蛋白质表达的图析的制作方法

文档序号:586758阅读:1247来源:国知局
专利名称:蛋白质表达的图析的制作方法
技术领域
本发明涉及蛋白质和多肽的检测以及图析领域,特别是微量蛋白质表达的图析领域。
背景技术
基因组的信息是由脱氧核糖核酸(DNA)携带的。一个指定基因组序列的大小和组成决定了其产物有机体的形式和功能。通常来说,基因组的复杂程度与有机体的复杂程度成比例。相对简单的有机体如细菌具有约1-5兆碱基而哺乳动物基因组大约有3000兆碱基。基因组通常分成独立的区域,也就是公知的染色体。细菌,大肠杆菌(E.coli)含有单个的环状染色体,而人类基因组由24种染色体组成。
基因组DNA是以含有由糖-磷酸盐骨架连接起来的四种DNA碱基(A,G,C和T)的双链多聚体。DNA中碱基的顺序是DNA的一级序列结构。一种有机体的基因组既含有蛋白编码序列又含有非编码区域,包括外显子和内含子,启动子和基因调节序列以及非功能性DNA。基因组分析可以提供基因拷贝数目和染色体数目的定量测量,还可以测量DNA一级序列中存在的单个碱基差异。遗传下来的单个碱基变化即为多态性,而那些在有机体的生存过程中获得的单个碱基变化则是公知的突变。DNA水平上的基因组分析并不是提供基因表达的测定(也就是说,合成RNA和编码序列蛋白质拷贝的过程)。
指定有机体的所有细胞都被认为含有相同的基因组,而来自相同物种的不同个体的基因组典型地具有约99.9%的同一性。预期通过对任何两个人基因组进行完全测序而找到大约3百万的多态性,所以个体中0.1%的多态性比率(Wang等,Science 2801077(1998))是非常重要的。如果单个碱基的变化发生在蛋白质编码序列中,多态性将改变蛋白质的序列从而改变该蛋白质的生物活性。
DNA基因组由不连续的功能区构成,这些功能区即为公知的基因。简单有机体如细菌的基因组含有大约1000个基因(Fleischmann等,Science269496(1995),而预计人基因组含有约100,000个基因(Fields等,Nature Genet.7345(1994))。mRNA水平的基因组分析可以作为基因表达的一种测量手段。每个基因的表达水平通过结合遗传和环境因素来测定。遗传因素包括基因调节序列的精确DNA序列,如启动子,增强子和剪接位点。于是预期DNA的多态性能够在相同物种的不同个体中引起基因表达的区别。表达水平还能够被环境因素所影响,包括温度,压力,光照以及导致激素的水平有所改变的信号和其他起信号作用物质。因此,RNA分析不仅提供关于有机体遗传潜力的信息,还提供关于功能区的变化信息(M.Schena and R.W.Davis,DNA MicroarraysA PracticalApproach.(Oxford University Press,New York,1999)1-16.)。
基因表达的第二步是从mRNA合成蛋白质。独特的蛋白质是由不同的mRNA编码的,mRNA的每3个核苷酸编码该多肽链的一个氨基酸,核苷酸的线性顺序即代表氨基酸的线性序列。一旦被合成,该蛋白被认为具有独特的三维结构,该三维结构基本上是由氨基酸的一级结构所决定。蛋白质通过运行广泛的生物活性而执行基因组的功能性指令,包括在基因调节,代谢,细胞结构和DNA复制中起作用。
群体中的各个体可由于多态性而在蛋白质的活性上有所不同,多态性可能改变蛋白质的一级氨基酸序列,也可能通过改变基因表达而影响稳定状态的蛋白质水平。类似于mRNA水平,蛋白质水平也可以相应于环境的改变而有所改变;而且,蛋白质水平还受翻译和翻译后调控因素的影响,这些因素并不直接影响mRNA水平(Schena and David,1999)。蛋白(proteomics)分析为一个预测的基因产物实际上何时被翻译或是否确实被翻译,其可能经受的翻译后修饰的水平和类型,以及其相较于其他蛋白的相对浓度而提供数据(Humphrey-Smith and Blackstock,J.Protein.Chem.16537-544(1997))。当DNA被转录成mRNA,在被翻译成蛋白质之前,外显子可通过不同方式被拼接起来。通过核糖体对mRNA进行翻译后,蛋白质通常经历翻译后修饰,添加不同的化学基团例如糖类、脂类以及磷酸基团,还可以通过蛋白水解分裂特定的肽键。这些化学修饰对于调节蛋白功能至关重要,但其并不是由基因直接编码。更具体的,mRNA和蛋白质被持续地合成和降解,这样,蛋白质的最后水平并不能通过测定mRNA水平而轻易地测定出来(Patton,J.Chromatogr.722203-223,(1999);Patton等,J.Biol.Chem.27021404-21410(1995))。所以,当通常用推断mRNA的水平来表示表达蛋白的水平时,丰富的mRNA种类与这些mRNA实际所编码的蛋白数目之间几乎没有相关性就在意料之中了(Anderson and Seilhamer,Electrophoresis18533-537;Gygi等,Mol.Cell.Biol.191720-1730(1999)).。
不断增加的证据证明在基因和蛋白表达中的改变可能与特定人类疾病的发生相关(Schena and Davis,1999)。疾病组织的蛋白分析应该能够鉴定在特定疾病中表达被改变了的蛋白。许多小分子可以在总体水平上改变蛋白的表达。将关于疾病状态下改变了的表达的信息与用小分子进行治疗而引起的改变的信息相结合,可以得到关于能够有效对抗特定疾病的分子类型的宝贵信息。于是蛋白分析在诸如前导化合物的筛选和最优化、毒性、药物动力学和药效的方法中起作用。
蛋白分析的关键元件是其能够精确地并且可重复地定量大多数蛋白的能力。典型地,蛋白分析引起各种蛋白质从生物样品中同时分离,并且定量在分离过程中溶解的相对丰富的蛋白质。蛋白分析通常基本上依靠双向(2-D)凝胶电泳。但是,使用2-D凝胶而得到关于总体蛋白表达的信息在技术上是十分困难的,用半自动的方法进行这个测定还处于初步的研究阶段(Patton,Biotechniques 28944-957(2000))。而且,通常在评价2-D凝胶中蛋白表达中使用的染料(例如考马斯蓝、胶体金和银染料)并不能提供在该方法中有效的必备动力学范围。这些染料只在10到40倍的范围内呈线性,而个体蛋白的丰度存在多达4个数量级的差异(Brush,The Scientist1216-22,1998;Wirth and Romano,J.Chromatogr 698123-143(1995))。另外,低丰度蛋白,例如转录因子和激酶,其以1-2000拷贝数每个细胞数目存在,通常代表具有重要调节功能的种类。精确地检测这些低丰度蛋白是蛋白分析的一个重要的颇具挑战性的任务。最近已经有关于通过质谱分析直接定量两种不同样品中相对蛋白丰度方法的介绍。但是,这些方法的动力学线性范围显示出只有4到10倍(Gygi等1999;Oda等,Proc.Natl.Acad.Sci USA966591-6596(1999))。
最近人们注意到微矩阵技术的发展能够同时地并且异常敏感地测定少量样品中成百甚至上千种物质(Ekins,Clin.Chem.442015-2030(1998))。但是,这种方法难于简化操作,由于所需的用于在这些微矩阵中产生点的样品体积相当小(约0.5-5nl),必须采用灵敏度非常高的分析方法。DNA聚合酶驱动的滚环扩增(RCA)可以线性或几何动力学地在等温条件下复制环状寡聚核苷酸探针(Lizardi等,Nature Genet.19225-232(1998))。如果使用单一引物,RCA在几分钟之内产生成百或成千串联的靶目标DNA拷贝线状链,这些线状链与靶目标共价偶联。通过产生的线状扩增产物可以对靶目标进行立体结构的辨析以及精确地定量。RCA产生的DNA可以用荧光寡核苷酸标记物标记,该标记物可以与串联的DNA序列在多位点杂交。RCA可以结合荧光基团来设计多色编码(Speicher等,Nature Genet.12368-375(1996)),从而显著地提高可被同时分析的靶目标的数目。RCA技术可应用在溶液,原位以及微矩阵中。在固相态中,可在单个分子的水平进行检测和定量(Lizardi等,1998)。
所以,本发明的一个目的是提供检测少量且低浓度分析物的方法。
本发明的另一目的是提供检测样品中多种少量且低浓度分析物的方法。
本发明的另一目的是提供扩增的待测分析物信号的方法。
本发明的另一目的是提供自动测定样品中多种少量且低浓度分析物的方法。
本发明的另一目的是提供图析样品中多种分析物存在的方法。
本发明的另一目的是提供比较在不同样品中多种分析物存在的图谱的方法。
本发明的另一目的是提供评估化合物与目的分子相互作用的方法。
本发明的另一目的是提供检测少量以及低浓度蛋白和多肽的方法。
本发明的另一目的是提供检测样品中多种少量和低浓度蛋白和多肽的方法。
本发明的另一目的是提供扩增的待测蛋白或多肽的信号的方法。
本发明的另一目的是提供自动检测样品中多种少量及低浓度蛋白和多肽的方法。
本发明的另一目的是提供图析样品中多种蛋白和多肽存在的方法。
本发明的另一目的是提供对比不同样品中多种蛋白和多肽存在的图谱的方法。
本发明的另一目的是提供评估化合物与目的蛋白和多肽相互作用的方法。
本发明的另一目的是提供用于检测少量和低浓度分析物的组合物。
本发明的另一目的是提供用于检测少量和低浓度蛋白和多肽的组合物。

发明内容
公开了用于检测少量分析物例如蛋白和多肽的组合物和方法。该方法包括使核酸引物与分析物相连,然后使用引物介导环状DNA分子的滚环复制。DNA环的扩增依赖于引物的存在。这样,本发明公开的方法通过滚环扩增从任何目的分析物产生了扩增的信号。扩增是等温的,并且能够从每种引物产生大量的核酸。扩增的DNA仍然通过引物与分析物相连,这样就能够允许空间检测分析物。
本发明公开的方法优选用于检测并分析蛋白和多肽。在优选的实施例中,多种蛋白可通过微矩阵来分析,在微矩阵中多种不同蛋白或分析物直接或间接与之相连(如果这些蛋白与分析物存在于受测的样品中)。然后,滚环复制引物通过该引物和特异性结合分子例如抗体的偶联物与各种蛋白相连,该特异性结合分子是能够与待测蛋白特异性结合的。该引物引导的滚环复制引起在微矩阵中蛋白被固定的位点生成大量DNA。扩增的DNA作为该蛋白的简易检测信号。微矩阵中各种蛋白可以通过几种方式来区别。例如,如果不同的蛋白被固定在矩阵中各预先指定的位置上,那么扩增DNA的定位就指示着相关的蛋白。或者,每种不同的蛋白可以与不相同的滚环复制引物相连,这些引物依次引导不同DNA环的滚环复制。那么每种不同蛋白就可以得到区别性的扩增DNA。可使用任何合适的基于序列基础上的核酸检测技术区分出各种不同的扩增DNA。
本发明的另一优选实施例涉及对两种或更多样品中的表达蛋白进行对比。产生的信息类似于在核酸表达图谱中收集的信息类型。本发明的方法可以对任何细胞或组织中表达的蛋白进行高灵敏度且准确的检测和定量。本发明的方法还允许在同一个试验中对来自不同待测样品的一种或多种相同分析物同时进行检测。


图1是免疫RCA试验实施例的图表。左上指示子结合引物,由偶联到寡核苷酸的抗体构成,与分析物结合,该分析物通过共价偶联或通过分析物捕获剂而被捕获到固体表面。右上一个扩增的靶环与寡核苷酸的互补序列杂交。左下洗涤所获的偶联物以去除过量反应物,然后扩增的靶环通过RCA被扩增。右下扩增产物通过与荧光标记的寡核苷酸杂交而被原位标记。
图2是蛋白对柱洗脱部分作图的图表(毫克/毫升)。如实施例1所述,将偶联混合物上阴离子交换柱并用梯度盐洗脱。收集各洗脱部分并测定蛋白含量。汇总蛋白峰并通过紫外线分光和SDS-PAGE测定抗体/DNA含量。
图3是吸光值对柱各洗脱部分作图的图表(在260nm,吸光值单位X10-3)。如实施例1中描述,收集含有抗体-DNA偶联物的阴离子交换层析各洗脱部分,浓缩,然后上大小排阻柱。接下来在260nm,用pH7.5的磷酸钠,150mM NaCl,1mM EDTA,0.01% Tween20洗脱DNA。该图显示有各种填充/洗脱覆盖,收集洗脱成份16-20,并测定其纯度。
图4是吸光值(405nm下)对竞争性抗体浓度(nM)作图的图表。该图显示抗人IgE单克隆抗体的在亲和力方面的偶联作用。如实施例1中描述,用在DNA-偶联物(空心方块)或未偶联的形式(实心圆)中的抗-人IgE抗体,进行竞争性ELISA试验。
图5是DNA合成(皮摩尔pmols)对时间作图。该图对比了在RCA相互作用中游离的以及与抗体结合的引物。按实施例1描述,用等摩尔数量的抗-人IgE-引物2偶联物(空心圆)或未偶联的引物2进行RCA。
图6是荧光强度对IgE浓度(ng/ml)作图。如实施例2所述,该图以ELISA模式对比了免疫RCA和常规免疫实验。实心圆是免疫RCA的人IgEELISA实验,使用抗人IgE-DNA偶联体。空心方块是人IgE的ELISA实验,使用抗-人IgE-碱性磷酸酶偶联物。
图7是以磁性微粒形式进行的免疫RCA和常规免疫实验中见到的荧光条型图。除了使用的磁性微粒是按实施例3所描述的固态外,这些实验是使用和图6的相同的抗人IgE偶联物进行。
图8是荧光强度对PSA浓度(ng/ml)作图。该图显示通过免疫RCA在微点试验中进行的PSA检测。显微镜中的荧光图像按实施例4描述进行定量,并对微点上孵育的PSA浓度作图。
图9是荧光强度对IgE浓度(ng/ml)作图。该图显示按实施例5的描述,通过免疫RCA在微矩阵中进行IgE检测。免疫RCA抗人IgE微矩阵对纯化的IgE剂量-感应。来自6个微矩阵点的信息对于每个点是平均的,背景信号(无IgE)被减掉。
图10是点计数对亲和素抗地高辛配基比率作图的条形图。该图显示使用实施例6所描述的免疫RCA-CACHET的双抗原检测。抗-抗生物素蛋白和抗-绵羊抗体偶联物的RCA产物分别用带有荧光素和Cy3标记检测子的寡核苷酸修饰。使用优化用于荧光素和Cy3检测的过滤装置来分别获得荧光信号。
图11是本发明方法一个实施例图表,其中通过同一个试验检测在两个不同样品中(样品1和样品2)存在的相同分析物。这可通过使用两个不同分析物捕获剂来实现,每种捕获剂都有不同的捕获基团(半抗原1和半抗原2),这样不同的指示子结合引物(指示子结合引物1和2)就会与不同的分析物捕获剂结合。每种不同的指示子结合引物具有不同的滚环复制引物,这样,每种引物介导不同扩增靶环(扩增靶环1和2)的滚环扩增。
图12是在两种不同样品中,Cy5荧光密度与Cy3荧光密度比率对IgE比率作图的条形图。该图显示如实施例7所述在两种不同样品中相同分析物的表达图谱。用制备的抗IgE抗体孵育固定浓度的IgE,并且用二次制备的抗IgE抗体孵育各种浓度的IgE。将两个混合物同时应用于由抗IgE捕获抗体构成的微矩阵。进行免疫RCA测定每种IgE-抗-IgE偶联物的量,该免疫RCA使用针对每种偶联物的抗体-DNA偶联物,该抗体-偶联物含有两种不同的滚环复制引物,并且同时检测所获带有Cy5标记和Cy3标记的检测子探针的两种TS-DNA。
图13是本发明的一个实施例图表,其中对相同分析物的两种不同形式的存在进行检测。这是通过使用两种不同的指示子结合引物(指示子结合引物1和2)来实现的,每一种都具有一个不相同的特异性结合分子,该分子与分析物以不同形式结合(在这个例子中,是该分析物的磷酸化和未磷酸化形式)。各种不同指示子结合引物具有不同的滚环复制引物,这样每种引物介导不同扩增靶环(扩增靶环1和2)的滚环扩增。
图14是本发明方法一个实施例图表,其中评估了竞争分子的存在,或一种分子与其他两种分子(分子1和分子3)的相互作用进行竞争的能力,其中一个分子是固定化的。在有效的竞争性分子(分子3)的存在下,其它两种分子的相互作用有所减少或消除。使用能够与非固定化分子1起相互作用的指示子结合引物。如果这两种分子起相互作用,扩增DNA将会与该分子相连。如果不起相互作用(即是说,当竞争性分子阻止了相互作用)扩增的DNA就不会与该固定化的分子相连。分子1、2和3是分析物、分析物捕获剂、,以及辅助分子,其可为任意顺序。
图15是本发明公开方法的一个实施例的图表,其中测定了蛋白与mRNA的相互作用。由引物和与mRNA起相互作用的蛋白构成的指示子结合引物(配基-引物)与mRNA相连,该mRNA/指示子结合引物偶联物(mRNA-多肽)与固定在玻璃载玻片上的分析物捕获剂(低聚体)杂交。随后该引物介导滚环扩增。
图16是荧光强度对22个患者样品的一套微矩阵中的过敏原作图的条形图。该图显示免疫RCA微矩阵检测患者血清中过敏原特异性IgE。按实施例8所述,将来自患者的血清样品与用猫毛、狗毛、屋内灰尘螨((D.farinae和D.pteronyssinus)以及豌豆提取物点成的微矩阵孵育。按所述扫描矩阵并定量荧光信号。
图17是抗原比率对来自两种不同样品在一个单独微矩阵上的PSA双色检测的信号比率作图的条形图。该图显示通过免疫RCA在两种不同样品中定量PSA抗原,一种是用生物素标记的抗-PSA,另一种是用FITC标记的抗PSA。生物素和FITC样品被加入到相同的矩阵并使用抗-生物素(引物1)和抗-FITC(引物2)偶联物通过免疫RCA检测。按实施例7所述,用Cy3(引物2)和Cy5(引物1)信号强度的比率作图,作为两个样品中PSA抗原的功能比率。
图18A和18B是在一个微矩阵中同时多元化地检测两种不同细胞素的细胞素数量条形图。该图显示在含有IL1a和TNF混合物的样品中,这两种细胞素的数量(图18A)。微矩阵中含有这两种细胞素的捕获抗体,该抗体固定在矩阵中的不同位点。使用与引物1偶联的抗-生物素通过免疫RCA进行检测。只含有IL1a的对照样品产生单一信号,即IL1a的信号,显示了相互作用的特异性(图18B)。
具体实施例方式
本发明公开了用于检测少量分析物如蛋白和多肽的组合物和方法。该方法将核酸信号的扩增能力应用于检测非核酸分析物。这种分析物的检测基本上是取决于对足够数量的分析物的检测或高灵敏度标记的应用,针对这种分析物还未发展出与核酸扩增技术相当的扩增技术。该标记的应用既繁琐又有限。本发明公开的方法提供了一种简单且高灵敏度的方法来产生任何目的分析物的扩增信号。
本发明公开的方法是RCA的一种形式,其中指示子结合引物提供了扩增靶环需要的滚环复制引物。本方法基于指示子结合引物与靶分子(也指分析物)的偶联,允许RCA产生一种扩增信号(即是,串联DNA序列(TS-DNA))。该特异性引物序列是指示子结合引物的一部分,其提供指示子结合引物与分析物的特异性相互作用的偶联(通过指示子结合引物的亲合部分)以及RCA。一旦指示子结合引物与分析物相连,扩增靶环(ATC)就与指示子结合引物的滚环复制引物序列相连,然后通过RCA扩增ATC。获得的TS-DNA在一端合并了指示子结合引物的滚环复制引物序列,这样就可以锚定TS-DNA到分析物的位点。本发明公开的方法可使用任何分析物进行。优选的分析物是核酸,包括扩增的核酸例如TS-DNA和扩增靶环,抗原和配基。本公开方法的靶分子在此通常指分析物。
本公开方法优选用于检测并分析蛋白和多肽。在优选的实施例中,使用微矩阵对多种蛋白进行分析,而各种蛋白是被固定在该微矩阵中的(如果这些蛋白是存在于待测样品中)。然后滚环复制引物通过使用引物和特异性结合分子的偶联物与各种蛋白相连,其中的特异性结合分子可以例如是抗体,其特异性地结合待测蛋白。引物引导的滚环复制在矩阵中该蛋白被固定的位点产生了大量DNA。扩增的DNA作为该蛋白的简易检测信号。矩阵中不同的蛋白可用多种方法区分。例如,如果不同的蛋白被固定在矩阵中预先指定的位置上,扩增DNA的定位就可以指示相关蛋白。或者,每种不同的蛋白可以与不同的滚环复制引物相连,这些引物依次引导不同DNA环的滚环复制。这样从每种蛋白得到不同的扩增DNA。这些不相同的扩增DNA可使用任何合适的基于序列基础上的核酸检测技术而被区分。
本方法另一优选实施例涉及对比在两种或更多不同样品中蛋白的表达。产生的信息类似于在核酸表达图谱中收集到的信息类型。例如,来自不同样品的相同分析物可以与不同的引物相连,这些引物能够引导不同DNA环的复制从而产生不同的扩增DNA。用这种方法,来自一个样品的分析物所产生的扩增DNA可以不同于另一不同样品中相同分析物所产生的扩增DNA。该实施例显示在图11中,其中来自两种不同样品的同一分析物产生了两种不同DNA环的扩增。
甚至,当这些样品在引物与分析物相连之后被混合到一起时,仍然可以获得这个样品的特异性检测(本方法一种优选的模式)。例如,在图中11,分析物捕获剂(与半抗原1和半抗原2结合的抗体)可分别与样品1和样品2混合。在另一优选实施例中,每种样品中的这些分析物用不同的半抗原直接标记。这样,不同样品中相同类型的分析物与不同的半抗原相连。在优选实施例中,样品被混合到一起。分析物可如图11所示在底物上被捕获,指示子结合引物可以与分析物捕获剂相连,然后DNA环从滚环复制引物扩增。即使来自不同样品的分析物被捕获在底物的相同位点(本方法的一个优选模式),该位点出现的每种分析物其来源及数量可通过将被产生的不同扩增DNA而被测定。
分析物的来源(也就是是说,该分析物来自的样品)可以被测定,例如,通过对不同的扩增DNA(这些DNA产生自针对不同样品的引物)使用不同的标记。通过使用当与其它标记同时被检测时可以被区分的标记(例如具有独特发射光谱的荧光标记),所有的样品都可以被混合在一起并一起分析。被检测的标记通过各部分构成的链标记-扩增的DNA-环DNA-引物-分析物,而间接地鉴定出分析物的来源在本发明方法的另一优选形式中,即指免疫RCA,滚环复制引物的5’末端与抗体相连。在本方法的一个优选形式中,该抗体是直接抗半抗原的。在本方法的另一优选实施例中,该抗体是直接抗分析物本身的。在环状DNA(指扩增靶环)、DNA聚合酶和核苷酸的存在下,滚环反应导致DNA分子的形成,该分子由环状DNA序列(指串联DNA序列)的多拷贝构成,该DNA序列仍与抗体相连(图1)。扩增DNA可通过不同方法检测,包括直接合并半抗原-或荧光-标记的核酸,或者通过与荧光物质或酶法标记的互补寡核苷酸探针杂交。尽管RCA反应可以线性或几何动力学实施(Lizardi等,1998),本发明公开的信号产生方法优选使用线性RCA。
另一方面,本发明涉及固定存在于复杂的生物样品中的分析物,并且确定和定量其在样品中的存在情况。在此,这个通过固定来确定和定量分析物的方法是使用含有过敏原的样品而描述。例如,在生物提取物和体液中存在的过敏原可按实施例8的描述,通过初级选择性固定将其固定在微矩阵中。然后可以进行免疫RCA微矩阵试验来检测并定量。
另一方面,本方法还涉及对一个样品中存在的不止一种分析物进行多元化检测和定量。这在实施例9中说明,其中微矩阵含有几种测试位点,每种测试位点含有一个固定化的捕获抗体,该位点与含有待测蛋白分析物的混合物的样品共同孵育。接下来,该微矩阵与含有至少一种抗每种分析物的抗体的混合物孵育,这些抗体是生物素化的。然后进行免疫RCA微矩阵试验来检测并定量。
另一方面,免疫RCA可以在16微孔玻璃载玻片上进行,其中每个孔之间都被特氟隆遮蔽膜分隔开。这在实施例8中说明,其中100-400点的微矩阵被点到每个微孔中。这些孔的每一个都被用于试验不同的样品以及对照。多孔载玻片16孔的6个孔中被点上抗-IgE捕获抗体的矩阵。在该多孔形式的过敏原微矩阵上的免疫RCA实验可以通过例如低廉的BeckmanBioMek液体处理机器人而半自动的进行。
基于微矩阵基础上的免疫RCA实验可应用于其它多抗体实验。例如,由特异性IgG4而不是IgE引起的某种免疫反应(AAAI Board of Directors,J Allergy Clin Immunol.95652-654(1995))。与互补于DNA环的DNA引物相连的抗人IgG4的应用允许同时测定过敏原特异性的IgG4和IgE,其中的DNA环序列与互补于偶联到抗-IgE的引物的DNA环不同。这种方法可用在过敏原去敏治疗过程中或监测对抗IgE反应的治疗中(Chang NatureBiotech.18157-162(2000))。
微矩阵中免疫RCA的多元化能力,既是空间定位的(即在矩阵中定点多分析物的能力)又是显色的(即对结合到分析物上的多抗体类型的检测以及区分能力)可用于其它涉及多特异性抗体检测的临床诊断实验中,这些多特异性抗体是例如在怀疑患有系统性自身免疫疾病,关节炎,器官特异性自身免疫疾病患者或在组织相容性测试中的自身抗体。其它的应用包括用菌株和种特异性IgM和IgG测定的感染疾病诊断,以及在体外测定在怀疑患有初级和次级免疫缺陷疾病的患者体内功能性抗体应答。最后,这种多元化、自动且高灵敏度的形式除涉及抗体检测之外还可以应用于其它免疫实验。微矩阵上RCA引导的夹心免疫实验能够比分析物例如前列腺血清抗原的常规实验,将灵敏度提高3到4个对数。这样,本方法在诊断和预测能力上产生了巨大的进步,该能力是通过对于疾病的分子阶段,对多种分析物进行同时的检测而获得。
由于不同的特异性序列可任意地与每个单个分析物相连,所以核酸是理想的用于多分析物检测的分子标记。如果每个DNA标记都是独特的,与DNA直接共价连接可以制备无限制数目的抗体DNA加合物并可以用任何方式组合(Hendrickson等,Nucleic Acids Res.23522-529(1995))。共价连接对于进行简单实验形式也是有利的,因为混合的试剂更少且需要洗涤步骤;而且,装配在一起的各部分,其化学计量学的变率可以避免。在一个优选实施例中,本方法在信号扩增策略中使用了共价连接策略,术语称为免疫RCA。通过采用几种合成和纯化策略的修饰和改进,可以高产率地产生高纯度的这些偶联体。
材料A.分析物本发明公开的方法涉及分析物的检测。总的来说,任何化合物,基团或者化合物或偶联物的组份都可以作为分析物。优选的分析物是多肽,蛋白和其它大分子物质,例如脂类、碳水化合偶联物、蛋白脂、膜片段和核酸。分析物还可以是较小分子,例如辅助因子、代谢物、酶底物、金属离子和金属螯合物。优选的分析物分子量为100道尔顿到1,000,000道尔顿。
分析物可以被修饰,包括天然发生的或在体内或体外被诱导的。诱导的修饰包括加成,例如半抗原偶联、多聚化,通过与其它化学基团相互作用得到的偶联物,(例如通过蛋白酶)消化或分裂,金属离子偶联或去除。本发明的方法可用于检测分析物在修饰状态的区别之处,例如蛋白的磷酸化或糖基化状态。
分析物可以直接或间接地与底物相连,优选在矩阵中。最优选是微矩阵。分析物可以使用分析物捕获剂被捕获和/或固定。固定的分析物可用于捕获其它组份,这些组份在本发明的方法中作为分析物捕获剂和指示子结合引物。
B.指示子结合引物指示子结合引物是偶联到或连接到寡核苷酸的特异性结合分子。该特异性结合分子是指指示子结合引物的亲和部分,而寡核苷酸是指指示子结合引物的寡核苷酸部分。在本发明的一个方法中,该寡核苷酸部分作为滚环复制引物(相应地,指示子结合物的寡核苷酸部分在此也指滚环复制引物)。这允许加入的ATC滚环复制,其所得到的TS-DNA与指示子结合引物相连。因此,该TS-DNA就能够有效地被固定到分析物的位点。
滚环复制引物序列的序列可任意选择。在使用多指示子结合引物的多元化试验中,优选每个指示子结合引物的滚环复制引物序列是基本上不相同的,来限制检测到非特异性靶物质的可能性。或者,在一些多元化试验中,可能期望使用具有相关序列的滚环复制引物序列。这种试验可以使用一种或几种ATC来检测大量分析物。该寡核苷酸部分可以是任何长度,只要这个长度能够确保在寡核苷酸部分与扩增靶环的引物互补部分之间能够特异的稳定的杂交。通常这个长度是12到100个核苷酸,但优选20到45个核苷酸长度。
在此,特异性结合分子是与特殊分子或基团特异性相互作用的分子。这个与特异性结合分子相互作用的分子或基团可以是分析物或其它分子,该分子在特异性结合分子和分析物之间的相互作用中作为中间体。这种中间体分子的一个优选例是分析物捕获剂。术语分析物应该理解为既包括分离的分子也包括分子的一个部分,例如蛋白的抗原决定部位,这些分子特异性地与特异性结合分子相互作用。抗体,不论其是受体/配体部分,以及其它具有特异性亲和力的分子都属于特异性结合分子,都可用作指示子结合引物的亲和部分。带有亲和部分的指示子结合引物在此还指指示子抗体,其中该亲和部分是抗体。通过将滚环复制引物与这种特异性结合分子相偶联,可利用扩增带有滚环复制的ATC来检测特异性结合分子与其特异性靶物质之间的结合。这种扩增可以高灵敏度地将相连的非常少量的分析物检测出来。
特异性地与特殊分析物相互作用的指示子结合引物应该是该分析物特异性的。例如,带有亲和部分是抗体的指示子结合引物应该是对特定抗原具有特异性的,所述抗体与该抗原结合。该抗原是分析物。
用作指示子结合引物亲和部分的抗体可商业途径获得或使用公知的方法制备。例如,Johnstone和Thorpe,30-85页,描述了产生多克隆和单克隆的常规方法。全书描述了抗体在实验系统中的应用中的许多常规技术和原理。
在应用中,指示子结合引物不必要绝对纯。该指示子结合引物优选具有至少20%的纯度,更优选至少50%纯度,更优选至少80%纯度,更优选至少90%纯度。
C.扩增靶环扩增靶环(ATC)是环状单链DNA分子,通常含有40到1000个核苷酸,优选大约具有50到150个核苷酸,最优选大约具有50到100个核苷酸。ATC的各部分具有特异性功能,使得ATC可用于滚环复制(RCA)。这些部分指作为引物的互补部分、检测标记部分、次级靶序列部分、地址标记部分和启动子部分。引物的互补部分是扩增靶环的必备元件。检测标记部分、次级靶序列部分、地址标记部分、和启动子部分是任选的。通常,扩增靶环是单链环状DNA分子,其含有引物的互补部分。ATC的这些与ATC特异性部分不相关的部分可以是任选的序列。优选ATC不具有自身互补的序列。如果互补区不超过6个核苷酸、没有错配或缺口,才允许出现这种情况。还优选含有启动子部分的ATC不具有任何类似于转录终止子的序列,例如8个或更多胸腺嘧啶核苷酸群。
当扩增靶环复制时,会产生含有多重复序列的长DNA分子,该重复序列互补于扩增靶环。这个长DNA分子在此就是指串联DND序列(TS-DNA)。TS-DNA含有互补于引物互补部分的序列和扩增靶环、检测标记部分、次级靶序列部分、地址标记部分以及启动子上,如果存在这些元件的话。TS-DNA中的这些序列是指作为引物序列(其匹配于滚环复制引物序列)、间隔序列(互补于间隔区)、检测标记、次级靶序列、地址标记和启动子序列。扩增靶环可用作特异性结合分子的标记。
D.滚环复制引物滚环复制引物(RCRP)是具有互补于ATC引物互补部分序列的寡核苷酸。该序列是指RCRP的互补部分。RCRP的这个互补部分以及同源的引物互补部分可以具有任何期望的序列,只要它们之间可以互补。通常,RCRP的序列可如此选择该序列并不明显互补于任何ATC的其它部分。滚环复制引物的互补部分可以是任何长度,只要该长度能够确保在该引物和该引物互补部分之间特异的稳定的杂交。通常是12到100个核苷酸长度,优选20到45核苷酸长度。
优选滚环复制引物还包括额外的序列,该序列在RCRP的5’末端,与ATC的任何部分都不互补。该序列是指作为RCRP的非互补部分。如果存在的话,这个RCRP的非互补部分的作用是在DNA复制过程中促进链的移位。该RCRP的非互补部分可以是任何长度。但通常是1到100个核苷酸长度,优选4到8个核苷酸长度。滚环复制引物可在链移位串联扩增中用作三级DNA链的移位引物。
在一个优选实施例中,滚环复制引物(以及其它本发明所用的引物)可包含间隔子。当固定化时,该间隔子可帮助克服来自表面的空间因素,有助于在引物上锚定聚合酶,或者提供其它帮助,例如控制或改变矩阵元素的疏水性。用于本发明的间隔子包括核甘酸间隔子例如多聚dT或多聚dA;脂肪族连接子例如C18,C12或其多聚体,芳香族间隔子,或RNA,DNA,PNA或其组合。
E.分析物捕获剂分析物捕获剂是能够与分析物相互作用的任何化合物,并且使分析物被固定或与其它化合物和分析物分离。分析物捕获剂包括分析物相互作用部分。分析物捕获剂还可以包括捕获部分。不具有捕获部分的分析物捕获剂优选被固定到固体支持物上。分析物捕获剂的分析物相互作用部分是能够与特定分子或基团特异性相互作用的分子。这个与分析物捕获剂的分析物相互作用部分特异性相互作用的特定分子或基团可以是分析物或其它在分析物相互作用部分和分析物之间的相互作用中起中间体作用的分子。术语分析物应理解为既指分离的分子又指与分析物相互作用部分特异性相互作用的分子的一部分,例如蛋白的抗原决定部位。抗体,或者受体/配体对中的一个,以及其它具有特异性结合亲和力的分子都是能够用作分析物捕获剂的分析物相互作用部分的实例。分析物捕获剂的这个特异性结合部分可以是任何能够与分析物相互作用的化合物或组合物,例如多肽。与特定分析物特异性相互作用的分析物捕获剂应该是该分析物特异性的。例如,分析物捕获剂带有分析物相互作用部分,该相互作用部分是结合特定抗原的抗体,那么该分析物捕获剂应该是该抗原特异性的。该抗原是分析物。
可用作分析物捕获剂的分析物相互作用部分的分子实例是抗体,例如天然(血清)抗体、纯化的抗体、单克隆抗体、多克隆抗体、合成抗体、抗体片段(例如,Fab片段);抗体相互作用物质,例如蛋白A,碳水化合物结合蛋白和其它相互作用物;蛋白相互作用物(例如亲和素及其衍生物);多肽;和小分子化合物,例如酶底物、辅助因子、金属离子/螯合物、和半抗原。抗体可以是修饰的或化学处理的从而优化其与表面和/或靶物质的结合。
用作分析物捕获剂的分析物相互作用部分的抗体可以商业途径获得或使用公知的方法制备。例如,Johnstone和Thorpe,30-85页,描述了产生多克隆和单克隆的常规方法。全书描述了抗体在实验系统中的应用中的许多常规技术和原理。
分析物捕获剂的捕获部分是任何可以与其它化合物相连的化合物。优选地,捕获部分是化合物,例如配体或半抗原,其能够与其它化合物,例如配体结合分子或抗体结合或相互作用。这种在捕获部分和捕获化合物之间的相互作用还优选是特异性相互作用,例如在半抗原和抗体之间或配体和配体结合分子之间的相互作用。半抗原的实例包括生物素、FITC、地高辛、和二硝基苯酚。捕获部分可用于从未与分析物捕获剂相连的化合物或偶联物中分离出与分析物捕获剂相连的化合物或偶联物。
将分析物或分析物捕获剂固定到底物上可以通过几种方法实施。在一个实施例中,捕获位点被附着或连接到底物上。捕获位点是化合物或基团,其能够通过结合到分析物捕获剂(分析物与之偶联或将要偶联)的捕获部分,或与之相互作用,从而介导分析物的附着。固定在底物上的捕获位点将分析物捕获到底物上。这样捕获剂提供了一种简便方法来洗脱可能影响后续步骤的反应组份。或者,分析物捕获剂可直接被固定到底物上。如果这样,那么分析物捕获剂的捕获部分不再必要。
在一个实施例中,分析物捕获剂或待固定的捕获位点是抗杂交瘤抗体。将抗体和其它蛋白质固定到底物的方法已完善建立。固定可通过附着完成,例如使用标准的化学固定方法进行的胺化表面,羧化表面或羟化表面。附着剂的实例是溴化氰、琥珀酰亚胺、醛、甲苯磺酰氯、亲和素-生物素、光致交联物质、环氧化物和马来酰亚胺。一个优选的附着剂是异双功能交联试剂例如N-[r-马来酰亚胺基丁酰氧基]琥珀酰亚胺酯(GMBS)。这些和其它附着剂,以及它们在附着中的应用方法,在RichardF.Taylor,编辑(M.Dekker,New York,1991)蛋白质固定基础与应用,Johnstone和Thorpe,Immunochemistry In Practice(BlackwellScientific Publications,Oxford,England,1987)209-216页和241-242页,以及Immobilized Affinity Ligands,Craig T.Hermanson等编辑(Academic Press,New York,1992)中描述。抗体通过将抗体上游离氨基基团化学交联到底物上存在的反应性侧基而附着于底物上。例如,使用戊二醛、碳化二亚胺或异双功能试剂例如GMBS作为交联剂,抗体可以化学交联到含有游离氨基、羧基或硫基团的底物上。在该方法中,含有游离抗体的水溶液与固态底物一起在戊二醛或碳化二亚胺的存在下孵育。为了与戊二醛交联,反应物可以与2%的戊二醛在一定体积缓冲液例如pH7.4,0.1M二甲基胂酸钠中孵育。其它常规的化学固定方法是本领域技术人员公知的技术。
分析物捕获剂的一种有用的形式是多肽。当各种多肽被固定到矩阵中,它们可以用作分析物的“诱饵”。例如,不同多肽的矩阵可用作评价样品中是否含有与这些多肽之中任一相互作用的分析物。可以比较不同样品,通过例如比较不同样品中分析物与之结合的多肽的区别。本方法另一形式中,目的分析物特异性的分析物捕获剂矩阵可用于评价样品中是否存在一整套分析物。
在应用中,分析物捕获剂不必要绝对纯。优选分析物捕获剂具有至少20%的纯度,更优选至少50%纯度,更优选至少80%纯度,更优选至少90%纯度。
F.辅助分子辅助分子是那些影响分析物和特异性结合分子或分析物捕获剂之间相互作用的分子。例如,辅助分子可以是与分析物竞争结合的分析物捕获剂或特异性结合分子的分子。竞争性辅助分子的一个形式就是分析物类似物。类似物就是在结构上相类似但是竞争力不同的分子。在此,分析物类似物应该是足够类似以至可与该分析物的分析物捕获剂或特异性结合分子相互作用。辅助分子还可以是有助于分析物和特异性结合分子或分析物捕获剂之间相互作用,或者是该相互作用必需的分子。这种辅助分子在此指分析物结合辅助因子。
在本方法的一个形式中,辅助分子可以是化合物,其对分析物结合的影响有待测定。例如,本方法可用于筛选与特定结合分子或分析物捕获剂相互作用的分析物的竞争物(或结合辅助因子)。如果辅助分子影响了分析物的相互作用,由于指示子结合引物与分析物的(或者分析物捕获剂与分析物的)偶联会丢失或增强,则RCA的结果将会改变。图14说明了竞争分析物和分析物捕获剂之间相互作用的实例。
在应用中,辅助分子不必要绝对纯。优选辅助分子具有至少20%的纯度,更优选至少50%纯度,更优选至少80%纯度,更优选至少90%纯度。
G.检测标记为帮助使用本方法的核酸扩增的检测和定量,可以将检测标记直接并入扩增核酸或者与检测分子相连。在此,检测标记是任何能够直接或间接与扩增核酸相连的分子,其能够直接或间接产生可测量,可检测的信号。许多这种可掺入到核酸或与核酸或抗体探针相连的标记都是本领域技术人员公知的。适用于RCA的检测标记的实例有放射性同位素、荧光分子、磷光分子、酶、抗体和配体。
合适的荧光标记的例子包括荧光素(FITC),5,6羧甲基荧光素,Texasred,硝基苯-2-氧杂-1,3-二唑-4-基(NBD),香豆素,丹磺酰氯,若丹明,4’-6-二氨基-2-苯基吲哚(DAPI),和花青染料Cy3,Cy3.5,Cy5,Cy5.5和Cy7。优选的荧光标记是荧光素(5-羧基荧光素-N-羟基琥珀酰亚胺酯)和若丹明(5,6-四甲基若丹明)。优选的用于组合多色编码的荧光标记是FITC和花青染料Cy3,Cy3.5,Cy5,Cy5.5和Cy7。这些荧光物质的最大吸收波长和发射波长分别是FITC(490nm;520nm),Cy3(554nm;568nm),Cy3.5(581nm;588nm),Cy5(652nm672nm),Cy5.5(682nm;703nm)和Cy7(755nm;778nm),这样,就可以对它们同时进行检测。荧光标记可以从不同的商业途径获得,包括Molecular Probes,Eugene,OR and Research Organics,Cleveland,Ohio。
被标记的核苷酸是优选的检测标记形式,因为它们可以在合成时被直接掺入到RCA的产物中。可被掺入到扩增DNA或RNA的检测标记的例子包括核苷酸类似物例如BrdUrd(Hoy和Schimke,Mutation Research290217-230(1993)),BrUTP(Wansick等,J.Cell Biology122283-293(1993))和生物素修饰的核苷酸(Langer等,Proc.Natl.Acad.Sci.USA786633(1981))或用合适的半抗原例如地高辛修饰的核苷酸(Kerkhof,Anal.Biochem.205359-364(1992))。合适的荧光标记的核苷酸是荧光素氰酸盐-dUTP,花青-3dUTP和花青-5-dUTP(Yu等,Nucleic AcidsRes.,223226-3232(1994))。优选的DNA核苷酸类似物检测标记是BrdUrd(BUDR三磷酸,Sigma),优选的RNA核苷酸类似物检测标记是生物素-16-尿苷5’-三磷酸(生物素-16-dUTP,Boehringher Mannheim)。荧光素,Cy3和Cy5可与dUTP相连作为直接标记。Cy3.5和Cy7可作为抗生素或抗-地高辛偶联体,用于生物素-或地高辛-标记探针的二次检测。
掺入到扩增核酸的检测标记,例如生物素,可以使用本领域公知的高灵敏度的方法被随后检测。例如,可以使用抗生物素蛋白链菌素-碱性磷酸酶偶联物(Tropix,Inc.)检测生物素,该偶联物与生物素相连并随即通过适当底物(例如,化学发光底物CSPD3-(4-甲氧基螺-[1,2-二氧杂环丁烷-3-2’-(5’-氯)三环[3.3.1.13,7]癸烷]-4-基)苯基磷酸二钠;Tropix,Inc.)的化学发光物质而被检测出。
用于检测扩增RNA的优选检测标记是吖啶(acridinium)酯-标记的DNA探针(GenProbe,Inc.,如Arnold等人描述,Clinical Chemistry351588-1594(1989))。吖啶酯-标记的检测探针可使扩增RNA的检测无需洗涤,因为未杂交的探针可以用碱消除(Arnold等(1989))。
能够结合两种或更多这些检测标记的分子也可作为检测标记。任何已知的检测标记都可与本发明的探针、标记以及标记和检测使用本方法扩增的核酸的方法一起使用。检测和测量检测标记所产生的信号的方法是本领域技术人员公知的。例如,放射性同位素可通过闪烁计数或直接的目测进行测定,荧光分子可用荧光分光光度计检测;磷光分子可用扫描仪或分光光度计检测,或用照相机直接目测;酶可以通过对该酶催化的相互作用产物的检测或目测来检测;抗体可通过检测与该抗体相连的次级检测标记来检测。这种方法可直接应用于本发明的扩增和检测的方法。在此,检测分子是与扩增核酸相互作用的分子,并且一种或多种检测标记与之相连。
H.检测探针检测探针是标记的寡核苷酸,具有互补于TS-DNA上的检测标记的序列。检测探针的该互补部分可以是任何长度,只要这个长度能够确保其特异性以及在检测探针与检测标记之间能够稳定的杂交。为此,优选10到35个核苷酸长度,最优选检测探针的互补部分具有16到20个核苷酸长度。检测探针可含有上述的任一检测标记。优选的标记是生物素和荧光分子。特别优选的检测探针是分子灯塔(molecular beacon)。分子灯塔是使用荧光基团标记的检测探针,其中该荧光基团只有在该检测探针被杂交时才会发出荧光(Tyagi和Kramer,Nature Biotechnology14303-308(1996))。因为未杂交的检测探针不会产生信号,所以这种探针的应用排除了在检测标记以前必须去除未杂交探针的必要。这在多元试验中尤其有用。如WO97/19193中描述,该TS-DNA可用降解检测探针降解。降解TS-DNA在下述的组合的多色编码中尤其有用。
I.DNA链移位引物用于次级DNA链移位的引物在此是指DNA链移位引物。DNA链移位引物的一种形式,在此该DNA链移位引物指次级DNA链移位引物,是寡核苷酸,其具有ATC序列的序列匹配部分。该序列指次级DNA链移位引物的匹配部分。次级DNA链移位引物的这个匹配部分互补于TS-DNA的序列。该次级DNA链移位引物匹配部分可以互补于TS-DNA的任何序列。该次级DNA链移位引物匹配部分可以是任何长度,只要这个长度能够确保其在引物与其互补序列之间的特异稳定的杂交。通常是12到35个核苷酸长度,但优选18到25个核苷酸长度。
DNA链移位引物的另一种形式,在此指三级DNA链移位引物,是具有互补于ATC部分序列的序列的寡核苷酸。该序列指作为三级DNA链移位引物的互补部分。该三级DNA链移位引物互补部分与TS-DNA的序列相匹配。该三级DNA移位引物的互补部分可以互补于ATC的任何序列。该三级DNA移位引物的互补部分可以是任何长度,只要这个长度能够确保在引物与其互补序列之间特异的并稳定的杂交。通常是12到35个核苷酸长度,但优选18到25个核苷酸长度。
在USP5,854,033和WO97/19193中更加详细描述了DNA链移位引物及其应用。
J.寡核苷酸合成滚环复制引物、检测探针、地址探针、扩增靶环、DNA链移位引物、以及任何其它寡核苷酸都可以用已建立的寡核苷酸合成方法合成。生产或合成寡核苷酸的方法是本领域已知的。这种方法既包括常规酶法消化后分离核苷酸片段(例如参见Sambrook等,Molecular CloningALaboratory Manual,第二版(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1989)5,6章),又包括高纯度合成方法,例如氰乙基亚磷酰胺方法,使用Milligen或Beckman System lPlus DNA合成仪(例如,Milligen-Biosearch的Model 8700自动合成仪,Burlington,MA or PerSeptive Expedite)。用于产生寡核苷酸的合成方法还在Ikuta等人,Ann.Rev.Biochem.53323-356(1984),(phosphotriester and phosphite-triester methods),和Narang等人,Methods Enzymol.,65610-620(1980),(phosphotriester method)中描述。蛋白核酸分子的制备可使用已知方法,例如Nielsen等人在Bioconjug.Chem.53-7(1994)中的描述。
本文描述的许多寡核苷酸是设计成互补于其它寡核苷酸或核酸的特定部分,使其之间能够形成稳定的杂交。这些杂交的稳定性可以通过已知方法计算,例如Lesnick和Freier,Biochemistry3410807-10815(1995),McGraw等,Biotechniques8674-678(1990),和Rychlik等人,Nucleic Acids Res.186409-6412(1990)的描述。
K.固体支持物固体支持物是分析物能够与之相连的固体底物或支持物。分析物可以与团体支持物直接或间接相连。例如,分析物可以被直接固定在固体支持物上。分析物捕获剂和辅助分子也可以被固定在固体支持物上。固体支持物的一个优选形式是矩阵。固体支持物的另一形式是矩阵检测器。矩阵检测器是固体支持物,多种不同的地址探针或检测分子被偶联到该固体支持物上的矩阵,格栅或其它有机化模式上。
用作固体支持物的固态底物可包括寡核苷酸能够与之相连的任何固体材料。这些材料包括,例如,丙烯酰胺、、琼脂糖、、纤维素、、硝酸纤维素、、玻璃、、聚苯乙烯、、聚乙烯醋酸乙烯酯、聚丙烯、聚甲基丙烯酸酯、聚乙烯、聚环氧乙烷、聚硅酸酯、聚碳酸酯、特氟隆、碳氟化合物、尼龙、硅橡胶、聚酐、聚乙醇酸、聚乳酸、聚原酸酯、聚丙基富马酸酯、胶原、葡糖胺聚糖和聚氨基酸。固态底物可以是任何应用形式、包括薄膜、膜、瓶、皿、纤维、编织纤维、成型聚合物、颗粒、珠子、微粒或其组合。固态底物和固体支持物可以是多孔的或无孔。优选的固态底物形式是微量滴定板。最优选的微量滴定板形式是标准的96孔板。在一个优选实施例中,使用了多孔玻璃载玻片,其中每孔标准地含有一个矩阵。该特征允许更大的分析重现性的对照,提高了物料通过量和样品处理量,且简易地自动进行。
不同的分析物、分析物捕获剂、或辅助分子可作为一整套同时使用。这一套可以是所有或部分分析物、分析物捕获剂和辅助分子的混合物,其在不同反应中分别被使用,或被固定在矩阵中。单独使用或混合使用的分析物、分析物捕获剂和辅助分子可通过,例如与固体支持物相连或固定于其上而被物理分离。一个矩阵包括固定在矩阵中已鉴定或预先指定的位点的多元分析物、分析物捕获剂、和/或辅助分子。矩阵中每个预先指定的位点通常具有一个类型的组份(也就是说,在该位点所有的组份都是相同的)。每个位点都具有该组份的多个拷贝。在矩阵中,不同组份的空间分隔保障了分析物的分别检测和鉴定。
尽管优选,但指定的矩阵不必要是单一单元或结构。这套分析物、分析物捕获剂或辅助分子可以分布在固体支持物上的任一单元。例如,举一个极端例子,每种探针都可以固定在分离的反应试管或容器上,或者在分离的珠子或微粒上。
本发明方法的不同模式可用固定在固体支持物上的不同组份(例如,分析物、分析物捕获剂、和辅助分子)实施。例如,图14说明了本方法的一种实施例,其中在三种分子(分子1,2和3)之间的相互作用是使用了固体支持物评价的。这三种分子的每一种可以代表,例如,分析物捕获剂、辅助分子或分析物。如果分子2是分析物,那么分子1就是分析物捕获剂而分子3就是辅助分子。在这种情况下,分析物(分子2)是被固定的。如果分子2是分析物捕获剂,那么分子1就是分析物而分子3是辅助分子。在这种情况下,分析物捕获剂(分子2)就是被固定的。本方法的另一实施例中,辅助分子可以是被固定的。
在另一实施例中,RCA是在液体中进行的,并且扩增产物是被捕获在矩阵中。例如,生物素化的捕获抗体被加入到含有分析物的样品中,然后加入能够结合分析物不同位点的指示子结合引物。这些组份—捕获抗体和指示子结合引物—可以任何顺序加入。然后进行RCA来产生TS-DNA,并在含有抗生物素蛋白链菌素的介质(例如,抗生物素蛋白链菌素珠(Dynal))上进行纯化。然后通过杂交到含有寡核苷酸探针的矩阵来检测或定量TS-DNA,该探针互补于TS-DNA。{0>Such probes are referredto herein as address probes.<}0{>这种探针在此指地址探针。<0}{0>By attaching different address probes to different regionsof a solid support,different RCA products can be captured atdifferent,and therefore diagnostic,locations on the solidsupport.<}0{>通过在固体支持物的不同区域附着不同的地址探针,可以在固体支持体上的各不同位点捕获不同的RCA产物,因为位点不同,所以这些位点具有诊断价值。例如在微量滴定板多元试验中,对至多96种不同TS-DNA(每种通过不同的引物和ATC进行扩增)具有特异性的地址探针,可被固定到微量滴定板上,每种都在不同的孔中。捕获和检测只在矩阵中那些相应于TS-DNA的探针元件中进行,这些TS-DNA的对应分析物存在于样品中。
固定寡核苷酸到固态底物的方法已建立。该核苷酸,包括地址探针和检测探针,可通过已建立的结合方法连接到底物上。例如,合适的附着方法如Pease等,Proc.Natl.Acad.Sci.USA91(11)5022-5026(1994),和Khrapko等,Mol Biol(Mosk)(USSR)25718-730(1991)的描述。固定3’-氨基寡核苷酸到酪蛋白覆盖的载玻片上的方法由Stimpson等,Proc.Natl.Acad.Sci.USA926379-6383(1995)描述。优选的附着寡核苷酸到固态底物的方法由Guo等,Nucleic Acids Res.225456-5465(1994)描述。
一些用于RCA试验的固体支持物带有附着到固态底物上的检测抗体。这种抗体对目的分子具有特异性。然后捕获的目的分子可通过结合次级指示子抗体继而进行RCA而被检测出。抗体在固体支持物上的这种应用使RCA试验发展到用于检测任何分子,只要该分子能够产生抗体。固定抗体连接到固态底物的方法已完善建立。可以使用常规固定化学试剂通过附着,例如胺化表面、羧化表面或羟化表面实现固定。附着剂的实例是溴化氰、琥珀酰亚胺、醛、甲苯磺酰氯、亲和素-生物素、光致交联物质、环氧化物和马来酰亚胺。一个优选的附着剂是异双功能交联试剂例如N-[r-马来酰亚胺基丁酰氧基]琥珀酰亚胺酯(GMBS)。这些和其它附着剂,以及它们在附着中的应用方法,在Richard F.Taylor编辑(M.Dekker,New York,1991)的蛋白固定基础和应用,Johnstone和Thorpe,Immunochemistry In Practice(Blackwell Scientific Publications,Oxford,England,1987)209-216页和241-242页,以及ImmobilizedAffinity Ligands,Craig T.Hermanson等编辑(Academic Press,NewYork,1992)中描述。可通过将抗体上游离的氨基化学偶联到固态底物上存在的反应侧基上而将抗体附着到底物上。例如,分别使用戊二醛、碳化二亚胺或异双功能试剂例如GMBS作为交联剂,抗体可化学交联到含有游离氨基、羧基或硫基团的底物上。在该方法中,含有游离抗体的水溶液与固态底物一起在戊二醛或碳化二亚胺的存在下孵育。
一个优选的附着抗体或其他蛋白到固态底物的方法是用氨基或硫醇-硅烷功能化底物,然后用同双功能交联剂例如双-横基-琥珀酰亚胺基辛二酸酯(BS3)或异双功能交联剂例如GMBS,激活该功能化的底物。用GMBS交联,玻璃底物的化学功能化是通过将玻璃底物浸入巯基丙基三甲氧基硅烷溶液(1%体积/体积在95%乙醇中pH5.5)1小时,在95%的乙醇中清洗,并在120℃加热4小时而实现。硫醇处理的载玻片通过在室温下,将其浸入0.5 mg/ml GMBS在1%二甲基甲酰胺中的溶液,99%乙醇中1小时而被激活。抗体或蛋白被直接加入到激活的底物中,然后用含有化学物质例如2%牛血清白蛋白的溶液阻断,并风干。其它常规的固定化学试剂是本领域技术人员公知的。
固定在底物上的每种组份(分析物捕获剂、辅助分子、和/或分析物)优选被固定在固体支持物上不相同的预先指定的区域。每个不相同的预先指定的区域可相互之间物理分离。固体支持物的不同预先指定区域之间的距离可以是固定的,或者是可变的。例如,在矩阵中,每种组份可设计成相互之间具有固定的距离,而与珠子相连的组份不会存在固定的空间联系。特别是多元固体支持物单元的应用(例如多元珠)会产生可变的距离。
组份可以任何密度偶联到或固定到固体支持物上。优选地,组份以高于400种不同组份每立方厘米的密度被固定到固体支持物上。组份的矩阵可以含有任何数目的组份。例如,一个矩阵可以含有至少1,000种被固定在固体支持物上的不同组份,至少10,000种被固定在固体支持物上的不同组份,至少100,000种被固定在固体支持物上的不同组份,至少1,000,000种被固定在固体支持物上的不同组份。
L.DNA聚合酶用于RCA滚环复制步骤的DNA聚合酶必须能够催化带有引物的单链环的滚环复制。这种聚合酶在此指滚环DNA聚合酶。为了能够滚环复制,优选DNA聚合酶能够使互补于模板链的链移位,即术语上的链移位,且缺乏5’到3’核酸外切酶的活性。链移位对于扩增靶环多串联拷贝的合成必不可少。如果存在5’到3’核酸外切酶活性,则可能导致该合成链的水解。还优选用于本发明方法的DNA聚合酶是高推进性的。适用于本方法的DNA聚合酶可以通过评价其催化滚环复制的能力而被简易确定。优选的滚环DNA聚合酶是噬菌体Φ29DNA聚合酶(Blanco等人,USP.5,198,543和5,001,050.),噬菌体M2 DNA聚合酶(Matsumoto等人,Gene84247(1989)),噬菌体ΦPRD1 DNA聚合酶(Jung等人,Proc.Natl.Acad.Sci.USA848287(1987)),VENTR DNA聚合酶(Kong等人,J.Biol.Chem.2681965-1975(1993)),DNA聚合酶I的Klenow片段(Jacobsen等,Eur.J.Biochem.45623-627(1974)),T5DNA聚合酶(Chatterjee等,Gene9713-19(1991)),PRD1 DNA聚合酶(Zhu和Ito,Biochim.Biophys.Acta.1219267-276(1994)),修饰的T7 DNA聚合酶(Tabor和Richardson,J.Biol.Chem.26215330-15333(1987);Tabor和Richardson,J.Biol.Chem.2646447-6458(1989);测序酶TM(Sequenase)(U.S.Biochemicals)),以及T4 DNA聚合酶同工酶(Kaboord和Benkovic,Curr.Biol.5149-157(1995))。最优选Φ29DNA聚合酶。
链移位可通过使用链移位因子推动,例如解螺旋酶。认为任何能够在链移位因子存在下进行滚环复制的DNA聚合酶都适用于本发明的方法,即使该DNA聚合酶在缺乏这种因子时不能进行滚环复制。用于RCA的链移位因子包括BMRF1聚合酶辅助亚单位(Tsurumi等,J.Virology67(12)7648-7653(1993)),腺病毒DNA-结合蛋白(Zijderveld和van der Vliet,J.Virology68(2)1158-1164(1994)),单纯疱疹病毒蛋白ICP8(Boehmer和Lehman,J.Virology67(2)711-715(1993);Skaliter和Lehman,Proc.Natl.Acad.Sci.USA91(22)10665-10669(1994)),单链DNA结合蛋白(SSB;Rigler和Romano,J.Biol.Chem.2708910-8919(1995)),以及小牛胸腺解螺旋酶(Siegel等,J.Biol.Chem.26713629-13635(1992))。
聚合酶催化滚环复制的能力可通过将该聚合酶应用于滚环复制试验而测定,如Fire和Xu,Proc.Natl.Acad.Sci.USA924641-4645(1995)描述。
上述的材料可以任何适当的组合而包装到一起,作为用于实施本发明方法的试剂盒。例如,试剂盒可包括多元指示子结合引物和/或多元分析物捕获剂在试剂盒中该分析物捕获剂可与固体支持物相连。
方法本方法是RCA的一种形式,其中指示子结合引物提供了扩增靶环复制所用的滚环复制引物。本发明的方法基于指示子结合引物与分析物的偶联,允许RCA产生扩增的信号(那就是说,串联DNA序列(TS-DNA))。作为指示子结合引物的一部分的该特异性引物序列提供了指示子结合引物与分析物的特异性相互作用(通过指示子结合引物的亲和部分)RCA的偶联。为进行RCA,扩增靶环(ATC)被杂交到指示子结合引物的滚环复制引物序列,然后,通过RCA扩增ATC。获得的TS-DNA在一端掺入了指示子结合引物的滚环复制引物序列,这样就将TS-DNA锚定到分析物的位点。本方法可使用任何分析物实施。优选的分析物是蛋白和多肽。
本方法尤其适于生成指定样品中存在的分析物的图谱。例如,可以评价细胞中各种蛋白是否存在及其数量,这样就提供了直接的蛋白表达图谱。这种分析,蛋白分析的一种形式,类似于核酸存在和表达的基因组分析。多元分析物分析,例如本发明的蛋白分析形式,优选使用分析物捕获剂的矩阵实施。通过将待评价的所有分析物特异性的分析物捕获剂容纳到该矩阵中,就可以在单一的方法中对全部的分析物进行检定。本方法的这种形式还可对多种样品中的同一套分析物进行简易的对比。
在本方法的一个优选实施例中,通过混合不同套的指示子结合引物和每种样品,在同一个矩阵中检定两种(或更多)不同样品中的分析物。每套指示子结合引物具有同一套特异性结合分子但是不同套的滚环复制引物。通过使不同的滚环复制引物对不同的扩增靶环具有特异性,特定的扩增靶环的扩增就可以指示在哪个样品中存在相应的分析物。
多元分析物的检定可以基于其同一性,通过使用分析物捕获剂来捕获和/或分离分析物进行。例如,固定有分析物捕获剂的矩阵可以用于将特定的分析物结合到该矩阵中预先指定区域。在该区域的分析物检测就可以鉴定该分析物。分析物捕获剂的一种有效形式是多肽。当各种多肽被固定到矩阵中时,它们可用作分析物的“诱饵”。例如,不同多肽的矩阵可用于评价一个样品中是否含有能与该任一多肽相互作用的分析物。不同样品的对比可以通过例如,比较多肽的差别而实现,所述多肽与不同样品中的分析物相连。本发明的另一实施例中,目的分析物特异性的分析物捕获剂矩阵可用于评价样品中是否含有整套分析物。
本发明方法的另一实施例中,辅助分子可用于影响分析物与特异性结合分子或分析物捕获剂之间的相互作用。例如,本方法可用于筛选与特定结合分子或分析物捕获剂相互作用的分析物的竞争物(或结合辅助因子)。如果辅助分子影响了分析物的相互作用,由于指示子结合引物与分析物(或分析物捕获剂与分析物)的偶联会丢失或增强,则RCA的结果将会改变。图14说明了竞争分析物和分析物捕获剂之间相互作用的实例。
用本发明的方法还可以检测不同修饰的分析物形式。例如,可检测蛋白的磷酸化和糖基化形式。这可通过例如使用指示子结合引物来实现,该引物具有分析物不同形式特异性的特异性结合分子。
另一方面,本发明涉及固定复杂生物样品中存在的分析物并且测定和定量其在样品中存在的情况。这个通过固定来鉴定和定量分析物的方法在这里使用含有过敏原的样品描述。例如,存在于生物提取物和体液中的过敏原可如实施例8的描述,通过初次选择性固定,将其固定在在微矩阵上,进行鉴定。然后,可进行免疫RCA微矩阵试验来检测和定量。
另一方面,本方法涉及对一个样品中的不止一种分析物进行多元化的检测和定量。这在实施例9中描述,其中含有几种测试位点的微矩阵,每个测试位点含有一种固定的捕获抗体,将该微矩阵与含有待测蛋白分析物的混合物的样品共同孵育。然后,将该微矩阵与含有至少一种针对各分析物的抗体的混合物一起孵育,其中的抗体是生物素化的。然后就可以进行免疫RCA微矩阵试验来鉴定和定量。
另一方面,免疫RCA微矩阵试验可在16微孔玻璃载玻片上进行,其中每个孔之间都被特氟隆遮蔽膜分隔开。这在实施例8中说明,其中100-400点的微矩阵被点到每个微孔中。这些孔的每一个都被用于测试不同的样品以及对照。多孔载玻片16孔的6个孔中还被点上抗IgE捕获抗体的矩阵。在该多孔形式的过敏原微矩阵上的免疫RCA试验可以通过例如低廉的Beckman BioMek液体处理机器人而半自动的进行。
基于微矩阵基础上的免疫RCA实验可应用于其它多抗体试验。例如,由特异性IgG4而不是IgE引起的某种免疫反应(AAAI Board of Directors,J Allergy Clin Immunol.95652-654(1995))。与互补于DNA环的DNA引物相连的抗-人IgG4的应用允许同时测定过敏原特异性的IgG4和IgE,其中的DNA环序列与互补于偶联到抗-IgE的引物的DNA环不同。这种方法可用在过敏原去敏治疗过程中或监测对抗-IgE相互作用的治疗中(Chang,Nature Biotech.18157-162(2000))。
本发明方法基本包括下述步骤(a)使一种或多种分析物样品与一种或多种指示子结合引物接触,并在能够促进该特异性结合分子与分析物之间的反应的条件下,孵育分析物样品与指示子结合引物。每种指示子结合引物包含一个特异性结合分子以及一个滚环复制引物,其中每种特异性结合分子与一种分析物直接或间接起相互作用。
(b)在步骤(a)之前,同时或之后,使指示子结合引物与一种或多种扩增靶环接触,并在能够促进扩增的靶环与滚环复制引物之间杂交的条件下,孵育该指示子结合引物与扩增靶环。每个扩增靶环包含一个单链环状DNA分子,该分子包含一个引物互补部分。该引物互补部分与至少一个滚环复制引物互补。
(c)在步骤(b)之后,并在步骤(a)之前,同时或其后,在能够促进扩增靶环复制的条件下,孵育指示子结合引物与扩增靶环。扩增靶环的复制引起串联DNA序列的形成,对串联DNA序列的检测代表相应分析物的存在。优选地,该分析物是在步骤(a),(b)或(c)之前,同时或之后从分析物样品中分离出来的。
本方法还包括使至少一种分析物样品与一种或多种分析物捕获剂接触,从分析物样品中分离出分析物捕获剂,这样,就从分析物样品中分离出分析物。每种分析物捕获剂与一种分析物直接或间接相互作用,并且至少有一种分析物,如果其存在于样品中,与至少一种分析物捕获剂相互作用。该方法还包括使至少一种分析物样品和至少一种指示子结合引物与至少一种辅助分子相接触。该辅助分子能够影响至少一种分析物和至少一种特异性结合分子或至少一种分析物捕获剂之间的相互作用。
本方法还可包括在步骤(a)之后并在使分析物样品与固体支持物接触之前,混合一种或多种初级分析物样品与一种或多种次级分析物样品。该方法的这种形式中,分析物样品包括一种或多种初级分析物样品和一种或多种次级分析物样品,指示子结合引物包括一种或多种初级指示子结合引物和一种或多种次级指示子结合引物。每种初级指示子结合引物都有匹配的次级指示子结合引物,并且与初级指示子结合引物的特异性结合分子相互作用的分析物和与匹配的次级指示子结合引物的特异性结合分子相互作用的分析物相同。同样,每种不同的指示子结合引物的滚环复制引物也不相同,每种不同的滚环复制引物引导不同的扩增靶环复制,每种不同的扩增靶环产生不同的串联DNA序列。不同分析物样品中有或没有相同分析物的存在,由有或没有相应的DNA串联序列来指示。
本方法的另一形式包括,在步骤(a)之前,同时或之后,使一种或多种初级分析物捕获剂与一种或多种初级分析物样品接触,使一种或多种次级分析物捕获剂与一种或多种次级分析物样品相接触,每种初级分析物捕获剂都包含一个分析物相互作用的部分和捕获部分,每种初级分析物捕获剂都有一个匹配的次级分析物捕获剂。与初级分析物捕获剂的分析物的相互作用部分相互作用的分析物和与匹配的次级分析物捕获剂的分析物的相互作用部分相互作用的分析物相同。初级和次级分析物捕获剂的捕获部分都与一种或多种指示子结合引物的特异性结合分子起相互作用,与初级分析物捕获剂的捕获部分相互作用的特异性结合分子不同于与相匹配的次级分析物捕获剂的捕获部分相互作用的特异性结合分子。每种不同的特异性结合分子是指示子结合引物的不同部分。每种不同的指示子结合引物的滚环复制引物是不相同的,每种不同的滚环复制引物引导不同的扩增靶环复制,而每种不同的扩增靶环产生不同的DNA串联序列。在不同的分析物样品中有或没有分析物的存在由有或没有相应的DNA串联序列的存在指示。
本方法还可这样进行当至少一种分析物是另一种分析物的修饰形式时,至少一种指示子结合引物的特异性结合分子直接或间接地与分析物相互作用,该分析物是其它分析物的修饰形式,并且另一指示子结合引物的特异性结合分子直接或间接地与其它分析物相互作用。
本方法的另一实施例基本上包括下述步骤(a)使一种或多种分析物样品与一种或多种分析物捕获剂接触,并在能够促进分析物捕获剂和分析物相互作用的条件下,孵育该分析物样品和分析物捕获剂。每种分析物捕获剂直接或间接地与一种分析物相互作用,并且至少有一种分析物,如果其存在于分析物样品中,会与至少一种分析物捕获剂相互作用。
(b)在步骤(a)之前,同时或之后,使至少一种分析物样品与一种或多种指示子结合引物接触,并在能够促进特异性结合分子与分析物捕获剂相互作用的条件下,孵育该分析物样品与指示子结合引物。每种指示子结合引物包含一个特异性结合分子和一个滚环复制引物,每种特异性结合分子与一种分析物捕获剂直接或间接地相互作用。
(c)在步骤(a)或(b)之前,同时或之后,使指示子结合引物和一种或多种扩增靶环接触,并在能够促进扩增靶环和滚环复制引物之间杂交的条件下,孵育该指示子结合引物和扩增靶环。这些扩增靶环的每一个都含有一个单链环状DNA分子,该分子含有一个引物互补部分,并且该引物互补部分互补于至少一种滚环复制引物。
(d)在步骤(c)之后并且在步骤(a)或(b)之前,同时或之后,在能够促进扩增靶环复制的条件下,孵育指示子结合引物和扩增靶环。扩增靶环的复制引起DNA串联序列的生成,并且串联DNA序列的检出指示相应分析物的存在。
本方法的另一实施例基本上包括下述步骤
(a)处理一种或多种分析物样品,使一种或多种分析物被修饰。
(b)使至少一种分析物样品与一种或多种指示子结合引物接触,并在能够促进特异性结合分子与被修饰的分析物之间相互作用的条件下,孵育该分析物样品与指示子结合引物。每种指示子结合引物包含一个特异性结合分子和一个滚环复制引物,每个特异性结合分子直接或间接地与修饰的分析物相互作用。
(c)在步骤(a)或(b)之前,同时或之后,使指示子结合引物和一种或多种扩增靶环接触,并在能够促进扩增靶环和滚环复制引物之间杂交的条件下,孵育该指示子结合引物和扩增靶环。这些扩增靶环的每一个都含有一个单链环状DNA分子,该分子含有一个引物互补部分,并且该引物互补部分互补于至少一种滚环复制引物。
(d)在步骤(c)之后并且在步骤(a)或(b)之前,同时或之后,在能够促进扩增靶环复制的条件下,孵育指示子结合引物和扩增靶环。扩增靶环的复制引起DNA串联序列的生成,串联DNA序列的检出就指示相应分析物的存在。
本方法的另一形式基本上包括下述步骤(a)使一种或多种分析物样品与一种或多种矩阵接触。每种矩阵包含一套分析物捕获剂,一套辅助分子,或其二者,并且每种分析物捕获剂直接或间接地与一种分析物相互作用。
(b)在步骤(a)之前,同时或之后,使至少一种分析物样品与一种或多种指示子结合引物接触。每种指示子结合引物包含一个特异性结合分子和一个滚环复制引物,每种特异性结合分子与一种分析物直接或间接地相互作用,每种辅助分子能够影响至少一种分析物与至少一种特异性结合分子或至少一种分析物捕获剂之间的相互作用。
(c)在步骤(a)和/或(b),同时或之后,在能够促进特异性结合分子,分析物,分析物捕获剂和辅助分子之间相互作用的条件下,孵育分析物样品,矩阵和指示子结合引物。
(d)在步骤(b)之前,同时或之后,使指示子结合引物和一种或多种扩增靶环接触,并在能够促进扩增靶环与滚环复制引物之间杂交的条件下,孵育指示子结合引物和扩增靶环。这些扩增靶环的每一个都含有一个单链环状DNA分子,该分子含有一个引物互补部分,并且该引物互补部分互补于至少一种滚环复制引物。
(e)在步骤(d)之后并且在步骤(a),(b)或(c)之前,同时或之后,在能够促进扩增靶环复制的条件下,孵育指示子结合引物和扩增靶环。扩增靶环的复制引起串联DNA序列的生成,串联DNA序列的检出指示相应分析物的存在。
扩增靶环作为滚环复制的底物。这种反应需要加入两种反应物(a)滚环复制引物,其互补于ATC的引物互补部分,和(b)滚环DNA聚合酶。该DNA聚合酶催化在滚环聚合反应过程中引物延伸以及链移位,该反应时间可按需要控制,该反应能产生多达100,000个核苷酸或更大的分子,含有多达约1000个串联的序列拷贝,该序列互补于扩增靶环。优选的滚环DNA聚合酶是噬菌体Φ29的DNA聚合酶。
RCA的许多不同形式可以用于本方法,其中大多数都在USP.5,854,033和WO97/19193中描述。例如,线性滚环扩增(LRCA)涉及扩增靶环的基础滚环复制来形成TS-DNA链。指数的滚环扩增(ERCA)涉及通过链移位复制进行TS-DNA的复制,该链移位复制起始于TS-DNA的大量重复序列。在TS-DNA的两个链上进行的多元引导导致扩增靶环中的序列指数扩增,如果需要,如WO97/19193的描述,可将TS-DNA降解成紧密型结构用于检测。
在滚环复制过程中,还可额外包括放射性或修饰的核苷酸,例如溴代脱氧尿苷三磷酸,来标记反应中产生的DNA。或者,可以包括合适的前体,该前体能够提供结合基团,例如生物素化核苷酸(Langer等(1981))。
可使用本方法分析和检测的蛋白的例子包括IL-1α,IL-1β,IL-1RA,IL-2,IL-3,IL-4,IL-6,IL-6R,IL-7,IL-8,IL-9,IL-10,GROα,MIP-lα,MIP-1β,MCP,RANTES,MIF,G-CSF,GM-CSF,M-CSF,EGF,酸性FGF,碱性FGF,IGF-1,IGF-2,IFN-γ,TGF-β,TNF-α,TNF-β,TNF-RI,TNF-RII,ICAM-1,ICAM-2,IL-2Ra,IL-4R,IL-5,IL-11,IL-12,IL-13,IL-15,IL-16,IL-17,IL-18,IP-10,FGF-4,FGF-6,MCP-2,和MCP-3。
1. 扩增产物的检测目前的检测技术产生RCA的二次循环,而在许多情况下,这是不必要的。这样,可以直接检测RCA的初次循环产物。如下所述,检测可以通过初级标记或次级标记来实现。
(a)初级标记初级标记由在RCA中滚环复制过程中掺入的标记基团构成,例如,荧光核苷酸生物素化核苷酸,含地高辛核苷酸,或溴代脱氧尿苷。例如,可以4个类似物对每100个核苷酸的频率掺入花青染料UTP类似物(Yu等,(1994))。检测在原位扩增的核酸的优选方法是在扩增过程中用BrdUrd标记DNA,然后使生物素化的抗-BUDR抗体与掺入的BUDR结合(Zymed Labs,San Francisco,CA),然后使亲和素过氧化酶(Life Sciences,Inc.)与生物素基团结合,并且最后用荧光-酪胺(DuPont de Nemours & Co.,Medical Products Dept.)产生荧光。
(b)用检测探针进行次级标记次级标记是使用合适的分子探针进行,即指检测探针,来检测扩增DNA或RNA。例如,扩增靶环可被设计成含有几个重复的已知人工序列,即指检测标记。次级杂交步骤可用于结合检测探针和检测标记。这些检测探针可按上述,用例如酶,荧光基团或放射性同位素标记。通过对每个扩增靶环使用三个检测标记,对每个检测探针使用四个荧光信号,可以从每个TS-DNA中重复的扩增靶环得到多达12个荧光信号,对于每个从RCA中扩增的扩增靶环产生至多12,000个荧光基团。
(c)多元化和杂交矩阵检测使用多套不同的扩增靶环可以简易的进行多元化RCA,每套都含有不同的靶探针序列,该序列是为结合独特靶目标而设计。应注意到,尽管为每个靶目标设计的靶探针序列不相同,但引物互补部分仍可维持不变,这样滚环复制的引物对所有靶目标都是相同的。RCA产生的TS-DNA分子具有高分子量且低复杂性;扩增靶环的长度就是其复杂性。有两种方法可将指定的TS-DNA捕获到固体支持物上的固定位点。一种是在扩增靶环的间隔区域包含一个独特的地址标记序列,该序列是针对每个特别的扩增靶环。然后指定扩增靶环产生的TS-DNA就含有相应于特定地址标记序列的序列。第二种,也是优选的方法是使用TS-DNA上的靶序列作为地址标记。
(d)组合的多色编码(Combinatorial Multicolor Coding)多元检测的一个优选形式涉及应用各种标记的组合,这些标记或者是在不同波长下产生荧光,或者是不同颜色。使用荧光检测杂交探针的一个益处是可以同时目测到一个相同样品中的几种靶物质。使用组合的策略,比用光谱分辨荧光所区分的靶物质数目多很多。组合标记提供最简单的方法以多元化方式标记探针,由于探针荧光或者是完全不存在的(-),或者是以单位数量存在的(+);这样,图像分析更利于自动化控制处理,许多实验假象,例如荧光的差异光漂白以及光谱发射源功率的改变等,都是可以避免的。
标记的组合建立了用于鉴定不同检测探针的编码体系,继而,可用于检测与这些检测探针相连的不同分析物。这个标记体系是指组合多色编码(CMC)。这种编码体系由Speicher等人描述,Nature Genetics12368-375(1996)。如果组合的标记可以被分别检测,那么任何数目的标记的任何数都可用于组合多色编码体系。优选组合使用2,3,4,5,或6个标记。最优选使用6个标记。所用标记的数目决定了唯一的标记组合的数目,可根据公式2N-1推算这个数目,其中N是标记的数目。根据这个公式,2个标记可形成3种标记组合,3个标记可形成7种标记组合,4个标记可形成15种标记组合,5个标记形成3 1种标记组合,6个标记可形成63种标记组合。
Speicher等人描述了一组荧光物质和相应的在光谱350-770nm区间间隔的滤光片,其能够高灵敏度的区分所有可能的荧光对。这组荧光物质,其优选用于组合多色编码体系,由4’-6-二氨基-2-苯基吲哚(DAPI),荧光素(FITC),和花青染料Cy3,Cy3.5,Cy5,Cy5.5 and Cy7构成。如果需要更少组合的话,可以应用任何该组荧光物质的亚组。这些荧光物质的吸收和发射最大值分别是DAPI(350nm;456nm),FITC(490nm;520nm),Cy3(554nm;568nm),Cy3.5(581nm;588nm),Cy5(652nm;672nm),Cy5.5(682nm;703nm)以及Cy7(755nm;778nm)。这些荧光物质的激发和发射光谱,消光系数以及量子产量由Ernst等,Cytometry 103-10(1989),Mujumdar等,Cytometry1011-19(1989),Yu,Nucleic Acids Res.223226-3232(1994),和Waggoner,Meth.Enzymology246362-373(1995)描述。这些荧光物质可用75W氙弧激发。
2.进一步扩增次级DNA链移位是扩增TS-DNA的另一种方法。次级DNA链移位通过使次级DNA链移位引物与TS-DNA杂交,并且允许DNA聚合酶从这些引导的位点合成DNA来实现。该次级DNA链移位产物指次级DNA或者TS-DNA-2串联序列。次级DNA链移位和串联扩增在USP5,854,033and WO97/19193中描述。
实施例实施例1该实施例说明了抗体DNA偶联物的构建及其特征,该偶联物用作指示子结合引物(Reporter Binding Primers)寡核苷酸。所有使用的寡核苷酸都由Perseptive生物体系快速DNS合成仪合成并通过反相HPLC纯化。环状DNA如前所述(4)构建。偶联物滚环复制引物5’-巯基-GTA CCA TCA TAT ATG TCC GTG CTA GAA GGA AACAGT TAC A-3’;扩增靶环DNA5’-TAG CAC GGA CAT ATA TGA TGG TAC CGCAGT ATG AGT ATC TCC TAT CAC TAC TAA GTG GAA GAA ATG TAA CTG TTTCCT TC-3’;检测探针-5’Cy3 TAT ATG ATG GTA CCG CAG Cy3 3’,5’Cy3TGA GTA TCT CCT ATG ACT Cy33’,5’Cy3 TAA GTG GAA GAA ATG TAA Cy33。
抗体-DNA偶联物。通过PD-10柱(Amersham-Pharmacia Biotech)层析,抗体被缓冲交换到50mM磷酸钠pH7.5,150mM NaCl,1mM EDTA的缓冲液中。脱盐的抗体(41纳摩尔(nmoles))用10倍摩尔过量的硫代-GMBS(Pierce)在氮气下黑暗中,37℃处理30分钟(min),然后在室温处理30min。过PD-10柱,层析去除未反应的硫代-GMBS,该柱用pH 7.5的磷酸钠,150mM NaCl平衡。然后在4℃在Centricon YM-30中浓缩抗体。每个抗体上马来酰亚胺的数目这样测定应用Ellman试剂(Pierce)测量巯基,然后通过激活抗体来滴定β-巯基乙醇。28.1nmoles硫代-GMBS激活抗体,142nmoles5硫醇寡核苷酸在825微升体积内在室温下,偶联2小时,然后4℃过夜。偶联到寡核苷酸的抗体在Q-Sepharose(AmershamPharmacia Biotech)上,使用盐梯度,通过阴离子交换层析,进行纯化(图2)。收集含有偶联物的洗脱部分并在4℃,在Superdex200(Pharmacia)上进行大小排阻层析去除游离的寡核苷酸(图3)。
实施竞争性ELISA试验,评价该偶联物结合同源抗原的能力。在这些试验中,平行测定匹配的未偶联和DNA-结合的抗体与指示子抗体竞争结合抗原的能力。大致为用2微克/ml在0.1M Na2CO3中的捕获抗体(BiosPacific山羊多克隆抗-IgE)覆盖多孔板(Nunc Maxisorp),37℃过夜。用背景阻断溶液(在TBS中的5%脱脂奶粉/0.05% NaN3)替换该抗体溶液,并在37℃孵育1小时。用TBS/0.05% Tween20清洗4遍去除阻断剂,并加入500ng/ml在TBS中的(从Fitzgerald多发性骨髓瘤细胞中)纯化的人IgE,37℃孵育30分钟。用TBS/0.05% Tween20清洗4遍去除IgE,然后加入预先制备的抗IgE混合物,该混合物由竞争剂(未偶联的抗-IgE或DNA-抗-IgE偶联物)和指示子(生物素化的抗-IgE,PharMingen)构成。控制该生物素化的抗-IgE在一个固定水平,而竞争剂抗IgF则以各种水平存在。该抗-IgE混合物在孔内37℃孵育30分钟。接下来,用TBS/0.05%Tween20清洗3遍,通过与NeutrAvidin-碱性磷酸酶(Pierce Chemical Co.)37℃孵育30分钟,来检测存留的生物素化的抗-IgE。然后用TBS/0.05%Tween 20清洗3遍孔并与碱性磷酸酶底物(对磷酸硝基苯试剂盒,PierceChemical Co.)孵育。使其进行颜色反应15分钟,在BioMek FL600平板阅读仪(plate reader)上,读取405nm下的吸收值。结合的抗体,每个偶联约3个寡核苷酸每分子蛋白,并显示出与未结合的形式抗原近似的抗体亲抗原性(图4)。
实施RCA反应评价偶联物作为引物起作用的能力。RCA反应含有5nM引物或引物-偶联的抗体,10nM环,200ng大肠杆菌SSB(Promega),0.125单位T7聚合酶(USB),dATP,dTTP,dGTP各0.4mM,0.4mM[α-32P]TTP(300-600cpm/pmol)在25μl缓冲液中(pH7.9),该缓冲液含有20mM Tris-醋酸,10mM醋酸镁,50mM醋酸钾,和1mM DTT。添加在冰上进行,然后转到37℃。通过点到DE81过滤器来定量指定时间内的RCA产物。在互补环状DNA存在下,抗体-引物偶联体比等摩尔量的未偶联引物产生更多的RCA反应产物(图5),与观察到的每个抗体被偶联到不止一个引物相一致。在缺乏互补环状DNA存在或仅存在非互补环的情况下,没有任何一种形式的引物能够产生可测量的产物。
实施例2该实施例说明了应用指示子抗体引物/抗体-DNA偶联物在ELISA试验中检测分析物。相较于使用常规抗体-酶偶联物,免疫RCA检测显示出高灵敏度和良好动力学范围。
ELISA试验。在37℃,用山羊多克隆抗-人IgE以100μl 2mg/ml每孔的量覆盖96孔板2小时,然后4℃过夜。用100μl TBS/0.05% Tween20清洗3遍板,然后用5%脱脂奶粉在37℃阻断2小时。再用TBS/0.05% Tween20清洗板,然后以在100μl体积内的各种浓度加入IgE分析物。37℃孵育30min后,用100μl TBS/0.05% Tween20清洗板3次。在常规的ELISA试验中,抗-人IgE-碱性磷酸酶偶联物被加入到每孔中,并在37℃孵育30min。在用TBS/0.05%Tween20清洗板后,加入碱性磷酸酶底物MUP,并在20分钟后,在BioMek FL600板式阅读仪上,激发波长360nm,发射波长460nm,阅读荧光水平。在该免疫RCA方法中,抗-人IgE-DNA结合体(5ng/μl)以60μl体积被加入到每个孔中,并37℃孵育30min。用100μlTBS/0.05%Tween20清洗板3次后,在60μlΦ29缓冲液(250mM Tris-HCl,pH7.5,50mM MgCl2,1mg/ml BSA,1mM dATP,dCTP,dGTP,0.75mM dTTP,0.25mM FITC-12-dUTP)中的环2DNA(170nM)被加入到每孔中,并在37℃孵育30min。通过加入1.5μl Φ29DNA聚合酶(0.4U/μl)起始RCA反应,在37℃持续30min。加入抗FITC-碱性磷酸酶偶联物检测RCA产物。在37℃孵育30min后,用100μl TBS/0.05% Tween20清洗板3次,加入MUP底物,20min后阅读荧光水平。如图6所示,该免疫RCA试验比常规试验在更大范围内给出剂量反应。例外,在免疫RCA试验中,即使在其较小的扩增线性模式,仍可检测到比那些通过常规ELISA试验检测到的IgE水平低2个数量级的IgE水平。
实施例3该实施例说明了应用指示子抗体引物/抗体-DNA偶联物检测微粒形式的分析物。仍选择人IgE作为测试分析物,但是这个夹心试验使用抗生物素蛋白包被的磁化微粒和生物素化多克隆抗-人IgE捕获抗体进行。大致上,用在TBS中的16μg/ml生物素化的多克隆抗-人IgE(Pharmingen)溶液覆盖抗生物素蛋白链菌素覆盖的磁化珠(Bangs Laboratories),用TBS/0.05% Tween20清洗3次,用2mg/ml BSA阻断过夜。在TBS中,室温下,该珠与人IgE(25ng/ml)共同孵育20min,并用TBS/0.05% Tween20清洗3次。使用常规抗-IgE-DNA偶联物或免疫RCA偶联物的IgE检测按以上对ELISA试验的描述进行实施。在图7中,可以看出,在有中等浓度的IgE偶联到微粒的情况下,用抗-IgE-DNA偶联物的免疫RCA可以给出很强信号。当投入相同数量IgE(25ng IgE/ml)时,用抗-IgE-碱性磷酸酶偶联物的检测给出的信号比免疫RCA试验的信号大约低75倍。
实施例4该实施例说明使用前列腺特异性抗原(PSA)作为模型体系的检测,免疫RCA应用于在微点上固相检测的适用性。为完成该目的,免疫RCA被设计成间接夹心试验形式。用小鼠单克隆抗-PSA抗体构成该免疫夹心复合物的二级部分。该复合物用多克隆兔抗-小鼠IgG抗体检测,该抗体与含有引导RCA反应的序列的寡核苷酸相连。
制备微点。将洁净的玻璃载玻片浸入巯基丙基三甲氧基硅烷(1%体积/体积在95%乙醇中pH5.5)1小时以获得化学功能。载玻片在95%乙醇中清洗2min,氮气下干燥,然后在120℃加热4小时使其固化。硫醇处理的载玻片通过在室温下浸入在1%二甲基甲酰胺,99%乙醇中的0.5mg/ml异双功能交联硫代GMBS(Pierce)中1小时而被激活。用乙醇清洗载玻片,在氮气下干燥,并储存在干燥器内待用。山羊抗-PSA多克隆抗体(BioSpacifics)在载玻片上的点阵是用吸量管将0.2μl的0.5mg/ml溶液点成栅格形式。手工点制的矩阵用2%BSA(不含蛋白酶)阻断,干燥,在4℃下氮气存在下保存,待用。在即将使用前,室温下,将矩阵在50ml PBS中再水化2min。
抗原捕获。纯化的人PSA(BioSpacifics)在PBS中稀释到期望浓度。10μl PSA被点到盖玻片(Hybrislip,Grace)上,然后将该载玻片翻转覆盖到载玻片上矩阵的区域。在湿润容器内,在37℃孵育载玻片30min,在PBS/0.05% Tween20中2分钟清洗2遍,将水控净干燥。将10μl 1∶5,000倍在PBS中稀释的单克隆抗-PSA抗体液加入到该矩阵。在湿润容器内,在37℃孵育载玻片30min,在PBS/0.05% Tween20中清洗2分钟,清洗2遍,将水控净干燥。最后,兔抗-小鼠IgG-DNA联偶联物(10ng/μl在PBS中)被加入到该矩阵中。在湿润容器内,在37℃孵育载玻片30min,在PBS/0.05% Tween 20中清洗2分钟,清洗2遍,将水控净干燥。
RCA反应。在10μl Φ29缓冲液(250mM Tris-HCl,pH7.5,50mMMgCl2,和1mg/ml BSA)中的环状DNA1(200nM)被加入到该矩阵中,在45℃孵育30min。10μl RCA反应混合物(2mM dATP,dCTP,dGTP,1.5mM dTTP,0.5mM生物素-16-dUTP dNTPs,Φ29缓冲液,0.4U/μl Φ29聚合酶)被加入到该矩阵并在37℃孵育30min。37℃,将载玻片在2X SSC/0.05%Tween20中清洗2遍,2分钟,室温下在2X SSC/0.05% Tween20中清洗2遍,2分钟,将水控净干燥。然后将在2X SSC,0.05% Tween20中的10微升检测子低聚混合物加入该矩阵并在37℃孵育30min。在2X SSC,0.1%Tween20中清洗清洗4次1分钟。向矩阵中加入10μl CACHET溶液(1mg/mlNeutravidin,2X SSC,0.1% Tween20,0.5mg/ml BSA,0.5mg/ml超声波处理的鲱鱼精子DNA)并在37℃孵育15min。室温下在2X SSC,0.05%Tween20中振荡清洗载玻片5min,然后在2X SSC中清洗一遍。在氮气下干燥载玻片,并且载玻片上矩阵的位置用延长抗衰减溶液(ProlongAntifade)(分子探针)覆盖。在装配有CCD成像系统和100X物镜的Zeiss落射荧光显微镜上进行荧光成像。使用IP实验室软件进行荧光定量。装配有CCD镜头的显微镜显示的荧光定量指示在至少PSA浓度的2个对数以上,信号是线性的(图8),并且即使像0.1pg/ml PSA(300zeptomoles)这么低的量都可以检测出来。这个检测水平比常规PSA免疫试验的灵敏度约高3个数量级。本实施例中用作偶联物的抗体是兔抗-小鼠IgG多克隆抗体;该反应物可作为“万能”偶联物来高灵敏度地检测任何小鼠单克隆抗体。
实施例5本实施例说明在多克隆山羊抗-人IgE抗体的微矩阵上进行的夹心形式免疫RCA,这些抗体是使用针-工具形式微矩阵自动机械点在玻璃载玻片上。在这些微矩阵中,每个点上大约有0.5nl抗体溶液,这些点的直径大约为200μm,并且点与点之间的距离是250μm。该抗-IgE微矩阵与人IgE一起孵育,与生物素化的抗人IgE抗体以及与抗-生物素单克隆抗体相连的抗原被检测出来,该抗-生物素单克隆抗体已经与含有RCA引物序列的寡核苷酸相连。
微矩阵的制备。用硫醇硅烷功能化的玻璃载玻片如上述制备。硫醇处理的载玻片通过在室温下浸入在1%二甲基甲酰胺,99%乙醇中的0.5mg/ml硫代GMBS(Pierce)中1小时而被激活。用乙醇清洗载玻片,在氮气下干燥,并储存在干燥器内待用。多克隆山羊抗-人IgE溶液(BioSpacifics 0.5mg/ml)使用针-工具型微矩阵仪(GeneMachines)点到载玻片上。用2%BSA(不含蛋白酶)阻断矩阵,干燥,在4℃下氮气存在下保存,待用。
抗原捕获。通过加入50μl体积在50mM甘氨酸(pH9.0)中的2mg/mlBSA溶液来阻断每个微矩阵,并在湿润容器内,37℃孵育1小时。阻断后,清洗载玻片2次,通过将载玻片浸入含有1x PBS/0.05% Tween20的科普林缸并清洗载玻片2分钟然后用1x PBS清洗1分钟。立即向每个微矩阵加入10μl体积人血清,并在湿润容器内,37℃孵育30min。然后如上述用PBS/Tween20和PBS清洗。
免疫RCA。使用BiotinTag Micro Biotinylation Kit(Sigma)标记山羊抗-人IgE(BiosPacific,Inc.)。2.5ng/μl在PBS,0.05% Tween20,1mM EDTA中的该抗体10μl被应用于每个矩阵并在湿润容器内,37℃孵育30min。在PBS,0.05% Tween20中清洗盖玻片2分钟,清洗2次。与引物1相连的小鼠单克隆抗-生物素抗体用50nM环1在PBS,0.05% Tween20,1mM EDTA中,37℃退火30分钟。10μl被应用于每个矩阵并在湿润容器内37℃孵育30分钟,然后该载玻片被清洗两次。将20 l含有T7天然DNA聚合酶(0.01单位/μl),1mM dNTPs,0.04mg/ml of SSB,20mM TrisHCl(pH7.4),10mM MgCl2和25mM NaCl的反应溶液加入每个微矩阵。该载玻片在37℃孵育45min,然后通过在室温下在2X SSC/0.05% Tween20中清洗该载玻片而停止反应。20μl 0.5M DNA修饰剂被加入到每个矩阵并在37℃使其与RCA产物杂交30min。在室温下,在2X SSC中清洗载玻片并甩干。在General Scanning Luminomics 5000微矩阵扫描仪上扫描载玻片,使用QuantArray软件定量荧光。
结果(图9)显示,免疫RCA具有高灵敏度(低至1pg/ml),广泛动力学范围(5对数)并且点对点的再现性极好。最近,有基于微矩阵基础的免疫试验的报道,该试验使用碱性磷酸酶偶联物和荧光底物ELF进行检测(Mendoza等,Biotechniques 27778-788(1999))。ELF基础上的试验需要特殊构建的基于CCD的镜头来阅读信号,且获得约为10ng/ml的灵敏度。在另一项报道中,用近红外染料标记的抗体用于在微矩阵中检测IgG亚类(Silzel等,Clin.Chem.442036-2043(1998));该系统也需要特殊设计的成像系统,检测限度约为15ng/ml。相反,免疫扩增的信号扩增产生的灵敏度在pg/ml范围内并且可用寻常可获得的微矩阵扫描仪阅读试验结果。免疫RCA还可用于在微矩阵中检测各种过敏原特异性的IgE,其具有极好的临床灵敏度和特异性。为此用作偶联物的抗体是单克隆抗-生物素抗体。该反应物还可用于检测任何生物素化的多克隆或单克隆抗体,以及任何其它蛋白,核酸或能够被生物素化的小分子。
实施例6该实施例说明以本发明方法的单-分子-计数模式同时检测两种蛋白。
捕获载玻片的制备。用4-氨基丁基二甲基甲氧基硅烷覆盖载玻片,并用1,4一亚苯基-二异硫氰酸酯处理。抗生物素蛋白捕获试剂、寡核苷酸5’-NH2-GG18G-生物素-3’、以及抗-地高辛IgG捕获试剂、地高辛-琥珀酰-ε-氨基己酸氢化物的混合物,其中每种物质的浓度为5μM,该混合物以矩阵的形式被点到激活的载玻片表面(8-10点/矩阵)。继续进行化学偶联2小时。该载玻片在pH9.5的0.5mM甘氨酸中清洗2次,然后,在37℃置于甘氨酸溶液中30min,来阻断未反应的功能基团。该载玻片继续在37℃,在50mM甘氨酸(ph9.5),0.15M NaCl,3%牛血清白蛋白,0.1%超声波处理的鲱鱼精子DNA,0.2% NaN3中孵育1小时,然后在室温下,在PBS,0.1% Tween20中清洗3min。然后干燥该载玻片并储存在4℃待用。
抗原与载玻片相连。各种浓度的抗生物素蛋白和绵羊抗地高辛IgG,或者单独的,或者按一定摩尔比率,掺入到正常人血清中。被掺入的血清应(1.0μl)用于捕获矩阵,然后载玻片在保湿室中,在37℃孵育30min。然后在PBS/Tween20中清洗并风干。5μl的7.5nM兔抗-抗生物素蛋白-引物-1偶联物和7.5nM兔-抗绵羊IgG抗体-引物-2偶联物的偶联物应用于每个矩阵的点并在37℃孵育2.5小时。清洗载玻片8次(每次1min)并风干。5μl在2xSSC,0.1% Tween20,3% BSA,0.1%超声波处理的鲱鱼精子DNA中的0.2μM两个环状探针(环1和环2)溶液应用于每个点。在37℃杂交20min后,在37℃,用2xSSC,0.1% Tween20清洗载玻片5min,并风干。
RCA-CACHET反应。5μl RCA反应混合物(50mM NaCl,50mM Tris-HCl(pH7.2),5mM MgCl2,0.5mM of每种dNTP,1mM DTT,SSB和0.5单位/μl测序酶)应用于每个点,然后在37℃孵育载玻片15min。清洗载玻片后,风干载玻片,然后5μl含有0.25μM双标记(荧光+2,4 DNP)检测探针的溶液应用于每个矩阵。在37℃,在保湿室内孵育载玻片30min,然后清洗5遍并风干。为将RCA产物降解成荧光点源,这样单一抗原-抗体偶联物可以被计数,5μl在PBS中的33nM绵羊-抗-DNP IgM被加入到每个矩阵点,在37℃孵育载玻片45min,在室温下在2xSSC中清洗3min,然后风干。延长抗衰减溶液(分子探针)应用于载玻片,然后用20 x 20mm盖玻片覆盖载玻片。使用63X物镜透镜捕获分离的FITC和Cy3荧光基团显微镜成像,并人工计数每个区域内个体RCA产物。FITC和Cy3成像用电子仪器合并,RNA信号拟呈现绿色和红色。分散的荧光信号或者是具有纯荧光或者具有纯Cy3的光谱,混合的光谱(黄色)下,没有信号指示通过单一抗体-抗原偶联物产生的每个点。抗生物素蛋白(浅灰)和绵羊抗-地高辛IgG(深灰)信号的定量说明了浅/深信号比率与已知的两种蛋白抗原的投入比率紧密对应(图10),进一步暗示抗体-抗原偶联物与信号之间的一一对应。
该实施例说明免疫RCA理想地适用于微矩阵。在整个等温RCA反应中,获得的扩增DNA分子维持着与抗体-抗原偶联物的共价连接。在微矩阵中,该方法产生的可检测荧光信号比非扩增信号检测方法的提高约3个对数。RCA的一个显著特征是能够精确地定位单一DNA指示分子产生的信号,这样能够目测固体表面目的各个识别作用。当RCA的长单链DNA产物通过杂交到许多互补寡核苷酸而被修饰时,其中这些寡核苷酸是用指示荧光基团和半抗原标记的,例如2,4-二硝基酚,所有的荧光基团都可以降解成点光源。当分子信号的数目非常高时,在微矩阵上来自某个点的信号可通过总计荧光来阅读。但是,当表面结合的抗原数目较小时,该信号可按分散的单一分子计数作为其分数,分析物的subattomole可以目测。这样,微矩阵上进行的免疫RCA提供了极宽动力学范围的试验方法;结合单一分子计数和总荧光输出量指示着6到7对数的动力学范围。
实施例7该实施例说明测量两个样品中模型蛋白(IgE)的相对浓度。
为通过线性RCA获得IgE的双色表达水平图谱,用多克隆山羊抗-人IgE(0.5mg/ml,BiosPacific)捕获抗体在载玻片上点制微矩阵,该载玻片是被硫醇硅烷激活的并用GMBS处理过。构建MAb抗-IgE(BiosPacific,clone#A37020047P)的两种偶联物。构建第一个偶联物,抗体用硫代GMBS激活,然后与5’硫醇Pr2(GTA CCA TCA TAT ATG TCC GTG CTA GAA GGAAAC AGT TACA)相互作用。构建第二个偶联物,抗体用EZ-偶联硫代NHSLC-生物素(Pierce Chemical Co.)生物素化。还构建MAb抗-生物素(Jackson Immunochemicals),通过硫代GMBS激活抗体,然后与5’硫醇Prl(AAA AAA AAA AAA AAA CAC AGC TGA GGA TAG GAC AT)反应。抗体-抗原偶联物通过在室温下,在一个试管中用50ng/ml IgE孵育生物素-MAb抗-IgE1小时而在第二个试管中用500,50,5,和0ng/ml IgE孵育Pr2-MAb抗-IgE 1小时,在分离的反应中预先制备。然后混合适量的抗体-抗原偶联物,20μl混合物应用于每个矩阵。在37℃捕获预先制备的偶联物30min。然后,10μl含有200nM环1,200nM环2,和2.5ng/μl Prl-抗-生物素混合物的混合物应用于每个矩阵并在37℃孵育30min。然后在lxPBS/0.05% Tween 20中清洗载玻片两次,每次2min。然后,10μl线性RCA反应混合物(20mM Tris-Cl,10mM MgCl2,25mM NaCl,1mM每种dNTP,0.5μM Cy5-标记的环1检测探针和Cy3-标记的环2检测探针,29.1ng/μl大肠杆菌SSB(Promega),0.01U/μl T7 Native DNA聚合酶(USB),和8%DMSO)应用于每个矩阵并在37℃孵育45min。然后在lxPBS/0.05% Tween20和lxPBS中清洗载玻片,风干并扫描。如图12所示,Cy5荧光强度与Cy3荧光强度的比率反应了两种样品中IgE的比率。
两种样品中蛋白相对浓度的测量通过使用前列腺-特异性抗原(PSA)作为模型而进一步例示。各种浓度PSA(Biospacifics)与在PBS/0.05%Tween20中的5ng/μl生物素或FITC标记的单克隆抗-PSA在37℃孵育30min。然后混合该PSA/FITC抗-PSA和PSA/生物素化抗-PSA偶联物,20μl该混合物在微矩阵上37℃孵育30min。用PBS/0.05% Tween20清洗载玻片2min,清洗2次。该载玻片与2.5ng/μl抗-生物素-引物1偶联物,抗-FITC-引物2偶联物,或这两种反应物的混合物一起孵育。通过将山羊多克隆抗-PSA抗体(Biospacifics,0.3mg/ml)固定在GMBS激活的硫醇硅烷玻璃载玻片上而制备微矩阵,并如所述阻断。使用抗体标记的试剂盒(Sigma Chemical Co.,St.Louis,MI),用FITC或生物素标记单克隆抗-PSA抗体(Biospacifics)。
在微矩阵上,37℃,在50nM每种Cy5-标记的环1和Cy3-标记的环2修饰物存在下,用T7 Native DNA聚合酶进行45min线性RCA。用2XSSC/0.05%Tween20清洗载玻片2min,清洗2次,用1XSSC清洗1min,风干,并在GSI Lumonics GSA5000扫描仪上,分别以适于Cy3和Cy5荧光基团的设置进行扫描。如图17所示,Cy5荧光强度与Cy3荧光强度的比率反应了两种样品中PSA的比率。
实施例8本实施例说明用于固定来自复杂生物样品的分析物的方法和组合物,以及使用本发明方法检测并定量其在样品中的存在。在此使用含有过敏原的样品进行本方法的例示。
过敏原微矩阵。如实施例4所述,洁净的载玻片用硫醇处理。猫毛,狗毛,屋内灰尘螨(D.farinae和D.pterorzyssinus)和豌豆(ALK-Abello)的提取物过PD-10柱(Pharmacia),分离到各洗脱部分,然后在CentriconYM-3过滤器(Millipore)上进行超滤浓缩。使用针-工具型微矩阵仪(GeneMachines)将提取物点到激活的载玻片上。点制人IgE和5’-氨基修饰的RCA引物作为阳性对照。用2%BSA(无蛋白酶)阻断矩阵,风干,氮气下4℃储存待用。
免疫RCA。通过加入50μl体积的在50mM甘氨酸(pH9.0)中的2mg/mlBSA溶液来阻断每个微矩阵,并在湿润容器内37℃孵育1小时。阻断后,载玻片用PBS,0.05% Tween 20清洗2分钟,2次,然后再用PBS进行1min清洗。立即向每个矩阵加入10μl人血清,在湿润容器内37℃孵育30min,并用PBS,0.05% Tween 20清洗2次。小鼠单克隆抗-IgE抗体DNA偶联物与50nM环状DNA(序列5’-TAG CAC GGA CAT ATA TGA TGG TAC CGC AGT ATGAGT ATC TCC TAT CAC TAC TAA GTG GAA GAA ATG TAA CTG TTT CCT TC)一起,在PBS,0.05% Tween 20,1mM EDTA中,37℃退火30min。10μl应用于每个矩阵并在湿润容器内37℃孵育30min。载玻片用PBS,0.05%Tween20进行2次2分钟的清洗。如实施例5所述进行RCA反应和检测。
该免疫RCA微矩阵试验在16微孔-玻璃载玻片上进行,每孔之间由特氟隆遮蔽膜分隔。每个微孔中点制100-400μm点的微矩阵;这些微孔中每一个都用于不同样品或者阴性或阳性对照的试验。多孔载玻片还在16个孔中的6个孔内点制抗IgE捕获抗体的矩阵。该多孔形式过敏原微矩阵上的半自动免疫RCA试验可由低廉的Beckman BioMek液体处理机器人进行。
实施例9本实施例说明本发明方法用于多元分析一种样品中不止一种分析物,如应用于检测细胞素的特殊情况。
如实施例5所述,用硫醇-硅烷/GMBS化学物质在10孔Erie载玻片上制备微矩阵。大致上,将识别5种细胞素的多克隆抗体(抗-bNGF,抗-ILlb,抗-TNFa,抗-IL6和抗-ILla)(R&D Systems,Minneapolis,MN)以0.5mg/ml溶解于PBS并用于在多孔载玻片上制备微矩阵。阻断该微矩阵,并与含有20ng/ml在PBS/0.5% Tween中的细胞素样品一起在37℃孵育30min。清洗该微矩阵并与含有2.5μg/ml生物素化的单克隆抗体(R&DSystems)的溶液孵育。如所述,通过用α-生物素/引物1偶联物进行RCA来检测这些点。
如图18所示,当存在TNF和ILla的抗体时,可在微矩阵上同时检测这两种细胞素。当仅仅加入一种抗体时,只有一种同类信号出现,通过这种现象说明信号的特异性。
应该理解,由于其可变性,本发明并不限于特定方法,方案和试剂。还应理解,此处所用术语仅为描述特定实施例而不应限制本发明的保护范围,本发明保护范围由附加的权利要求书限定。
正如此处和权利要求书中所使用的,必须注意单数形式“一”,″该″包括复数形式,除非文中明确表述其不包括。这样,例如,“一个宿主细胞”包括这种宿主细胞的复数形式,“该抗体”指一个或多个抗体以及本领域技术人员公知的其同功物,如此等等。
除非另有说明,此处所用的所有技术和科学术语具有本发明所属技术领域技术人员公知的含义。尽管可以将类似于或等同于此处所述的方法和材料用于实践或测试本发明,但是优选的方法,设备和材料如所述。此处引用的出版物以及其引用的材料并入本发明作为参考。此处本发明的注释应解释为本发明未授权由于在前发明而提前公开本发明。
本领域技术人员显而易见地能够将这些常规试验,众多同功物应用于本发明此处所述的特定实施例。这些同功物质也属于随后的权利要求的范围。
权利要求
1.检测一种或多种分析物的方法,该方法包括(a)使一种或多种分析物样品与一种或多种指示子结合引物接触,其中每种指示子结合引物包含一个特异性结合分子以及一个滚环复制引物,其中每种特异性结合分子与一种分析物直接或间接地相互作用,以及在促进所述特异性结合分子与分析物的相互作用的条件下,孵育所述分析物样品和指示子结合引物,(b)在步骤(a)之前、同时或之后,使所述指示子结合引物与一种或多种扩增的靶环接触,其中每个扩增的靶环包含一个单链环状DNA分子,该分子包含一个引物互补部分,其中该引物互补部分与至少一个滚环复制引物互补,以及在促进扩增的靶环与滚环复制引物之间杂交的条件下,孵育所述指示子结合引物与扩增的靶环,(c)在步骤(b)之后,并在步骤(a)之前、同时或其后,在促进扩增的靶环复制的条件下,孵育所述指示子结合引物和扩增的靶环,其中所述扩增的靶环的复制引起串联的DNA序列的形成,其中检测出串联的DNA序列表明相应的分析物的存在,其中所述分析物是在步骤(a)、(b)或(c)之前,同时或之后从分析物样品中分离出来的。
2.如权利要求1的方法,其中多元指示子结合引物与一种或多种分析物样品接触。
3.如权利要求1的方法,其中多元分析物样品与一种或多种指示子结合引物接触。
4.如权利要求1的方法,其中至少一种分析物是蛋白质或多肽。
5.如权利要求1的方法,其中至少一种分析物是脂、糖脂或蛋白多糖。
6.如权利要求1的方法,其中至少一种分析物来自人类。
7.如权利要求1的方法,其中至少一种分析物是来自非人类来源。
8.如权利要求1的方法,其中所述分析物不是核酸。
9.如权利要求1的方法,其中所述分析物通过如下分离使至少一种分析物样品与一种或多种分析物捕获剂接触,其中每种分析物捕获剂与一种分析物直接或间接地相互作用,其中至少一种分析物,如果存在于样品中,与至少一种分析物捕获剂相互作用,并从分析物样品中分离出分析物捕获剂,这样分析物就从所述分析物样品中被分离出来。
10.如权利要求9的方法,其中至少一种分析物捕获剂与固体支持物相连,其中分析物捕获剂与固体支持物相连,而分析物与分析物捕获剂相互作用从而与固体支持物相连。
11.如权利要求10的方法,其中每种分析物捕获剂定位于固体支持物上预先指定的不同区域。
12.如权利要求11的方法,其中所述固体支持物上各预先指定的不同区域之间的距离是固定的。
13.如权利要求12的方法,其中所述固体支持物包括薄膜、膜、瓶、皿、纤维、编织纤维、成型的聚合物、颗粒、珠、微粒或其组合。
14.如权利要求11的方法,其中所述固体支持物上至少两种不同的预先指定的区域之间的距离不相同。
15.如权利要求14的方法,其中所述固体支持物包括至少一种薄膜、膜、瓶、皿、纤维、编织纤维、成型的聚合物、颗粒、珠、或微粒。
16.如权利要求15的方法,其中所述固体支持物包括至少两种薄膜、膜、瓶、皿、纤维、编织纤维、成型的聚合物、颗粒、珠、微粒或其组合。
17.如权利要求11的方法,其中所述串联的DNA序列在固体支持物上的位置指示在分析物样品中,相应于在固体支持物上所述位置的分析物捕获剂的分析物的存在。
18.如权利要求10的方法,其中所述固体支持物包括多元分析物捕获剂,该分析物捕获剂定位于固体支持物上预先指定的不同多元区域内,其中分析物捕获剂共同地相应于多元分析物。
19.如权利要求10的方法,其中所述固体支持物包括薄膜、膜、瓶、皿、纤维、编织纤维、成型的聚合物、颗粒、珠、微粒或其组合。
20.如权利要求10的方法,其中所述固体支持物包括丙烯酰胺、琼脂糖、纤维素、硝酸纤维素、玻璃、聚苯乙烯、聚乙烯乙酸乙酯、聚丙烯、聚甲基丙烯酸酯、聚乙烯、聚环氧乙烷、聚硅酸盐、聚碳酸酯、特氟隆、氟代烃、尼龙、硅胶、聚酐、聚乙醇酸、聚乳酸、聚原酸酯、聚丙基富马酸酯、胶原、氨基葡聚糖或聚氨基酸。
21.如权利要求10的方法,其中所述固体支持物是多孔的。
22.如权利要求9的方法,该方法进一步包括使至少一种分析物样品和至少一种指示子结合引物与至少一种辅助分子接触,其中该辅助分子影响至少一种分析物与至少一种特异性结合分子或至少一种分析物捕获剂的相互作用。
23.如权利要求22的方法,其中在步骤(a)之前、同时或之后,使辅助分子与至少一种分析物样品、至少一种指示子结合引物或其两者相接触。
24.如权利要求22的方法,其中至少一种分析物捕获剂与固体支持物相连,其中所述辅助分子与所述固体支持物相连。
25.如权利要求24的方法,其中所述辅助分子通过在步骤(a)之前、同时或之后使辅助分子与固体支持物接触从而使辅助分子与固体支持物相连。
26.如权利要求22的方法,其中所述辅助分子是蛋白激酶、蛋白磷酸酶、酶或化合物。
27.如权利要求22的方法,其中所述辅助分子是目的分子,其中一种或多种分析物是测试分子,其中检测测试分子与目的分子的相互作用。
28.如权利要求22的方法,其中至少一种分析物是目的分子,所述辅助分子是测试分子,其中检测测试分子与目的分子的相互作用。
29.如权利要求9的方法,其中所述分析物样品包括一种或多种初级分析物样品,和一种或多种次级分析物样品,其中所述指示子结合引物包括一种或多种初级指示子结合引物和一种或多种次级指示子结合引物,该方法进一步包括在步骤(a)之后并在使分析物样品与固体支持物接触之前,混合一种或多种所述初级分析物样品与一种或多种次级分析物样品,其中每种初级指示子结合引物都有匹配的次级指示子结合引物,其中与初级指示子的特异性结合分子相互作用的分析物和与匹配的次级指示子结合引物的特异性结合分子相互作用的分析物相同,其中每种不同的指示子结合引物的滚环复制引物不相同,其中每种不同的滚环复制引物引导不同的扩增靶环的复制,其中每种不同的扩增靶环产生不同的串联DNA序列,其中在不同的分析物样品中有或没有相同分析物的存在由有或没有相应的串联DNA序列来指示。
30.如权利要求29的方法,其中相应于所述分析物之一的并与初级指示子结合引物相关联产生的串联DNA序列在固体支持物上的位置与相应于相同的分析物的并与所述匹配的次级指示子结合引物相关联产生的串联DNA序列在所述固体支持物上的位置相同,其中在不同的分析物样品中有或没有相同分析物是通过有或没有相应的串联DNA序列的存在来指示的。
31.如权利要求9的方法,其中至少一种分析物捕获剂是目的分子,一种或多种分析物是测试分子,其中检测测试分子与目的分子的相互作用。
32.如权利要求9的方法,其中至少一种分析物是目的分子,一种或多种分析物捕获剂是测试分子,其中检测测试分子与目的分子的相互作用。
33.如权利要求1的方法,该方法进一步包括在步骤(a)之前、同时或之后,使一种或多种初级分析物捕获剂与一种或多种初级分析物样品接触,使一种或多种次级分析物捕获剂与一种或多种次级分析物样品相接触,其中每种分析物捕获剂包含一种分析物的相互作用部分和捕获部分,其中每种初级分析物捕获剂都有一个匹配的次级分析物捕获剂,其中与初级分析物捕获剂的分析物相互作用部分发生作用的分析物和与匹配的次级分析物捕获剂的分析物相互作用部分发生作用的分析物相同,其中所述初级和次级分析物捕获剂的捕获部分都与一种或多种指示子结合引物的特异性结合分子发生作用,其中与所述初级分析物捕获剂的捕获部分发生作用的特异性结合分子不同于与相匹配的次级分析物捕获剂的捕获部分发生作用的特异性结合分子,其中每种不同的特异性结合分子是指示子结合引物的一个不同部分,每种不同的指示子结合引物的滚环复制引物是不相同的,其中每种不同的滚环复制引物引起不同的扩增靶环的复制,每种不同的扩增靶环产生不同的串联DNA序列,其中在不同的分析物样品中有或没有相同的分析物的存在由有或没有相应的串联DNA序列的存在指示。
34.如权利要求33的方法,该方法进一步包括混合一种或多种初级分析物样品和一种或多种次级分析物样品。
35.如权利要求33的方法,该方法进一步包括混合一种或多种初级分析物捕获剂和一种或多种次级分析物捕获剂。
36.如权利要求35的方法,其中所述混合一种或多种初级分析物捕获剂和一种或多种次级分析物捕获剂的步骤是通过使一种或多种初级分析物捕获剂以及一种或多种次级分析物捕获剂与相同的固体支持物同时或顺序连接而实现的。
37.如权利要求33的方法,其中相应于分析物之一的并与初级分析物捕获剂相关联产生的串联DNA序列与相应于相同分析物的并与所述匹配的次级分析物捕获剂相关联产生的串联DNA序列在相同位置,并且被同时检测,其中在不同分析物样品中相同分析物的存在或不存在是由相应的串联DNA序列的存在或不存在来指示的。
38.如权利要求33的方法,其中每种初级分析物捕获剂的捕获部分相同,其中相应于初级分析物捕获剂的指示子结合引物相同,其中相应于初级分析物捕获剂的扩增靶环相同,其中每种次级分析物捕获剂的捕获部分相同,其中相应于次级分析物捕获剂的指示子结合引物相同,其中相应于次级分析物捕获剂的扩增靶环相同。
39.如权利要求1的方法,其中至少一种特异性结合分子是对至少一种分析物具有特异性的抗体。
40.如权利要求1的方法,其中至少一种特异性结合分子是特异性结合至少一种分析物的分子。
41.如权利要求1的方法,其中至少一种特异性结合分子是与一种辅助分子联合而特异性结合至少一种分析物的分子。
42.如权利要求1的方法,其中所述特异性结合分子和分析物通过彼此直接或间接地结合而相互作用。
43.如权利要求1的方法,其中至少一种辅助分子与至少一种分析物样品和至少一种指示子结合引物接触,其中所述辅助分子影响至少一种分析物与至少一种特异性结合分子或至少一种分析物捕获剂的相互作用。
44.如权利要求43的方法,其中所述辅助分子竞争至少一种特异性结合分子或至少一种分析物捕获剂的相互作用。
45.如权利要求44的方法,其中所述辅助分子是至少一种分析物的类似物。
46.如权利要求43的方法,其中所述辅助分子促进至少一种特异性结合分子或至少一种分析物捕获剂的相互作用。
47.如权利要求43的方法,其中所述辅助分子在步骤(a)之前、同时或之后,与至少一种分析物样品、至少一种指示子结合引物或其二者相接触。
48.如权利要求43的方法,其中所述辅助分子是蛋白激酶、蛋白磷酸酶、酶或化合物。
49.如权利要求43的方法,其中所述辅助分子具有至少20%的纯度。
50.如权利要求43的方法,其中所述辅助分子具有至少50%的纯度。
51.如权利要求43的方法,其中所述辅助分子具有至少80%的纯度。
52.如权利要求43的方法,其中所述辅助分子具有至少90%的纯度。
53.如权利要求1的方法,其中至少一种分析物与固体支持物相连。
54.如权利要求53的方法,其中与固体支持物相连的每种分析物在不同的预先指定的区域与固体支持物相连。
55.如权利要求53的方法,其中至少一种与固体支持物相连的分析物与固体支持物间接相连。
56.如权利要求55的方法,其中与固体支持物相连的分析物与分析物捕获剂相互作用,其中分析物捕获剂与固体支持物相连从而使分析物与固体支持物间接相连。
57.如权利要求1的方法,其中至少一种特异性结合分子与至少一种分析物间接地相互作用。
58.如权利要求57的方法,其中所述分析物与一种分析物捕获剂相互作用,其中所述特异性结合分子与所述分析物捕获剂相互作用,从而使特异性结合分子与分析物间接地相连。
59.如权利要求1的方法,其中至少一种分析物是另一种分析物的修饰形式,其中至少一种指示子结合引物的特异性结合分子与所述分析物直接或间接地相互作用,所述的分析物是所述其它分析物的修饰形式,其中另一指示子结合引物的特异性结合分子直接或间接地与其它分析物相互作用。
60.如权利要求59的方法,其中所述分析物是蛋白,其中所述其它分析物的修饰形式的修饰是翻译后的修饰。
61.如权利要求60的方法,其中所述修饰是磷酸化或糖基化。
62.如权利要求1的方法,其中所述串联DNA序列的检测是在促进该串联DNA序列与检测探针之间杂交的条件下,通过混合一套检测探针和该串联DNA序列而完成。
63.如权利要求62的方法,其中多元的不同串联DNA序列通过多元检测被分别且同时检测。
64.如权利要求63的方法,其中所述一套检测探针使用组合的多色编码标记。
65.如权利要求1的方法,该方法进一步包括,与步骤(c)同时、或在其后,使次级DNA链移位引物和串联DNA序列接触,并在促进(i)所述串联DNA序列与所述次级DNA链移位引物之间杂交,以及(ii)所述串联DNA序列复制的条件下孵育,其中所述串联DNA序列的复制引起次级串联DNA序列的形成。
66.如权利要求1的方法,其中所述指示子结合引物具有至少20%的纯度。
67.如权利要求1的方法,其中所述指示子结合引物具有至少50%的纯度。
68.如权利要求1的方法,其中所述指示子结合引物具有至少80%的纯度。
69.如权利要求1的方法,其中所述指示子结合引物具有至少90%的纯度。
70.检测一种或多种分析物的方法,该方法包括(a)使一种或多种分析物样品与一种或多种分析物捕获剂接触,其中每种分析物捕获剂直接或间接地与一种分析物相互作用,其中至少有一种分析物,如果其存在于分析物样品中,与至少一种分析物捕获剂相互作用,在促进分析物捕获剂和分析物相互作用的条件下,孵育所述分析物样品和分析物捕获剂,(b)在步骤(a)之前、同时或之后,使至少一种分析物样品与一种或多种指示子结合引物接触,其中每种指示子结合引物包含一个特异性结合分子和一个滚环复制引物,其中每种特异性结合分子与一种分析物捕获剂直接或间接地相互作用,以及在促进特异性结合分子与分析物捕获剂相互作用的条件下,孵育所述分析物样品与指示子结合引物,(c)在步骤(a)或(b)之前、同时或之后,使指示子结合引物和一种或多种扩增的靶环接触,其中所述扩增的靶环的每一个都含有一个单链环状DNA分子,该分子含有一个引物互补部分,其中该引物互补部分互补于至少一种滚环复制引物,以及在促进扩增的靶环和滚环复制引物之间杂交的条件下,孵育所述指示子结合引物和扩增的靶环,(d)在步骤(c)之后并且在步骤(a)或(b)之前、同时或之后,在促进扩增的靶环复制的条件下,孵育指示子结合引物和扩增的靶环,其中所述扩增的靶环的复制引起串联DNA序列的生成,检测出串联DNA序列指示相应的分析物的存在。
71.检测一种或多种分析物的方法,该方法包括(a)处理一种或多种分析物样品,使一种或多种分析物被修饰,(b)使至少一种分析物样品与一种或多种指示子结合引物接触,其中每种指示子结合引物包含一个特异性结合分子和一个滚环复制引物,其中每个特异性结合分子直接或间接地与修饰的分析物相互作用,以及在促进特异性结合分子与被修饰的分析物之间相互作用的条件下,孵育所述分析物样品与指示子结合引物,(c)在步骤(a)或(b)之前、同时或之后,使指示子结合引物和一种或多种扩增的靶环接触,其中这些扩增的靶环的每一个都含有一个单链环状DNA分子,该分子含有一个引物互补部分,其中该引物互补部分互补于至少一种滚环复制引物,以及在促进扩增的靶环和滚环复制引物之间杂交的条件下,孵育所述指示子结合引物和扩增的靶环,(d)在步骤(c)之后并且在步骤(a)或(b)之前、同时或之后,在促进扩增的靶环复制的条件下,孵育所述指示子结合引物和扩增的靶环,其中扩增的靶环的复制引起串联DNA序列的生成,串联DNA序列的检出指示相应的分析物的存在。
72.如权利要求71的方法,其中所有分析物是通过将修饰基团与分析物相连而被修饰,其中所有分析物的修饰基团都相同,其中所有的特异性结合分子都与该修饰基团相互作用。
73.检测一种或多种分析物的方法,该方法包括(a)使一种或多种分析物样品与一种或多种矩阵接触,其中每种矩阵包含一套分析物捕获剂、一套辅助分子、或其二者,其中每种分析物捕获剂直接或间接地与一种分析物相互作用,(b)在步骤(a)之前、同时或之后,使至少一种分析物样品与一种或多种指示子结合引物接触,其中每种指示子结合引物包含一个特异性结合分子和一个滚环复制引物,其中每种特异性结合分子与一种分析物直接或间接地相互作用,其中每种辅助分子能够影响至少一种分析物与至少一种特异性结合分子或至少一种分析物捕获剂之间的相互作用,(c)在步骤(a)或(b)之前、同时或之后,在促进特异性结合分子、分析物、分析物捕获剂和辅助分子相互作用的条件下、孵育分析物样品、矩阵和指示子结合引物,(d)在步骤(b)之前、同时或之后,使指示子结合引物和一种或多种扩增的靶环接触,其中这些扩增靶环的每一个都含有一个单链环状DNA分子,该分子含有一个引物互补部分,其中该引物互补部分互补于至少一种滚环复制引物,以及在促进扩增靶环与滚环复制引物之间杂交的条件下,孵育所述指示子结合引物和扩增的靶环,(e)在步骤(d)之后并且在步骤(a)、(b)或(c)之前、同时或之后,在促进扩增靶环复制的条件下,孵育所述指示子结合引物和扩增的靶环,其中扩增的靶环的复制引起串联DNA序列的生成,串联DNA序列的检出指示相应的分析物的存在。
74.如权利要求73的方法,其中每个矩阵含有一套分析物捕获剂,其中每种分析物捕获剂被固定在固体支持物上的不同的预先指定的区域内。
75.如权利要求74的方法,其中所述固体支持物上不同的预先指定的区域之间的距离是固定的。
76.如权利要求75的方法,其中所述固体支持物包括薄膜、膜、瓶、皿、纤维、编织纤维、成型的聚合物、颗粒、珠子、微粒或其组合。
77.如权利要求74的方法,其中至少两个固体支持物上的不同的预先指定的区域之间的距离是可变的。
78.如权利要求74的方法,其中所述分析物捕获剂以高于400种不同的分析物捕获剂每立方厘米的密度固定在固体支持物上。
79.如权利要求74的方法,其中所述分析物捕获剂是多肽。
80.如权利要求79的方法,其中每种不同的多肽具有至少4个氨基酸长度。
81.如权利要求80的方法,其中每种不同的多肽具有大约4个到大约20个氨基酸长度。
82.如权利要求80的方法,其中每种不同的多肽具有至少10个氨基酸长度。
83.如权利要求80的方法,其中每种不同的多肽具有至少20个氨基酸长度。
84.如权利要求74的方法,其中至少一个矩阵含有至少1000种固定在所述固体支持物上的不同的分析物捕获剂。
85.如权利要求74的方法,其中至少一个矩阵含有至少10,000种固定在所述固体支持物上的不同的分析物捕获剂。
86.如权利要求74的方法,其中至少一个矩阵含有至少100,000种固定在所述固体支持物上的不同的分析物捕获剂。
87.如权利要求74的方法,其中至少一个矩阵含有至少1,000,000种固定在所述固体支持物上的不同的分析物捕获剂。
88.如权利要求74的方法,其中每个不同的预先指定的区域与每种其它不同的区域物理分离。
89.如权利要求74的方法,其中所述固体支持物包括薄膜、膜、瓶、皿、纤维、编织纤维、成型的聚合物、颗粒、珠子、微粒或其组合。
90.如权利要求74的方法,其中所述固体支持物包括丙烯酰胺、琼脂糖、纤维素、硝酸纤维素、玻璃、聚苯乙烯、聚乙烯乙酸乙烯酯、聚丙烯、聚甲基丙烯酸酯、聚乙烯、聚环氧乙烷、聚硅酸盐、聚碳酸酯、特氟隆、氟代烃、尼龙、硅胶、聚酐、聚乙醇酸、聚乳酸、聚原酸酯、聚丙基富马酸酯、胶原,氨基葡聚糖或聚氨基酸。
91.如权利要求74的方法,其中所述固体支持物是多孔的。
92.如权利要求74的方法,其中在不同的预先指定的区域内的分析物捕获剂具有至少20%的纯度。
93.如权利要求74的方法,其中在不同的预先指定的区域内的分析物捕获剂具有至少50%的纯度。
94.如权利要求74的方法,其中在不同的预先指定的区域内的分析物捕获剂具有至少80%的纯度。
95.如权利要求74的方法,其中在不同的预先指定的区域内的分析物捕获剂具有至少90%的纯度。
96.一种试剂盒,含有(a) 多元指示子结合引物,其中每种指示子结合引物包含一个特异性结合分子和一个滚环复制引物,其中每种特异性结合分子与一种分析物直接或间接地相互作用,(b)多元分析物捕获剂,其中每种分析物捕获剂都与分析物直接或间接地相互作用。
97.如权利要求96的试剂盒,其中所述分析物捕获剂与固体支持物相连。
全文摘要
公开了用于检测少量分析物如蛋白质和多肽的组合物和方法。该方法涉及将引物与分析物相连,然后利用引物介导环状DNA分子的滚环复制。DNA环的复制依赖于引物的存在。这样,本发明公开的方法通过滚环复制可以从任何目的分析物产生出扩增的信号。扩增的DNA通过引物仍与分析物相连,这样就可以对分析物进行立体的检测。本发明的方法可用于检测并分析蛋白质或多肽。通过微矩阵可以分析多种蛋白质,其中各种蛋白质被固定到该微矩阵上。这样,利用引物和能够特异性地结合待测蛋白质的分子的偶联物,滚环复制引物与各种蛋白质相连。引物的滚环复制会在矩阵中该蛋白质被固定的位点产生大量的DNA产物。该扩增的DNA可作为该蛋白质的简易检测的信号。本发明的方法还可以用于比较在两种或更多样品中表达的蛋白质。所得到的信息与在核酸表达体系中收集到的信息类型相似。本发明的方法可以对在任何细胞或组织中表达的蛋白质进行灵敏、准确的检测并定量测定。
文档编号C12Q1/68GK1446050SQ01811542
公开日2003年10月1日 申请日期2001年6月20日 优先权日2000年6月20日
发明者斯蒂芬·肯斯默, 吉里什·纳勒, 巴里·施韦策 申请人:分子分级公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1