新方法

文档序号:848131阅读:366来源:国知局
专利名称:新方法
技术领域
本发明涉及用于灭活病毒、特别是由细胞培养产生的病毒的方法。本发明的方法是简单和易于实现的。特别地,它可以在任何病毒纯化过程期间适当地插入。
背景技术
由于由病毒引起的大量疾病,病毒学已成为深入研究的领域。始终存在有效生产病毒的需求,以便分离且纯化病毒蛋白质,以生成疫苗、制备分析工具、或提供病毒用于实验室研究。近来,基于细胞培养的技术作为常规卵(egg)衍生的生产系统的替代方案已得到开发。细胞培养系统尤其显示为疫苗制备的合适替代方式,其更简单、灵活、一致,允许改善按比例扩大疫苗生产能力的可能性,并且因此在需要时,特别是在大范围流行威胁或恐怖袭击的情况下得到大量病毒。与生产方式无关,特别是当病毒预期用于疫苗接种时,它需要是安全的且因此感染力需要被减少或消除。这可能要求病毒进行减毒。可替代地,这可能要求病毒进行纯化和灭活。虽然需要尽可能不可逆地减少病毒的感染力,但它的免疫原性应得到保存。疫苗不含外来因子也是必需的,因为用于生产病毒的宿主,例如卵或细胞培养物,可能在其培养过程中已被病毒污染。不同的灭活剂是本领域已知的,例如去污剂或化学试剂,例如甲醛和β_丙内酯(BPL)。然而,问题可能与关于所述试剂的使用相关(i)非常通常地,这些试剂的使用不允许完全灭活待处理的病毒悬液,因为已频繁报道显著的残留感染力;(ii)去污剂必须慎重使用,因为它们可以对病毒蛋白质的结构具有有害影响,所述病毒蛋白质的结构可能是病毒免疫原性必需的,由于免疫原性丧失,去污剂诱导的其变性最终导致受损的疫苗功效;(iii)化学试剂,例如BPL和甲醛,需要谨慎操作且要求特定设备处理它们,因为它们通常是有害产品并且对操作它们的人造成健康危险;(iv)特别地,甲醛,灭活病毒的标准方法,通常要求长温育时间用于灭活病毒,即I到数天,并且它还已知引起聚集蛋白质,所述聚集可以负面影响病毒纯化所需的后续步骤;(iv)去污剂和化学试剂需要在其使用后从病毒悬液中消除,因此对病毒纯化过程增加复杂性。灭活正粘病毒的这些技术的实现可以进一步导致仍存在显著的残留感染力。因此,存在提供实现简单且允许达到完全病毒灭活的可替代病毒灭活方法的需要,因为残留感染力对于疫苗安全性是无法接受的,所述方法还应证明对于灭活可能的外来因子例如病毒是有用的,所述外来因子可以污染包含目的病毒的流体。
发明概述
根据本发明的方法提供了克服上述缺点的用于灭活病毒的方法。特别地,本发明的方法允许达到高水平的病毒灭活,同时保存病毒抗原性。在本发明的第一个方面,提供了用于灭活在细胞培养物中繁殖的正粘病毒和/或灭活污染性外来因子的方法,其包括至少下述步骤
Ca)用烷化剂处理含正粘病毒流体,和 (b)用UV光照射含正粘病毒流体。在第二个方面,提供了可根据本发明的方法获得的病毒。在第三个方面,提供了包含与合适的药学载体混合的根据本发明获得的病毒的免疫原性组合物。
在第四个方面,提供了用于在医学中使用的根据本发明的免疫原性组合物。特别地,提供了用于在预防或治疗正粘病毒相关感染中使用的根据本发明的免疫原性组合物。在第五个方面,提供了用于制备疫苗的方法,其包括至少将根据本发明获得的病毒与药学可接受的载体混合的步骤。详述
本发明涉及可以应用于小和大规模病毒生产的灭活病毒的改良方法。本发明的方法可特别应用于卵衍生的病毒和细胞培养物衍生的病毒。该方法涉及用至少两种不同灭活试剂的至少一个灭活步骤的实现。更具体而言,本发明的方法依赖物理处理例如UV照射和化学处理特别是涉及烷化步骤例如用BPL处理的组合,以便灭活病毒。任选地,所述方法进一步包括基于去污剂的分裂步骤。本发明人发现将物理处理和化学处理组合的如本文请求保护的灭活方法的特定组合,允许达到更完全的病毒灭活,即可以与现有技术处理结合的残留感染力的消除。他们惊讶地观察到除了提供完全病毒灭活外,这个组合并不影响生产的病毒蛋白质的完整性,也不影响其抗原性。所得到的病毒无论是否进一步纯化都适合于在免疫原性组合物例如疫苗组合物中使用。请求保护的方法具有下述优点中的一个或多个(i)它使病毒对于处理的易接近性最佳化,无论病毒是否聚集,无论它是否诱陷入细胞碎片内,无论构象或环境条件对于病毒灭活步骤是否是最佳的;(ii)它减少当仅执行一个灭活步骤时病毒级分可以逃避灭活的危险,从而达到更完全的病毒灭活;(iii)它减少与病毒可能针对特定处理显示出的抗性相关的不完全灭活的危险,无论这种抗性是与病毒的性质还是与处理的实验/环境条件相联系。这可以是下述情况当例如在病毒悬液内的仅病毒的级分可以通过以给定浓度的化学试剂灭活,但为了安全原因或免疫原性原因,特别是,进一步增加灭活试剂的浓度大概是不可能的。请求保护的方法的另外优点是与其中灭活仅通过使用化学试剂执行的情况相比较,实现UV照射例如可以允许减少使用的化学试剂的量;(iv)与现有技术处理特别是基于甲醛的处理相比较,它减少灭活生产病毒需要的时间。已知对病毒具有灭活作用的任何化学试剂,例如烷化剂(例如BPL)可以用于根据本发明的方法中。BPL是特别合适的,因为除了其灭活能力外,它还呈现降解核酸例如DNA的优点。如果在如本文请求保护的细胞培养物中生产的病毒待包括在疫苗中,那么这种另外的能力具有特别的重要性。事实上,为了安全原因,源于用于繁殖病毒的宿主细胞的残留DNA含量必须保持尽可能的低以及尽可能小的大小。BPL是与多种生物学分子反应的单烷化剂,特别地,它修饰病毒基因组的核碱基且阻断其复制。它可以通过在37°C加热2小时快速灭活,因为它完全水解为无毒产物羟基丙酸和乳酸盐的同分异构体。根据一个实施方案,本发明的用于灭活病毒的方法至少包括用BP处理含病毒流体(BPL处理)的一个步骤和用UV光照射含病毒流体(UV照射)的一个步骤。BPL处理和UV照射可以以任何次序顺序地执行。例如,BPL处理可以在UV照射之前,或它可以在UV照射之后。可替代地,在本发明的特定实施方案中,BPL处理和UV照射步骤可以同时实现。后面的这个实施方案呈现通过省下额外步骤而简化且缩短该过程的另外优点。此外,BPL和UV照射可以由其他纯化步骤分开,或它们可以以连续方式实现,在BPL处理随后立即为UV处理或UV处理随后立即为BPL处理的意义上,在两者之间没有进一步纯化步骤。术语“含病毒流体”例如含正粘病毒流体和“包含病毒的流体”是同义的,并且应理解为包含病毒的任何液体制剂,与其纯化状态无关。流体可以是完全未纯化的。例如,流体可以是在细胞由病毒感染并且病毒复制且释放到培养基内后收集的细胞培养上清液。可替代地,流体可以是部分纯化的。例如,在通过BPL处理和UV照射实施灭活前,含病毒流体可以已通过过滤或离心预澄清(pre-clarif ied)。 病毒灭活可以用小于1% BPL达到。适当地,BPL以范围为O. 01% - O. 1%,特别地O. 03% - O. 8%,适当地O. 05%的浓度使用。将BPL适当地加入缓冲溶液中,并且溶液的pH维持在6和10之间。因为BPL活性已知对于pH是特别敏感的,所以缓冲溶液的pH维持在6和9之间、适当地在7和8之间、和更适当地在7. 4和8之间。在一个实施方案中,在根据本发明的方法中,将BPL加入磷酸盐66 mM -柠檬酸盐125 mM pH 7. 4缓冲溶液中。BPL在范围为4°C到室温的温度是活跃的。根据本发明的方法的一个实施方案,BPL的温育温度是4°C。在不同实施方案中,BPL的温育温度是室温。在本发明的意义上,室温应理解为在约20°C和约24°C之间包含的温度。温育时间可以在一小时和数天之间改变。在一个实施方案中,将BPL加入过夜。在本发明的意义上,过夜温育意指至少8小时,可能范围为12-16小时的温育时间。在特定实施方案中,将BPL以O. 05%的浓度在4°C加入过夜。在另一个特定实施方案中,将BPL以O. 05%的浓度在室温加入过夜。在BPL加入且在室温静置合适时间段后,在需要时进一步纯化病毒悬液前,BPL处理的病毒悬液可以贮存于4°C数天,例如三天。合适的UV照射通过C型光发生,即具有范围为100 - 280、适当地200 - 270 nm、和更适当地254 nm的波长的光,其是被处理病毒的核酸的最大限度吸收区域。在UV灭活过程中,UV波长辐射的激发能破坏嘌呤和嘧啶碱基的共价键,导致对靶病毒以及外来因子和细菌生物负荷的损害。UV剂量或通量(fluency)可以特别地范围为50 - 500 J/m2。本发明考虑导致病毒灭活的任何UV剂量。根据本发明的方法的一个实施方案,UV通量是200焦耳/m2。在另一个实施方案中,UV通量是100焦耳/m2。在进一步的实施方案中,UV通量是60焦耳/m2。关于UV照射的可用商业装置允许处理小到极大体积的流体。仅作为举例说明,可以引用下述装置UVIVATEC (来自Bayer)。根据需要灭活的病毒量和类型,测定BPL条件和UV通量,以便达到用于病毒灭活的最佳条件。技术人员可以使用任何本领域已知的测定来评估病毒灭活,例如测量组织培养感染剂量(TCID5cZml),其代表能够感染50%细胞的病毒量。在这个测定中,细胞培养物评分为感染或未感染的,允许测定病毒滴定作为病毒感染力的量度。执行待测试的感染样品的一系列连续稀释度,并且每个稀释度的部分用于接种合适的可感染细胞。在细胞温育数天从而使得病毒(如果是感染性的)可以复制后,病毒的存在可以通过本领域技术人员已知的两种阅读方法进行检测在细胞中的致细胞病变(CPE)分析和/或用鸡红细胞对培养上清液执行的血凝反应测定。随后根据Reed和Muench方法(Reed,L. J.和Muench,H.,1938,The American Journal of Hygiene 27: 493-497)计算病毒滴度。如果希望保存抗原性和免疫原性,那么技术人员将修改病毒灭活条件,以便不改变病毒蛋白质构象或结构。与灭活测试平行,他将通过任何本领域已知的技术监控病毒或其特定蛋白质的完整性。可以作为举例说明性例子引用的技术是任何蛋白质检测技术,例如用特异性抗体的蛋白质印迹分析或阈值测定。在流感病毒的具体情况下,已知是免疫原性的蛋白质HA的含量可以通过SRD(单辐射免疫扩散测定)测定特别监控,所述SRD是本领域技术人员熟悉的技术(J. M.Wood 等人:An improved single radial immunodiffusion technique for the assayof influenza haemagglutinin antigen: adaptation for potency determination ofinactivated whole virus and subunit vaccines. J. Biol. Stand. 5(1977)237-247 ; J. M. Wood 等人,International collaborative study of single radial diffusionand immunoelectrophoresis techniques for the assay of haemagglutinin antigen ofinfluenza virus. J. Biol. Stand. 9 (1981)317-330))。因为 SRD 测定依赖抗体 / 抗原复合物的形成,所述测定当评估来自流感病毒悬液的HA水平时,允许分析那种悬液的灭活处理是否负面影响病毒抗原性。除了灭活目的病毒外,本发明的灭活方法还允许灭活可能污染含目的病毒流体的潜在外来因子。特别地,这些因子可以已存在于产生正粘病毒的宿主中,或它们可以在任何步骤连同其纯化污染含病毒流体。例如在疫苗接种领域中的管理局变得更严格,且强迫疫苗针对众多潜在的污染性病毒进行测试。作为此类病毒的例子可以引用PPV(猪细小病毒)、MuLV (鼠白血病病毒)、PRV (猪假狂犬病病毒)和HAV (甲型肝炎病毒)。细小病毒属是小的无包膜DNA病毒,其感染许多动物物种。它们特别对于化学处理是极端抗性的。根据本发明的方法允许灭活广泛范围的外来病毒,例如但不限于MuLV、PRV、HAV和PPV。特别地,本发明的方法用于灭活污染性MuLV、PRV、HAV和PPV中的至少一种,或来自在细胞培养物中产生的正粘病毒的其任何组合。根据特定实施方案,本发明的方法用于灭活其全部。当涉及污染性病毒时,外来因子的消除通常称为病毒清除。相应地,在本发明的意义上,“病毒清除”应理解为消除可能污染目的病毒悬液的外来病毒的能力。病毒清除可以通过允许检测给定病毒的存在的任何合适方法进行监控且评估。例如,评估可以是直接的,即内源病毒的存在(如果作为污染物存在),可以通过PCR例如使用对于目的污染性病毒的基因组特异性的引物,由待测试的病毒悬液直接检测。然而,为了灵敏度原因,因为污染性病毒(如果存在的话)预期仅以极低水平存在,所以使用例如依赖外源性病毒添加的间接评估可以是更合适的。在那种情况下,待灭活的病毒悬液用目的外来病毒掺料,所述目的外来病毒即需要测定关于其的病毒清除的已知量外来病毒。掺料在实现任何病毒灭活步骤前发生,以便具有足够量的病毒以充当在灭活和可能的纯化前的参考。随后,对掺料的病毒悬液执行目的灭活步骤,例如本发明的灭活方法。在对掺料的病毒悬液实现灭活方法之前和之后测定病毒滴定,从而使得可以估计用于掺料的外来病毒的感染力,并且因此可以评估灭活方法的有效性。纯化步骤可以与灭活步骤结合,并且因此其组合还可以对目的外来病毒的感染力进行评估。根据本发明制备的病毒可以用于任何目的,包括例如病毒蛋白质的纯化、分析测定、宿主细胞的感染、诊断目的或治疗或预防用途例如疫苗接种和临床施用。特别地,根据本发明获得的病毒适合于在免疫原性组合物例如疫苗中使用。根据本发明的特定实施方案,本文请求保护灭活正粘病毒、特别是流感病毒的方法。根据本发明的另一个方面,请求保护的方法应用于其他病毒,特别是能够感染细胞且使用细胞用于其复制的任何病毒,包括但不限于腺病毒、嗜肝性DNA病毒、疱疹病毒、正粘病毒、乳头瘤病毒、副粘病毒、微小核糖核酸病毒、痘病毒、呼肠病毒和逆转录病毒。特别地,本发明的方法适合于有包膜病毒例如粘液病毒。
因此,病毒或病毒抗原可以衍生自正粘病毒例如流感病毒。正粘病毒抗原可以选自病毒蛋白质中的一种或多种,包括血凝素(HA)、神经氨酸酶(NA)、核蛋白(NP)、基质蛋白(Ml)、膜蛋白(M2)、转录酶中的一种或多种(PB1、PB2和PA)。特别合适的抗原包括HA和NA,决定流感亚型的抗原特异性的两种表面糖蛋白。流感病毒选自人流感病毒、禽流感病毒、马流感病毒、猪(例如母猪)流感病毒、猫流感病毒。流感病毒更特别选自毒株A、B和C,优选选自毒株A和B。流感病毒或其抗原可以衍生自流行病两次暴发之间的(每年或季节性的)流感毒株。可替代地,流感病毒或其抗原可以衍生自具有引起大范围流行暴发的潜力的毒株(即与目前循环毒株中的血凝素相比较,具有新血凝素的流感毒株,或在禽类受试者中是致病性且具有在人群中水平传播潜力的流感毒株,或对于人是致病性的流感毒株)。取决于特定季节和在疫苗中包括的抗原的性质,流感病毒或其抗原可以衍生自下述血凝素亚型中的一种或多种:H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15 或 H16。优选地,流感病毒或其抗原来自Hl、H2、H3、H5、H7或H9亚型。在根据本发明的方法中使用的细胞原则上可以是任何所需细胞类型,所述细胞可以在细胞培养物中培养并且可以支持病毒复制。它们可以是贴壁生长的细胞或悬浮生长的细胞。它们可以是原代细胞或连续细胞系。遗传上稳定的细胞系是优选的。哺乳动物细胞是特别合适的,例如人、仓鼠、牛、猴或犬细胞。许多哺乳动物细胞系是本领域已知的,并且包括PER. C6、HEK细胞、人胚肾细胞(293细胞)、HeLa细胞、CHO细胞、Vero细胞和MDCK细胞。合适的猴细胞是例如非洲绿猴细胞,例如如Vero细胞系中的肾细胞。合适的犬细胞是例如如MDCK细胞系中的肾细胞。用于生长流感病毒的合适的哺乳动物细胞系包括MDCK细胞、Vero细胞或PER. C6细胞。这些细胞系都是可广泛获得的,例如来自美国典型培养物(ATCC)中心。根据特定实施方案,本发明的方法使用MDCK细胞。原始MDCK细胞系可作为CCL-34得自ATCC,但还可以使用这种细胞系的衍生物,例如适合于悬浮生长的MDCK细胞(W0 1997/37000)。可替代地,用于在本发明中使用的细胞系可以衍生自禽类来源,例如鸡、鸭、鹅、鹌鹑或雉鸡。禽类细胞系可以衍生自多个发育阶段,包括胚胎、小鸟和成体。特别地,细胞系可以衍生自胚细胞,例如胚成纤维细胞、生殖细胞或个别器官,包括神经元、脑、视网膜、肾、肝、心脏、肌肉或胚外组织和保护胚胎的膜。可以使用鸡胚成纤维细胞(CEF)。禽类细胞系的例子包括禽胚胎干细胞(W001/85938)和鸭视网膜细胞(W005/042728)。特别地,在本发明中考虑了衍生自鸭胚胎干细胞的EB66 细胞系(WO 2008/129058)。其他合适的禽类胚胎干细胞包括衍生自鸡胚胎干细胞的EBx细胞系 ,EB45、EB14和EB14-074 (W02006/108846)。这种EBx细胞系呈现了成为遗传上稳定的细胞系的优点,所述细胞系的建立已天然产生且不要求任何遗传、化学或病毒修饰。这些禽类细胞特别适合于生长流感病毒。根据一个特定实施方案,本发明的方法使用EB66 细胞。由于采用的细胞的合适性,细胞培养条件(温度、细胞密度、pH值等……)在非常广泛的范围内是可变的,且可以适合于特定病毒生长条件细节的要求。决定合适的培养条件在技术人员的能力内,因为细胞培养在本领域中广泛记录(参见例如TissueCulture, Academic Press, Kruse 和 Paterson,编辑(1973),和 R. I. Freshney, Cultureof animal cells: A manual of basic technique,第四版(Wiley-Liss Inc. , 2000, ISBN0-471-34889-9)o在特定实施方案中,在本发明中描述的方法中使用的宿主细胞在无血清和/或无蛋白质培养基中培养。“无血清培养基”(SFM)意指现成可用的细胞培养基,其不要求血清添加来允许细胞存活和细胞生长。这种培养基可以不一定是化学成分确定的,并且可以含有多种起源例如来自植物的水解产物。此类无血清培养基呈现可以排除由病毒、支原体或未知传染剂污染的优点。“无蛋白质”应理解为意指在其中发生细胞的增殖的培养,排除蛋白质、生长因子、其他蛋白质添加剂和非血清蛋白质,但可以任选包括对于病毒生长可能是必需的蛋白质例如胰蛋白酶或其他蛋白酶。在此类培养中生长的细胞自身天然地含有蛋白质。无血清培养基从众多来源例如VP SFM (Invitrogen Ref 11681-020)、Opti-Pro(Invitrogen, Ref 12309-019)、或 EX-CELL (JHR Bioscience)商购可得。细胞可以以多种方式生长,例如在悬液中或吸附至表面,包括在微载体上生长,或其组合。培养可以使用分批、补料分批、半连续或连续系统例如灌注系统,在皿、烧瓶、滚瓶或生物反应器中完成。一般地,细胞从主要(master)或工作细胞库小瓶开始,通过多个大小的烧瓶或滚瓶且最终按比例扩大到生物反应器。在一个实施方案中,根据本发明的方法采用的细胞在搅拌生物反应器中的无血清培养基中的微载体珠上培养,并且培养基通过灌注提供。在可替代实施方案中,细胞特别是EB66 细胞以分批方式悬浮培养。在由病毒感染前,在约37°C、最适当地在36. 5°C,在范围为6. 7 - 7. 8、适当地约6. 8 - 7. 5和更适当地约7. 2的pH培养细胞。根据本发明的方法,基于细胞培养的病毒生产一般包括步骤用待生产的病毒毒株接种培养细胞,和将受感染细胞培养所需时间段,以便允许病毒复制。为了产生大量的细胞生产的病毒,优选在细胞已达到高密度后,用所需病毒毒株接种细胞。通常,当细胞密度是至少约1.5 X IO6细胞/ml时,适当地约3 x IO6细胞/ml,更适当地约5 X IO6细胞/ml,甚至更适当地7 X IO6细胞/ml或甚至更高时,执行接种。用于获得最高病毒生产的最佳细胞密度可以根据用于病毒繁殖的细胞类型而改变。
可以以约KT1 - 10'适当地约1(Γ2 - 10'和更适当地约1(Γ5的MOI (感染复数)进行接种。用于病毒感染的温度和pH条件可以改变。温度可以范围为32°C - 39°C,这取决于病毒类型。对于流感病毒生产,细胞培养物感染可以取决于生产的毒株而改变。流感病毒感染适当地在范围为32°C - 35°C的温度,适当地在33°C执行。在一个实施方案中,病毒感染在33°C发生。在可替代实施方案中,病毒感染在35°C发生。取决于病毒毒株,可以将蛋白酶、一般为胰蛋白酶加入细胞培养物中,以允许病毒复制。蛋白酶可以在培养过程中的任何合适阶段加入。胰蛋白酶优选具有非动物起源,也就是说蛋白酶不从动物来源纯化。它适当地在微生物例如细菌、酵母或植物中重组生产。重组胰蛋白酶的合适例子是Trypzean,在玉米中生产的重组膜蛋白酶(Prodigen, 101 Gateway Blvd, Suite 100 College Station,Texas 77845. Manufacturer code : TRY),或 TrpLE( Invitrogen),其是在真菌中表达的胰蛋白酶样酶(W02004/020612)。由于宿主细胞的自发裂解,也称为被动裂解,一旦被感染,细胞就可以将新近形成病毒颗粒释放到培养基内。因此,在一个实施方案中,基于细胞的病毒收获物可以通过收集 细胞培养基或上清液在病毒接种后的任何时间提供。在特定实施方案中,细胞培养基通过灌注收集。当需要在病毒接种后的不同时间点收获细胞衍生的病毒时,这种收获方式是特别合适的,并且需要时合并不同收获物。可替代地,在病毒感染后,基于细胞的病毒可以通过采用外部因子裂解宿主细胞也称为主动裂解进行收获。然而,与先前那种相反,此类收获方式要求在单个时间点收集基于细胞的病毒收获物,因为主动裂解细胞将立即终止细胞培养。可以用于主动细胞裂解的方法是已知的。在这方面有用的方法是例如冻融、固体剪切、高渗和/或低渗裂解、液体剪切、高压挤压、去污剂裂解或其任何组合。根据一个实施方案,基于细胞的病毒收获可以通过收集细胞培养基或上清液,裂解接种的细胞或两者在病毒接种后的任何时间提供。在收获前,细胞感染可以持续2 - 10天。根据特定实施方案,将来自接种后第3、4和5天的培养上清液收获且合并用于进一步的下游处理(病毒接种)。根据不同实施方案,从接种后第5天开始收集细胞培养上清液。收获细胞生产的病毒的最佳时间通常基于感染峰的测定。例如,通过监控在病毒接种后在宿主细胞中发生的形态学变化来测量CPE(致细胞病变作用),包括细胞变圆、定向障碍、膨胀或收缩、死亡、从表面分离。特定病毒抗原的检测还可以通过蛋白质检测的标准技术例如蛋白质印迹分析进行监控。收获物随后可以在达到所需检测水平时收集。在流感病毒的具体情况下,通过SRD测定(Wood,JM,等人(1977).J. Biol. Standard. 5,237-247),其是本领域技术人员熟悉的技术,可以在用病毒接种细胞后的任何时间监控HA的含量。另外,SRD测定还可以用于测定获得最佳化病毒收率所需的最佳细胞密度范围。在本发明的背景中,细胞培养期应理解为包含在病毒收获步骤前的任何步骤,而病毒纯化期应理解为包含在所述收获步骤后的任何步骤。例如,基于细胞培养的病毒的病毒纯化期可以包括许多不同过滤、浓缩和/或其他分离步骤,例如以多种组合的超滤、超速离心(包括梯度超速离心)、层析(例如离子交换层析)和吸附步骤。通过在任何合适步骤时实现化学灭活和UV照射步骤,本发明用于灭活病毒的方法可以适当地与任何病毒纯化过程结合。在一个实施方案中,本发明的灭活方法包括选自下述的至少一个进一步步骤无论是通过离心还是通过过滤的澄清,超滤/渗滤,核酸降解,超速离心特别是蔗糖梯度超速离心和层析,或其任何组合。BPL处理和UV照射的组合可以适当地在上述步骤的任何一个后以任何次序实现。例如,可以在病毒纯化过程早期,特别是在通过收集含病毒细胞培养基获得的病毒收获物澄清后实现BPL处理。这个处理可以随后立即为UV照射。可替代地,BPL处理和UV照射可以由其它纯化步骤分开。如在过程早期即对澄清的收获物实现病毒灭活的第一个步骤,特别提供考虑到操作人员的安全优点。事实上,因为在过程早期来自需要进行纯化的流体的病毒是灭活的,并且因此是无传染性的,所以操作人员被保护不受可能的病毒感染。然而,用于灭活的此类早期阶段还提供不得不处理大体积的缺点。因此,由于待灭活的病毒悬液的大体积,与灭活步骤特别是BPL步骤相关的成本可能是非常显著的。相应地,本发明人还测试在纯化过程后期,例如在澄清的收获物超滤和浓缩后和/或在蔗糖梯度超速离心步骤后灭活病毒是否仍提供良好的灭活结果。他们观察到对纯化的病毒悬液实现BPL和UV灭 活步骤的确提供至少与在纯化病毒前实现灭活一样良好且可能更佳的灭活结果。根据一个实施方案,含正粘病毒细胞培养基,特别是在哺乳动物MDCK细胞或禽类EB66 细胞中产生的流感病毒,连续地通过过滤或离心澄清,通过BPL处理灭活,通过超滤浓缩,且实施UV照射。可替代地,BPL处理可以在澄清的病毒收获物已例如通过超滤浓缩后实现。浓缩病毒收获物首先允许使用更少量的BPL,这不仅代表如上所述的成本优点,还允许操作者处理更少量的BPL。UV照射可以在BPL处理后立即发生,或稍后在所述BPL处理后实现的另外纯化步骤后发生。在灭活后,获得的病毒可以进一步纯化。相应地,已连续地实施通过离心和/或过滤的澄清、通过BPL处理的灭活、通过超滤的浓缩和UV照射的含流感病毒细胞培养基,可以进一步实施蔗糖梯度超速离心。可替代地,根据本发明的灭活步骤可以在纯化过程后期发生。例如,病毒收获物通过离心预澄清,通过微量过滤澄清,实施超滤和浓缩,并且实施蔗糖梯度超速离心。随后对由蔗糖梯度超速离心收集的含全病毒级分实施灭活。在一个实施方案中,首先对该级分执行在50 - 200 J/m2范围中的UV照射,并且随后将BPL特别是BPL O. 05%加入被照射的收集的病毒级分中。BPL可以静置过夜,特别是在室温12 - 16小时。在可替代实施方案中,首先将BPL特别是BPL O. 05%直接加入收集的病毒级分,并且至少在室温静置过夜。第二天,可以对BPL处理的病毒悬液实施UV照射,例如UV 100 J/m2。虽然由于其对病毒的已知稳定作用,在收集的病毒级分内存在的残留蔗糖可能已影响BPL在灭活病毒方面的有效性,但本发明人惊讶地观察到在待灭活的含病毒流体内的残留蔗糖(如果存在的话)不影响由BPL产生的灭活效应。因此,本发明的灭活方法依赖BPL处理和UV照射的组合,具有广泛应用,因为灭活步骤可以在病毒生产和纯化的不同阶段,包括在蔗糖梯度超速离心步骤后立即实现。根据本发明用于灭活病毒的方法还可以与用于降解来自生产病毒的宿主的残留污染性DNA的另外步骤结合。例如,除了化学灭活和UV照射的组合外,还可以实现用核酸酶例如但不限于Benzonase 的DNA降解步骤。根据本发明的方法进一步考虑了可能的分裂步骤。例如,可以将纯化步骤例如蔗糖梯度超速离心与病毒分裂步骤组合。特别地,分裂试剂可以加入蔗糖梯度中。当需要将本发明方法的总步骤数目降到最低时,这个实施方案是特别合适的,因为它允许在单个操作内纯化且分裂病毒。因此,在特定实施方案中,当实现至少一个蔗糖梯度超速离心时,蔗糖梯度另外包含分裂试剂。可替代地,本发明的方法的病毒分裂步骤分批执行。分裂病毒例如流感病毒的方法是本领域众所周知的(W002/28422)。通过用破坏浓度的分裂试剂破坏或断裂全病毒来执行病毒的分裂,所述全病毒是传染性(野生型或减毒的)或非传染性的(灭活的)。分裂试剂一般包括能够打碎且溶解脂质膜的试剂。一般地,使用溶剂/去污剂处理,例如磷酸三正丁酯,或与Tween 组合的二乙醚(称为“Tween-醚”分裂),产生分裂型流感病毒,并且这个过程仍在某些生产设施中使用。目前采用的其他分裂试剂包括去污剂或蛋白水解酶或胆盐,例如脱氧胆酸钠。可以用作分裂试剂的去污剂包括 阳离子型去污剂例如十六烷基三甲基溴化铵(CTAB)、其他离子型去污剂例如月桂基硫酸钠(SLS)、牛磺脱氧胆酸盐或非离子型去污剂例如Tween 或Triton X-100,或任何两种或更多种去污剂的组合。在一个实施方案中,分裂试剂是脱氧胆酸盐。在另一个实施方案中,分裂试剂是Triton X-IOO0 Triton X-100适当地以范围为(λ 5% - 3%,特别是1% - 2%的浓度使用。在进一步的实施方案中,根据本发明的方法使用Triton X-100和月桂基硫酸钠的组合作为分裂试剂。在特定实施方案中,在以任何次序的BPL处理和UV照射后,用Triton X-100特别是Triton X-100 2%分批分裂含病毒流体,例如含流感病毒流体。分裂过程可以作为分批、连续或半连续过程进行。当以分批实现时,分裂病毒可能要求消除去污剂的另外纯化步骤,例如层析步骤。在一个实施方案中,以任何次序,将病毒收获物连续地通过离心和/或过滤澄清,任选通过超滤浓缩,通过蔗糖梯度超速离心步骤纯化,通过BPL处理和UV照射步骤灭活,并且通过加入去污剂、适当地Triton X-100分批分裂灭活的病毒流体。本发明的免疫原性组合物包括疫苗可以任选含有对于疫苗惯用的添加剂,特别是增加接受该组合物的患者中引发的免疫应答的物质,即所谓的佐剂。在一个实施方案中,免疫原性组合物包含与合适的药学载体混合的可根据本发明获得的病毒或其病毒抗原。在特定实施方案中,它们进一步包含佐剂。佐剂组合物可以包含水包油乳液,其包含可代谢油和乳化剂。为了使任何水包油组合物适合于人施用,乳液系统的油相必须包含可代谢油。术语可代谢油的含义是本领域众所周知的。可代谢的可以定义为‘能够通过代谢转化的’(Dorland’ s IllustratedMedical Dictionary, W. B. Sanders Company,第 25 版(1974))。油可以是任何植物油、鱼油、动物油或合成油,其对于接受者是无毒的,并且能够通过代谢转化。坚果、种子和谷物是植物油的常见来源。合适油也是本发明的部分,并且可以包括商购可得的油例如ΝΕ0ΒΕΕ 及其他。特别合适的可代谢油是角鲨烯。角鲨烯(2,6,10,15,19,23-六甲基-2,6,10,14,18,22-二十四碳己烯)是不饱和油,其在鲨鱼肝油中大量发现,并且在橄榄油、小麦胚芽油、米糠油和酵母中以更少量发现,并且是用于在本发明中使用的特别优选的油。角S烯是可代谢油,这是由于它是胆固醇生物合成的中间产物的事实(Merck index,第10版,条目编号8619)。在本发明的进一步实施方案中,可代谢油以组合物总体积O. 5% -10% (v/v)的量存在于免疫原性组合物中。水包油乳液进一步包含乳化剂。乳化剂可以适当地是聚氧乙烯山梨糖醇酐单油酸酯。进一步地,所述乳化剂适当地以组合物总体积的O. 125 - 4% (v/v)存在于疫苗或免疫原性组合物中。本发明的水包油乳液任选包含母育酚。母育酚是本领域众所周知的,并且在EP0382271中描述。适当地,母育酚可以是α -生育酚或其衍生物,例如α -生育酚琥珀酸酯(也称为维生素E琥珀酸酯)。所述母育酚适当地以免疫原性组合物总体积O. 25% - 10%(v/v)的量存在于佐剂组合物中。生产水包油乳液的方法是本领域技术人员众所周知的。通常,该方法包括将油相 (任选地包含母育酚)与表面活性剂例如PBS/TWEEN80 溶液混合,随后为使用匀浆器的匀浆化,这对于本领域技术人员将是明确的包括将混合物经过注射器针头两次的方法将适合于匀浆化小体积的液体。同样地,在微流化机(MlIOS Microfluidics机器,最大限度50次经过,在6巴的最大压力输入(约850巴的输出压)共2分钟时间段)中的乳化过程可以由本领域技术人员修改为产生更小或更大体积的乳液。修改可以通过例行实验来达到,包括测量所得到的乳液,直至制剂达到所需直径的油滴。在水包油乳液中,油和乳化剂在水性载体中。水性载体可以是例如磷酸盐缓冲盐水。特别地,本发明的水包油乳化系统具有在亚微米范围中的小油滴大小。适当地,小滴大小将在范围120 - 750 nm中,更特别地直径120 - 600 nm的大小。甚至更特别地,水包油乳液含有这样的油滴,其按强度计至少70%是直径小于500 nm,更特别地按强度计至少80%是直径小于300 nm,更特别地按强度计至少90%是直径在120 nm - 200 nm范围中。按强度计给出根据本发明的油滴大小,即直径。存在测定按强度计的油滴大小直径的几个方法。强度通过使用筛分仪器进行测量,适当地通过动态光散射例如MalvernZetasizer 4000或适当地Malvern Zetasizer 3000HS。详细程序在实施例II. 2中给出。第一个可能性是通过动态光散射(PCS-光子相关光谱学)测定Z平均直径ZAD ;这种方法另外给出多分散性指数(PDI),并且ZAD和PDI都用累积量算法计算。这些值不要求颗粒折射率的了解。第二种方法是通过经由另一种算法Contin或NNLS或自动化“Malvern”算法(由筛分仪器提供的缺省算法)测定全颗粒大小分布来计算油滴的直径。大多数时间,因为复杂组合物的颗粒折射率是未知的,所以仅考虑强度分布和需要时源于这个分布的强度平均值。佐剂组合物可以进一步包含Toll样受体(TLR) 4激动剂。“TLR4激动剂”意指能够通过TLR4发信号途径引起发信号应答的组分,作为直接配体或间接地通过内源或外源配体的生成(Sabroe等人,JI 2003 pl630_5)。TLR 4可以是脂质A衍生物,特别是单磷酰脂质A或更具体而言3脱酰化单磷酰脂质A (3 D - MPL)。3D - MPL可在商标MPL 下通过GlaxoSmithKline Biologicals North America获得,并且主要促进具有IFN-g (Thl)表型的⑶4+ T细胞应答。它可以根据公开于GB 2 220211 A中的方法产生。化学上,它是具有3、4、5或6条酰化链的3-脱酰化单磷酰脂质A的混合物。特别地,在本发明的佐剂组合物中,使用小颗粒3 D- MPL0小颗粒3 D- MPL具有这样的颗粒大小,从而使得它可以通过O. 22 μ m滤器无菌过滤。此类制备物在国际专利申请号WO 94/21292中描述。脂质A的合成衍生物是已知的并且被认为是TLR 4激动剂,包括但不限于
OMl74 (2-脱氧-6-0-[2-脱氧-2-[ (R)_3_十二烷酰氧基四-癸酰氨基]-4_o-膦酰基-β -D-吡喃葡萄糖基]-2-[ (R)-3-羟基十四烷酰氨基]-a -D-吡喃葡萄糖基磷酸二氢盐),(WO 95/14026)
OM 294 DP (3S,9 R) _3—[ (R)-十二烷酰氧基十四烷酰氨基]_4_氧代-5-氮杂-9(R)-[ (R)_3-羟基十四烷酰氨基]癸-1,10-二醇,1,10-双(磷酸二氢盐)(W099 /64301和 WO 00/0462 )
OM 197 MP-Ac DP ( 3S-,9R)_3_[ (R)-十二烷酰氧基十四烷酰氨基]_4_氧代-5-氮杂-9-[ (R) -3-羟基十四烷酰氨基]癸-1,10- 二醇,I -磷酸二氢盐10- (6-氨基己酸 酯)(W0 01/46127)
可以使用的其他TLR4配体是烷基氨基葡糖苷磷酸盐(AGPs),例如公开于W09850399或US6303347(还公开了用于制备AGPs的过程)中的那些,或如公开于US6764840中的AGPs的药学可接受的盐。一些AGPs是TLR4激动剂,并且一些是TLR4拮抗剂。两者都认为作为佐剂是有用的。此外,进一步合适的TLR-4激动剂公开于US2003/0153532和US2205/0164988中。本发明特别适合于制备流感病毒免疫原性组合物,包括疫苗。多种形式的流感病毒是目前可用的。它们一般基于活病毒或灭活病毒。灭活的疫苗可以基于全病毒粒子,分裂的病毒粒子或纯化的表面抗原(包括HA)。流感抗原也可以病毒体(无核酸病毒样脂质体颗粒)的形式存在。用于在疫苗中使用的流感病毒毒株从季节到季节不同。在目前的流行病两次暴发之间的时期,疫苗一般包括两种A型流感毒株和一种B型流感毒株。三价疫苗是一般的,但更高的效价例如四价也在本发明中加以考虑。本发明还可以使用来自大范围流行毒株(即疫苗接受者和一般人群对于其是免疫学首次用于实验的毒株)的HA,并且用于大范围流行毒株的流感疫苗可以是单价的或可以基于由大范围流行毒株补充的正常三价疫苗。本发明的组合物可以包括来自一种或多种流感病毒毒株的一种或多种抗原,包括A型流感毒株和/或B型流感毒株。特别地,包括来自两种A型流感毒株和一种B型流感毒株的三价疫苗由本发明加以考虑。本发明的组合物并不限于单价组合物,即仅包括一个毒株类型,即仅季节毒株或仅大范围流行毒株。本发明还包括包含季节毒株和/或大范围流行毒株的组合的多价组合物。特别地,可以是佐剂化的,包含三种季节毒株和一种大范围流行毒株的四价组合物属于本发明的范围内。属于本发明的范围内的其他组合物是包含两种A型毒株和一种B型毒株例如H1N1、H3N2和B毒株的三价组合物,和包含两种A型毒株和不同谱系的两种B型毒株例如H1N1、H3N2、B/维多利亚和B/ Yamagata的四价组合物。HA是目前的灭活流感疫苗的主要免疫原,并且疫苗剂量通过参考一般通过SRD测量的HA水平进行标准化。现有疫苗一般含有约15 μg HA/毒株,尽管可以使用更低剂量,例如用于儿童,或在大范围流行情况下,或当使用佐剂时。已使用分份剂量例如一半(即7. 5μδ HA/毒株)或四分之一,也已使用更高剂量,特别是3χ或9χ剂量。因此,本发明的免疫原性组合物可以包括O. I - 150 μδ HA/流感毒株,特别是O. I - 50 Pg,例如0.1-20 μδ,O. 1-15 μδ,0. 1-10 μδ,0. 1-7. 5 μδ,0. 5-5 μδ 等。特别剂量包括约 15、约 10、约 7. 5 和约 5
Kg/毒株。HA是目前的灭活流感疫苗的主要免疫原,并且疫苗剂量通过参考一般通过SRD测量的HA水平进行标准化。现有疫苗一般含有约15 μg HA/毒株,尽管可以使用更低剂量,例如用于儿童,或在大范围流行情况下,或当使用佐剂时。已使用分份剂量例如一半(即7. 5μδ HA/毒株)或四分之一,也已使用更高剂量,特别是3χ或9χ剂量。因此,本发明的免疫原性组合物可以包括O. I - 150 μδ HA/流感毒株,特别是O. I - 50 Pg,例如0.1-20 μδ,O. 1-15 μδ,0. 1-10 μδ,0. 1-7. 5 μδ,0. 5-5 Pg 等。特别剂量包括约 15、约 10、约 7. 5、约 5^g/毒株、约3. 8 Pg/毒株和约I. 9 Pg/毒株。一旦流感病毒已对于特定毒株进行纯化,它就可以与来自其他毒株的病毒组合, 以制备例如如上所述的三价疫苗。代替混合病毒且降解DNA且由多价混合物纯化它,分开处理每种毒株且将单价整体(bulks)混合以给出最终的单价混合物是更合适的。本发明将通过参考下述非限制性实施例进一步描述。实施例I: BPL诱导的在MDCK细胞上产生的流感病毒灭活(NCP124 -新喀里多尼亚A毒株、NCP127 -新喀里多尼亚A毒株、JP125 -江苏B毒株、JP128 -江苏B毒株、NCP134 -新喀里多尼亚A毒株和JP129 -江苏B毒株)
MDCK贴壁细胞以灌注培养模式在36. 5°C在微载体上生长。在生长期后,一旦达到合适的细胞密度(范围为4. 5 X IO6细胞/ml - 7. 5 X IO6细胞/ml ),在灌注模式中用流感病毒的不同毒株(感染复数I X 10_5)接种细胞,并且将温度转变为33°C。数天后通过灌注收获病毒。将灌注收获物合并,并且将完全的病毒收获物
a)在由具有下述额定多孔性的三个不同深度的滤器组成的过滤串上澄清5 μ -
O.5 Mm - O. 2 Mm。在实验NCP127中,在澄清前,将病毒收获物与以O. 02%终浓度的Tween80 一起加入。b)随后通过用750 kD空心纤维膜超滤,将澄清的收获物浓缩10倍(NCP124)、20倍(JP128)或30倍(NCP127、JP125、NCP134和JP129),以便获得约2升的终体积,针对5体积的含有125 mM柠檬酸盐和O. 01 % Triton X-100的PBS,以及针对4体积的10 mM Tris,2mM MgCl2、0. I μΜ CaCl2,0. 01 % Triton X-100 渗滤,
c)通过超滤系统去除渗余物,并且在水浴中加温直到37°C。通过将Benzonase (Merck)以 100 单位 /ml (NCP124)、200 单位 /ml (JP125、NCP134 和 JP129)或 135 单位 /ml (NCP127和JP128)的终浓度加入渗余物中执行DNA降解,并且将混合物在37°C温育I小时。d)仅在实验JP128和JP129中,通过在1000巴高压匀浆化使Benzonase 处理的渗余物匀浆化。e)随后对超滤渗余物(无论是否匀浆化)实施蔗糖梯度(0-55%)超速离心,其中病毒和污染物迁移到梯度内,直至达到其分别密度。一旦所有渗余物都装载到梯度上,60分钟的显带时间(banding time)就允许大多数病毒达到其在梯度内的密度。病毒颗粒在少数级分内浓缩。产物级分在含有125 mM柠檬酸盐和蔗糖的PBS pH 7. 4中。合并来自范围约26 - 51%蔗糖百分比的纯化的全病毒粒子。这个范围已基于来自SDS-PAGE和使用抗HA和抗MDCK抗体的蛋白质印迹分析的曲线图进行测定。将全病毒粒子合并的级分贮存于范围为4°C - 8°C的温度。 f)执行第二个蔗糖梯度(5-55%)超速离心,以便进一步纯化病毒,与此同时分裂它。将 2% Triton X-100 - O. 5 mM α -生育酚氢琥珀酸酯(NCP127、JP125、JP128、NCP134和JP129)或I. 5% Triton X-100 - 1%月桂基肌氨酸钠-O. 5 mMa-生育酚氢琥珀酸酯(NCP124)加入蔗糖层中,以产生去污剂胶束屏障。进入这个去污剂屏障的全病毒是分裂的。含有病毒膜蛋白血凝素(HA)和神经氨酸酶(NA)的病毒片段迁移至胶束密度。剩余病毒粒子、一些宿主细胞蛋白污染物和DNA迁移至更高的蔗糖浓度级分,其不与病毒蛋白质合并。合并存在于范围约13 - 55%蔗糖的级分中的病毒蛋白质。这个范围已基于来自SDS-PAGE和使用抗HA和抗MDCK抗体的蛋白质印迹分析的曲线图进行测定。含有病毒蛋白质的级分库在PBS pH 7. 4中。随后就蛋白总含量测定这个库,并且用含有O. 01% Tween 80 - 0.3%Triton X-100 - a -生育酚氢琥珀酸酯O. I mM pH 7. 4的PBS稀释至250 Pg蛋白质/ml。用BPL的病毒灭活的至少一个步骤如下在上述过程期间实现
-在实验NCP124中,BPL以不同浓度在步骤a)的澄清后加入0. 02,0. 04,0. 05,0. 06和O. 1%,并且在4°C温育过夜。-在实验JP125中,BPL在步骤d)的第一个蔗糖梯度超速离心后以O.1%的浓度加入经收集且合并的含全病毒粒子级分,并且在4°C温育过夜。-在实验NCP127中,BPL在步骤b)获得的渗余物在步骤c)以不同浓度与Benzonase 一起温育后加入0. 02,0. 04,0. 05,0. 06,0. 08 和 O. 1%,并且在 4°C温育过夜。-在实验JP128中,BPL以与JP125—样的条件加入,除了使用不同浓度外0.05、O. 04,0. 03,0. 02 和 O. 1%。-在实验JP129中,BPL以与NCP127—样的条件加入,除了使用不同浓度外
O.03、O. 04 和 O. 05%。-在实验NCP134中,BPL以与NCP127—样的条件加入,除了使用的浓度是O. 05%和O. 1%外,并且温育是在室温(RT)过夜。通过经由TCID5tl测定(组织培养感染剂量)测量病毒滴定来评估病毒灭活。在过夜温育结束时,收集在每个实验内的来自每一种BPL条件的样品,以测试其传染性,以便估计BPL灭活的功效。执行待测试的样品的一系列连续稀释。将50 μ 每个稀释度以10份重复接种到含有MDCK细胞的96孔微板中,对于待测试的每种样品接种8个稀释度。随后将板在35°C温育5-7天,从而使得如果病毒是传染性的,那么可以在细胞中复制。通过经由显微镜检查监控在细胞上的致细胞病变作用(CPE)检测传染性病毒在细胞中的存在。传染性病毒的悬液用作阳性对照以证实细胞易感性,并且未接种的培养物用作阴性对照。其中检测到CPE的孔数目对于每个稀释度评分,作为感染细胞,并且根据Reed和Muench方法(Reed, L. J.和 Muench, H. , 1938, The American Journal of Hygiene 27: 493-497)计算病毒滴度。获得的结果呈现于表I中,并且表示为对数TCID5Q/ml。在其中不加入BPL (0)的对照对应于在它经历任何纯化步骤前从所示病毒收获物中收集的样品中评估的滴定值。表I - BPL对流感病毒滴定的作用
权利要求
1.一种用于灭活在细胞培养物中繁殖的正粘病毒和/或灭活污染性外来因子的方法,其包括至少下述步骤 Ca)用烷化剂处理含正粘病毒流体,和 (b)用UV光照射所述含正粘病毒流体。
2.根据权利要求I的方法,其中步骤(a)和(b)以任何次序顺序执行。
3.根据权利要求2的方法,其中步骤(a)在步骤(b)之前。
4.根据权利要求2的方法,其中步骤(b)在步骤(a)之前。
5.根据权利要求I的方法,其中步骤(a)和(b)同时执行。
6.根据权利要求I- 5中任一项的方法,其中所述烷化剂是β-丙内酯。
7.根据权利要求I- 6中任一项的方法,其中β-丙内酯以范围为0.01% - O. 1%、或O.03% - O. 8%、或O. 05%的浓度使用。
8.根据前述权利要求中任一项的方法,其中所述UV剂量范围为50- 500J/m2、100 -400 J/m2,或者是 200 J/m2 或是 100 J/m2。
9.根据权利要求I- 8中任一项的方法,其进一步包含至少一个病毒纯化步骤。
10.根据权利要求9的方法,其中所述病毒纯化步骤选自澄清、超滤、核酸降解、超速离心和层析。
11.根据权利要求10的方法,其中所述病毒通过澄清纯化。
12.根据权利要求11的方法,其中步骤(a)和(b)在澄清后实现。
13.根据权利要求10和权利要求11的方法,其中所述病毒通过蔗糖梯度超速离心纯化。
14.根据权利要求13的方法,其中步骤(a)和(b)在所述蔗糖梯度超速离心后实现。
15.根据权利要求14的方法,其中步骤(a)在步骤(b)前实现。
16.根据权利要求I- 15的方法,其进一步包含分裂步骤。
17.根据权利要求16的方法,其中TritonX-100用作所述分裂试剂。
18.根据权利要求16和17的方法,其中所述分裂步骤在步骤(a)和步骤(b)后发生。
19.根据权利要求I- 18的方法,其中所述正粘病毒是流感病毒。
20.根据权利要求I- 19的方法,其中所述细胞是哺乳动物或禽类细胞。
21.根据权利要求20的方法,其中哺乳动物细胞是MDCK细胞。
22.根据权利要求20的方法,其中禽类细胞是EB66 细胞。
23.根据权利要求I- 22的方法,其中所述外来因子是外来病毒。
24.根据权利要求23的方法,其中外来病毒选自鼠白血病病毒、甲型肝炎病毒、猪细小病毒、猪假狂犬病病毒或其任何组合。
25.根据权利要求24的方法,其中所述外来因子是鼠白血病病毒、甲型肝炎病毒、猪细小病毒、猪假狂犬病病毒。
26.—种可根据权利要求1-25中任一项的方法获得的病毒。
27.一种免疫原性组合物,其包含与合适的药学载体混合的根据权利要求26获得的病毒。
28.用于在医学中使用的根据权利要求27的免疫原性组合物。
29.用于在预防或治疗正粘病毒相关感染中使用的根据权利要求27或28的免疫原性组合物。
30.—种用于制备疫苗的方法,其包括至少将根据权利要求I - 25中任一项的方法获得的病毒与药学可接受的载体混合的步骤。
全文摘要
用于灭活在细胞培养物中繁殖的正粘病毒和/或灭活污染性外来因子的方法,其包括至少下述步骤(a)用烷化剂处理含正粘病毒流体,和(b)用UV光照射含正粘病毒流体。
文档编号A61K39/145GK102858961SQ201180021790
公开日2013年1月2日 申请日期2011年4月28日 优先权日2010年5月3日
发明者B.R.安德烈, B.P.S.尚普卢维尔 申请人:葛兰素史密丝克莱恩生物有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1