该离子束优选为聚焦的离子束。更具体而言,本发明涉及一种制造CD-SPM纳米针探针的方法和由其制造的CD-SPM纳米针探针,该探针能够通过将附着于SPM纳米针探针尖端上的纳米针末端的一部分向着并非附着于SPM纳米针探针尖端上的纳米针所延伸出去的初始方向的特定方向弯曲特定角度,来精确地扫描纳米尺度的样品物体的侧壁。一种使用离子束制造扫描探针显微镜(SPM)纳米针探针的方法,包括定位所述探针,使得其上附着有所述纳米针的所述探针的尖端面向辐照所述离子束的方向;以及通过向其上附着有所述纳米针的所述探针的尖端辐照所述离子束利用所述离子束平行地排列附着于所述探针的所述尖端上的所述纳米针。一种使用离子束制造临界尺寸扫描探针显微镜(CD-SPM)纳米针探针的方法,包括使用掩模屏蔽附着于所述探针的尖端上的所述纳米针的特定部分;以及通过在暴露于所述掩模之外的所述纳米针的部分上辐照所述离子束来沿着所述辐照的离子束的方向弯曲暴露于所述掩模之外的所述纳米针的所述部分,以排列所述纳米针的所述部分。
文档编号G01Q70/12GK1993609SQ20058002574
公开日2007年7月4日 申请日期2005年7月1日
发明者朴丙天, 郑基永, 宋元永, 洪在完, 吴范焕, 安商丁 申请人:韩国标准科学研究院导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1