用于血管成形术中的带有毫微纤维外层的气囊的制作方法

文档序号:1109103阅读:192来源:国知局
专利名称:用于血管成形术中的带有毫微纤维外层的气囊的制作方法
技术领域
本发明涉及一种用于血管成形术的气囊及其制造方法。该气囊例如可适用于插入生物的脉管系统中,例如用于展开血管内的斯滕特固定模。
背景技术
血管成形术气囊通常用于各种诊断过程和医学治疗。例如,气囊被用于展开植入体腔管道中的斯滕特固定模以治疗存在狭窄的血管。斯滕特固定模可以含有在植入后释放到周围组织以避免诸如细胞增殖的副作用的药物。可展开斯滕特固定模通常被放置在血管成形术气囊导管上,该气囊导管一旦处于适当位置,就膨胀使斯滕特固定模展开。可选地,斯滕特固定模可以由具有回复能力的材料,例如诸如镍钛诺的超弹性合金制作,从而一旦处于合适位置,该斯滕特固定模可以自动展开。这种自展开斯滕特固定模通常由伸缩管装置传递,在该装置中外部部件通过例如迫使在内部部件上滑过的力被去除,斯滕特固定模在展开前被固定到该内部部件上。
通常希望用于插入生物的脉管系统的医疗设备符合某些物理需求。例如,斯滕特固定模的表面应当是亲水的,并且表面摩擦力低以便于引入。斯滕特固定模的表面可以涂敷诸如一氧化氮(NO)的药剂。一旦医学设备处于适当位置,这种一氧化氮释放基质可以使血管松弛或防止动脉痉挛。已知一氧化氮还可抑制血小板凝聚和降低平滑肌的增殖,已知这可以减少再狭窄。当被直接传递到特定位置时,已经证实其可以避免或减少在医疗人员将外来物体或设备引入病人体内的位置的炎症。
国际专利申请WO 2004/006976提出了用于在预先引入另一斯滕特固定模之后直接应用到血管壁的被放置或用于气囊基底材料的单层亲脂生物活性材料。根据该文献的公开内容,气囊可以在不使用斯滕特固定模的条件下用于血管成形过程。生物活性材料层可以通过浸渍、浸泡或喷涂被定位在气囊上。现有技术中还提出了各种一氧化氮(NO)供体化合物、含有这种一氧化氮供体化合物的药物组合物以及能够释放一氧化氮的聚合组合物。例如,对应美国专利No.6,737,447 B1的欧洲专利No.1220694 B1公开了一种包括至少一个在设备上形成涂层的线性聚合(氮丙啶)diazeniumdiolate的毫微纤维的医学设备。这种聚合物可有效将一氧化氮传递到医疗设备周围的组织。

发明内容
本发明的优选实施方案的目的在于提供一种可以改进在体内管腔中的药物传递的气囊。
在第一方面中,本发明提供了用于血管成形术过程的可展开气囊,包括具有外表面层的气囊,由诸如缠绕毫微纤维、诸如电缠绕毫微纤维的毫微纤维制造,并结合至少一种药物活性物质的外表面层。在第二方面,本发明提供了一种制造用于血管成形术的气囊的方法,该方法包括例如通过毫微纤维的缠绕,例如通过毫微纤维的电缠绕由毫微纤维形成气囊的外表面层的步骤,该外表面层含有至少一种药物活性物质。本体部分和外表面层例如可以限定一个可展开的有涂层的血管成形术气囊,例如PTA(经皮腔内成形术)气囊、PTCA(经皮冠状动脉腔内成形术)气囊或PTNA(经皮神经与血管腔内成形术导管)。优选地,外表面层是符合气囊形状的层,即当气囊被充气时该层与气囊一起展开而当气囊放气时与气囊一起收缩。外表面层优选由聚合物制造,这将在下面进一步具体讨论。
典型地,毫微纤维的直径为2-4000纳米,优选为2-3000纳米,或小于2000纳米或小于1000纳米,例如小于500纳米或小于200纳米,小于100纳米或小于50纳米,例如小于20纳米或小于10纳米。因此,在气囊的外表面上存在大量毫微纤维。从而应当理解,在气囊外表面上的毫微纤维限定了大的累积面积,相对气囊的重量该累积面积大于由大多数其它非毫微纤维或非缠绕表面可实现的面积。因此,与带涂层的气囊重量相比该表面构成了相对大的用于药物活性物质的储存器。毫微纤维甚至可制造成直径为0.5纳米,该尺寸接近单个分子的尺寸。
已经发现,在许多情况下通过例如缠绕制造毫微纤维比单纯依靠在芯上喷涂聚合物更容易或控制更精确。这可以产生另外的优点,即医疗设备可以制造成更小尺寸,例如比现有的医疗设备直径更小。本发明可以制造直径相对小的气囊,与直径较大的设备相比,便于引入生物的脉管系统和减少由于引入气囊产生的副作用。毫微纤维的缠绕可以实现一体化合成设备的制造,其中,两种或更多种材料以分子尺度在小尺寸中结合,同时保持了足够的机械稳定性。可以实现横截面尺寸与缠绕材料的约2-5个分子的尺寸一样小。分子的尺寸显然取决于所使用的原材料,聚氨酯分子的尺寸通常小于3000纳米。
一种制造毫微纤维的可采用方式是通过电缠绕形成纤维。应当明白,术语电缠绕包括一过程,其中颗粒被施加到基底元件上,该基底元件保持某个、优选恒定的电势,优选为负电势。颗粒从处于另一、优选为正电势的源产生。正电势和负电势可以相对周围环境,即在其中进行该过程的房间的电势被平衡。相对周围大气的电势,基底元件的电势优选可以是-5至-30kV,而相对周围大气的电势,源的正电势优选可以是+5至+30kV,从而在源和基底元件之间的电势差为10到60kV。
制造毫微纤维的领域近年来具有显著进步。在此引用作为参考的美国专利No.6,382,526公开了一种用于制造毫微纤维的工艺和装置,该工艺和装置可用于根据本发明的方法。在此引用作为参考的美国专利No.6,520,425公开了用于形成毫微纤维的喷嘴。应当明白,上述美国专利的工艺和方法可用于根据本发明的方法,但是本发明的保护范围不限于那些工艺和装置。当气囊连续旋转时,纤维可以例如被缠绕在气囊上,即在气囊的外表面层中形成在外周和/或纵向延伸的毫微纤维线。
可由本发明制造的气囊可以沿其长度限定多个部分。例如,这些部分可以具有不同性质,例如不同的硬度。通过将不同的纤维形成材料用于不同的部分和/或通过改变生产参数,例如在电缠绕工艺中电极的电压、高电压电极和低电压电极之间的距离、设备(或者设备围绕其制造的芯线)的旋转速度、电场强度、电晕放电初始电压或电晕放电电流,可以实现这种不同性能。
气囊的本体部分可以由例如聚酰胺材料,例如Nylon-12或TicoflexTM或其组合物制造。例如,气囊本体可以由带有TicoflexTM涂层的Nylon-12制造,在气囊上由电缠绕毫微纤维形成外表面层。可选地,TicoflexTM可直接作为用于形成毫微纤维的聚合物。
还发现由根据本发明的方法的优选实施方案制造的气囊具有低的表面摩擦力。在本发明的实施方案中,低表面摩擦力可以通过将吸湿性材料作为用于纤维形成工艺,例如电缠绕工艺的纤维形成材料来实现。因此,一旦被引入脉管系统,吸湿性材料吸收体液,产生亲脂性低摩擦表面。吸湿表面例如可以用聚氨酯或聚丙烯酸材料实现。
优选地,气囊的外表面层可以构成药物的储存器。其毫微纤维部分构成用于保持药物的储存器或构成基质聚合物源,在该聚合物源中药物被联锁到分子链中或粘着到或包围在分子链的周围。在此揭示的气囊可以携带任何适当的药物,包括但不限于一氧化氮组合物、肝素和化疗剂。
可展开气囊的外表面层可以由结合至少一种药物活性物质的毫微纤维制造。该纤维可以形成一种或多种聚合物的聚合物基质。应当明白,“由纤维制造的外表面层”,即聚合物基质不需要是气囊的最外层,例如亲脂性聚合物层(例如,聚丙烯酸(和共聚物)、聚环氧乙烷、聚(N-乙烯基内酰胺,例如聚乙烯基吡咯烷酮,等)可以被提供作为外表面层(聚合物基质)上的涂层。可选地,阻挡层可用作外表面层(聚合物基质)上的涂层,以便确保聚合物基质和血液之间的接触被延迟,直到可展开气囊处于适当位置。阻挡层可以由可生物降解的溶解或分解聚合物形成,或者阻挡层可以在气囊充气时被分解。
术语“聚合物基质”的意思是由电缠绕纤维形成的三维结构。聚合物基质的特点是具有非常高的可接近性表面区域,该表面区域允许一种或多种药物活性物质迅速释放。聚合物基质的聚合物可以由包括聚合物溶液和聚合物熔体的各种聚合物基材料和其组合物基质制备。可使用的聚合物例如是包括尼龙的聚酰胺、聚氨酯、含氟聚合物、聚烯烃、聚酰亚胺、聚亚胺、(甲)丙烯酸聚合物和聚酯,以及合适的共聚物。另外,碳可用作纤维形成材料。
聚合物基质由一种或多种聚合物形成,并且(除了一种或多种药物活性物质以外)可以结合或包括诸如盐、缓冲成分、微粒等的其它成分。
术语“结合至少一种药物活性物质”的意思是一种或多种药物活性物质通过共价键或通过离子相互作用以离散分子形式存在于聚合物基质内或被连接到基质的一种或多种聚合物上。在两个示例的后一个中,药物活性物质典型地需要在生物效应产生之前从聚合物分子释放。释放通常在接触生理液(例如血液)时通过水解、离子交换等发生。
在一个优选实施方案中,药物活性物质被共价连接到聚合物分子上。
药物活性物质可以混合到液体物质中,外表面层由其制造。
在一个感兴趣实施方案中,药物活性物质是一氧化氮供体。为了某些医学治疗,需要在将气囊放置在治疗位置时即刻,或气囊放置后至多5分钟内,一氧化氮以气相释放到身体组织中。由于一氧化氮以气相释放,可以实现没有或仅有少量NO供体的残余物沉积在组织中。
在本发明的优选实施方案中,NO亲核复合体(NONO’ate)被用作一氧化氮供体。根据下图,参考US 6147068,LarryK.KeeferMethod Enzymol,(1996)268,281-293和Naunyn-Schmeideberg’s Arch Pharmacol(1998)358,113-122,NO亲核复合体在酸催化方式中分解成母体胺和NO气。
化学方程式线性NONO-PEI线性PEI在该实施方案中,NO在例如由诸如电缠绕的缠绕形成的聚合物基质内释放。当基质为多孔时,水可以进入该基质。NO分子可以被转运脱离基质并以多种方式及这些方式的组合进入组织。下面描述了一些进入组织的情景NO在基质内溶于水并通过扩散或水流转运脱离基质;NO以气体形式扩散脱离基质并溶于基质外的水中;NO从水中扩散进入组织;NO自始至终以气体形式从基质扩散到组织中。
如上图所示,NO释放速率高度取决于介质的pH。因此,通过将各种剂量的酸加入基质,可以控制NO的释放速率。作为实施例,在pH=5.0时NO释放半衰期约为20分钟,然而在pH=7.4时半衰期约为10小时。作为实施例,可以将抗坏血酸用作促进NO释放的酸性剂。
现有技术中已经提出了各种一氧化氮(NO)供体化合物和能够释放一氧化氮的聚合组合物,例如US 5,691,423、US 5,962,520、US5,958,427、US 6,147,068、以及US 6737,447 B1(对应EP 1220694B1),所有这些文献在此引用作为参考。
在优选实施方案中,毫微纤维由具有共价连接到其上的一氧化氮供体(例如,diazeniumdiolate部分)的聚合物构成。
聚亚胺代表可以具有共价连接到其上的diazeniumdiolate部分的聚合物的不同族。聚亚胺包括聚(亚烃基亚胺),例如聚(亚乙基亚胺)。例如,聚合物可以是US 6,737,447中公开的线性聚合(亚乙基亚胺)diazeniumdiolate(NONO-PEI),该文献在此引用作为参考。一氧化氮供体在线性聚(亚乙基亚胺)(PEI)上的荷载可以被改变,使得5-80%,例如10-50%,例如33%的PEI胺族携带diazeniumdiolate部分。依靠所应用的情况,线性NONO-PEI可以释放能释放一氧化氮总量的各种馏分。
带有diazeniumdiolate部分(尤其是聚(亚乙基亚胺)diazeniumdiolate)的聚胺可有利地用作用于通过诸如电缠绕的缠绕的毫微纤维形成工艺的聚合物,这是因为这种聚合物典型具有合适的亲脂性,并且diazeniumdiolate部分的荷载(以及因而隐含的NO分子的荷载)可以在较大范围内变化,可以参考上述NONO-PEI的在另一实施方案中,一种或多种药物活性物质作为离散分子存在于聚合物基质内。
在该实施方案中,一种或多种药物活性物质可以包含在微粒,例如微球体和微胶囊中。这种微粒尤其可用于癌症的治疗。微粒可以是可生物降解并且可以由可生物降解的聚合物制造,例如多聚糖、聚氨基酸、聚(phosphorester)可生物降解聚合物、羟基乙酸和乳酸的聚合物或共聚物、聚(二烷酮)、聚(环丙烷碳酸盐)共聚物、或聚(α-己内酯)均聚物或共聚物。
可选地,微粒可以是不可生物降解的,例如无定形硅石、碳、陶瓷材料、金属或不可生物降解聚合物。
微粒可以采取封装药物活性物质,例如化疗剂的微球体形式。药物活性物质的释放优选在给药后进行。
封装的微球体可以依靠电磁或超声冲击波致其泄漏来释放药物活性物质。
为了便于将气囊沿着通常曲折的路径到达治疗位置,优选将亲脂层施加到外表面层上。亲脂层可以作为单独材料层提供。可选地,外表面层自身可具有亲脂性质。
外表面层可以有利地包括酸性剂,例如乳酸或维生素C,其起到了释放诸如一氧化氮的药物活性物质的催化剂的作用。酸性剂可以改变治疗位置的ph值,一氧化氮在治疗位置的释放速率作为局部ph值的函数而变化。从而,维生素C的存在可以加速一氧化氮的释放,也就是说实现了一氧化氮的突击释放。
一般来说,一氧化氮的释放在由Jan Harnek MD在HeartRadiology,University of Lund,Sweden,2003发表的Prevention ofintimal hyperplasia after angioplasty and/or stent insertion(在血管成形术和/或斯腾特固定模插入后内膜增生的防止)或Howto mend a broken heart(如何修补破损心脏)中描述。
药物活性物质可以以在毫微纤维之间分布的可生物降解珠粒的形式被提供,该珠粒可以释放药物活性物质,并且当为可生物降解珠粒的情况时,在释放药物活性物质后被降解。在WO 2005/018600中更具体描述了这种珠粒可以在治疗位置穿过组织并在那里释放药物活性物质,上述文献在此引用作为参考。可选地,这些珠粒尺寸足够小使得它们可以例如随血流从治疗位置被送出。
外表面层可以在套在气囊上的单独柔性管或“套”上形成。因此,具有各种性质或结合各种药物活性物质的各种柔性管可以被廉价制造并且覆盖在传统的、大批量制造的气囊上。柔性管可以通过提供诸如芯轴的芯元件形成,当芯轴连接旋转时,通过例如诸如电缠绕的缠绕将毫微纤维布置在该柔性管上。
在气囊的未展开状态中,柔性管可以被折起,从而当从横截面看时,该柔性管呈现辐条-毂形状。
为了改进外层到气囊本体的粘合,气囊本体可以在其被涂敷之前由诸如TicoflexTM层的中间聚合物层覆盖。例如,中间层可以通过将气囊本体浸渍涂敷形成。中间层可选地可以由聚氨酯或还可用于外表面涂层的聚合物,例如US 6,737,447B1中公开的线性聚(亚乙基亚胺)diazeniumdiolate形成。浸渍涂敷本身是公知技术。例如,浸渍涂敷在橡胶工业中用于制造乳胶产品,并且混合挤压例如用在制造光纤电缆中。编织可作为浸渍涂敷的替换方式以实现粗糙或有纹理的表面。
在另一方面中,本发明提供了一种治疗在生物的管状结构中的诸如炎症、增殖或癌症的细胞紊乱的方法,其包括如下步骤-将如上讨论的气囊放置在管状结构内的治疗位置;-将气囊在治疗位置展开;-在治疗位置释放药物活性物质。
通过掺合在外表面层中的ph控制物质的存在,例如诸如维生素C(抗坏血酸)或乳酸的酸性剂可以控制释放药物活性物质的步骤。
在放置气囊的步骤前,可以将未展开的斯腾特固定模放置在气囊上,该斯腾特固定模可以随着气囊被放置在治疗位置。在该实施方案中,当气囊被展开时该斯腾特固定模随后在治疗位置展开,并且最后气囊被放气并从管状结构去除,而将斯腾特固定模留在治疗位置。这样的优势在于在气囊充气之前,不会完全发生药物活性物质的转运,并且一旦气囊被放气和去除,这种转运随后被中断,从而可以精确控制转运时间。而且,可以减少当斯腾特固定模通过生物的管状结构被转运到治疗位置时损失的药量。
在又一方面,本发明还提供了一种工具包,其包括如上所述的带涂层的气囊、斯腾特固定模以及可选的用于将斯腾特固定模引导到治疗位置的导线。


现在将参考附图进一步描述本发明的实施方案,其中
图1-6逐步示例了用于生产一种医疗管,例如用于根据本发明的气囊的实施方案的管状部件的方法的优选实施方案;图7显示了包括根据本发明的气囊的血管成形术气囊导管的实施方案;图8和9示例了气囊的折叠。
具体实施例方式
在图1-6的实施方案中,毫微纤维缠绕在芯部件的外表面上。芯部件包括芯线(或芯轴)100、施加到芯线的外表面的PTFE层102、施加到PTFE层102的外表面的热塑材料的涂层104以及至少一个施加到热塑性涂层外表面的加固线106,毫微纤维的细丝被提供作为外层108,即围绕加固线和热塑性涂层。毫微纤维可以根据US6,382,526或US 6,520,425的方案制造,并且随后例如在其旋转期间被缠绕在所需的目标物体上。同样在目标物体连续旋转期间,毫微纤维同样可以由电缠绕形成。亲脂层110被可选地施加到设备的外表面,参考图6。
导线的直径可以至少为0.1mm,例如从0.1至1.0mm或更大。优选为聚氨酯(PU)涂层的热塑性涂层的厚度优选为5μm至约0.05mm,优选厚度是0.01mm±20%。一条或多条加固线的直径优选为5μm至约0.05mm,优选直径为0.01mm±20%。
如上所述,PTFE 102层也可以被施加到芯部件100的外表面。至少一部分PTFE层的表面,例如其上施加毫微纤维和/或热塑性涂层的部分可以被改变以改善材料到PTFE层的外表面的结合。优选地,这种改变包括蚀刻,采用蚀刻可以例如产生用于共价连接或胶粘的最初PTFE表面。可以通过将熔剂酸或氢氟酸施加到PTFE层的表面实现蚀刻。PTFE层可以提供为在芯线上滑动和与芯线共同延伸的软管。
热塑材料104的涂层,例如聚氨酯(PU)可以被提供到芯部件100的外表面,即如果已经提供了PTFE层,则其被提供到该PTFE层102的外表面。在提供PTFE层102的步骤和/或提供热塑性涂层104的步骤之后,可以将一条或多条加固线106施加到芯部件100的外表面,即在优选实施方案中,施加到聚氨酯涂层104的外表面。一条或多条加固线可以由通过缠绕施加的一条或多条由钢制造的线或/和诸如碳丝的纱制造的线构成。可选地,加固线可以通过旋转毫微纤维,例如通过上述的电缠绕被施加。加固线可以由碳或包括聚合物溶液和聚合物熔体的聚合物形成。可用的聚合物有尼龙、含氟聚合物、聚烯烃、聚酰亚胺和聚酯。
在形成管状部件的同时,或者至少在形成例如通过电缠绕由毫微纤维形成的管状部件的那部分的同时,芯部件100优选被旋转,从而将毫微纤维围绕芯部件的外表面均匀分布。
在本发明的优选实施方案中,毫微纤维108在这个阶段被施加到芯部件的外表面,优选施加到任选由一条或多条加固线加固的热塑性涂层104的外表面。
诸如四氢呋喃(THF)或异丙醇(IPA)的溶剂接下来可以被施加到芯部件的外表面,该外表面可以由设备的毫微纤维部分(或层)108限定。热塑性涂层104至少部分地溶解在溶剂中,从而将一条或多条加固线106粘合在该热塑性涂层上。一条或多条加固线106被埋入热塑性涂层104。已经发现,提供溶剂的步骤产生了具有低表面摩擦力的高密度表面,相信这是由于一旦施加溶剂,伸展的毫微纤维分子就挤压或收缩。
在施加溶剂的步骤之后,或在施加溶剂步骤前但紧接着施加毫微纤维108的细丝的步骤,从设备中去除芯线100(或芯轴)。
最后得到的管状部件可用作可在气囊上滑动的柔性管或套。
可选地,毫微纤维可以通过电缠绕直接形成在气囊上,气囊任选地由例如如上所述的蜡质防水皮层或编织层覆盖以提高毫微纤维在其表面的粘合度。
图7显示了包括根据本发明的气囊的血管成形术气囊导管的不同的实施方案。在图7的上面附图显示了包括由电缠绕毫微纤维制造的外表面层120的充气气囊118。该气囊由导线122携带。
图7的中间图显示了未充气的气囊124,在气囊上套有由电缠绕毫微纤维制造的管或“套”126。在图7的下面附图中,虚线显示了当气囊充气时气囊124和套126的轮廓。
图8和9示意性示例了气囊的未展开状态,其中柔性管被折叠,从而当从横截面观看时,柔性管具有辐条-毂形状。
权利要求
1.一种用于血管成形术过程的可展开气囊,包括具有外表面层的气囊,该外表面层由毫微纤维制造并结合至少一种药物活性物质。
2.根据权利要求1的气囊,还包括在气囊和外表面层之间形成的中间层,该中间层通过浸渍涂敷形成。
3.根据权利要求1或2的气囊,其中外表面层在单独柔性管上形成,并且外表面在气囊上滑动。
4.根据权利要求3的气囊,其中柔性管被折叠,使得当从横截面观察时,该柔性管具有辐条-毂形状。
5.根据权利要求1-4之一的气囊,其中药物活性物质包括一氧化氮,并且其中外表面层还任选地包括酸性剂。
6.根据权利要求1-5之一的气囊,其中外表面层主要由聚合物基质制造,该基质包括能够释放至少一种药物活性物质的分子。
7.根据权利要求6的气囊,其中外表面层主要由聚合线性聚(亚乙基亚胺)diazeniumdiolate制造。
8.根据权利要求1-7之一的气囊,其中药物活性物质以在毫微纤维之间分布的可生物降解珠粒的形式被提供。
9.根据前述权利要求之一的气囊,其中外表面层由诸如电缠绕毫微纤维的缠绕毫微纤维形成。
10.一种包括斯腾特固定模和根据前述权利要求之一的带涂层的用于展开该斯腾特固定模的气囊的工具包。
11.根据权利要求10的工具包,还包括用于将斯腾特固定模引导到生物的管状结构中的治疗位置的导线。
12.根据权利要求11的工具包,其中导线设有涂层。
13.一种制造用于血管成形术的气囊的方法,该方法包括用毫微纤维形成气囊的外表面层的步骤,该外表面层包含至少一种药物活性物质。
14.根据权利要求13的方法,其中外表面层通过诸如电缠绕的缠绕形成。
15.根据权利要求14或15的方法,其中在气囊的未展开状态施加外表面层。
16.根据权利要求13-15中任一项的方法,还包括在形成外表面层的步骤前,将气囊浸渍涂敷以形成中间层的步骤。
17.根据权利要求13-16之一的方法,包括-在单独的柔性管上形成外表面层;-将柔性管在气囊上滑动。
18.根据权利要求17的方法,其中在柔性管上形成外表面层的步骤包括-提供至少一个芯部件;-通过将毫微纤维电缠绕在芯部件的外表面上形成带有外表面层的柔性管。
19.根据权利要求17或18的方法,在将柔性管在气囊上滑动的步骤之后,还包括折叠柔性管,使得当从横截面观看时,柔性管具有辐条-毂形状。
20.根据权利要求13-19之一的方法,其中药物活性物质包括一氧化氮。
21.根据权利要求20的方法,其中外表面层还包括酸性剂。
22.根据权利要求13-21之一的方法,其中外表面层主要由聚合物基质制造,该基质包含能够释放至少一种药物活性物质的分子。
23.根据权利要求22的方法,其中外表面层主要由聚合线性聚(亚乙基亚胺)diazeniumdiolate制造。
24.在根据权利要求1-9之一的气囊中作为用于释放一氧化氮的催化剂的酸性剂的用途。
25.一种在生物的管状结构中治疗细胞紊乱的方法,包括以下步骤-将根据权利要求1-9之一的气囊放置在管状结构内的治疗位置;-将气囊在治疗位置展开;-将药物活性物质在治疗位置释放。
26.一种根据权利要求25的方法,其中通过包含在外表面层中的ph控制物质来控制释放步骤。
27.根据权利要求24或25的方法,还包括在放置气囊的步骤前,将未展开的斯腾特固定模放置在气囊上;将斯腾特固定模随着气囊放置在治疗位置;并且随后当气囊被展开时将斯腾特固定模在治疗位置展开;在将气囊放气并且将气囊从管状结构去除后将斯腾特固定模留在治疗位置。
全文摘要
一种用于血管成形术过程的可展开气囊包括具有外表面层的气囊,该外表面层由电缠绕毫微纤维制造并结合至少一种药物活性物质,例如一氧化氮(NO)。外表面层可以形成于单独的柔性管状部件或套筒上,该部件或套筒在气囊上滑动。一种在生物管状结构中治疗细胞紊乱的方法包括如下步骤将带涂层的气囊放置在管状结构内的治疗位置,将气囊在治疗位置展开,并将药物活性物质在治疗位置释放。可选地,斯腾特固定模可以在插入气囊之前卷曲在气囊上并且随其进入生物的管状结构内。
文档编号A61F2/958GK1972723SQ200580018412
公开日2007年5月30日 申请日期2005年4月28日 优先权日2004年4月29日
发明者E·安德森 申请人:库比医药公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1