麻醉药物平衡控制装置及其控制方法

文档序号:1297179阅读:155来源:国知局
麻醉药物平衡控制装置及其控制方法
【专利摘要】本发明的目的在于提供一种麻醉药物平衡控制装置。该装置包括数据过滤模块和药物平衡控制模块,预先存入脑电指数、伤害性刺激数据的用药数据,分为脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据,根据一定时间段内脑电指数、伤害性刺激数据的变化选择对应的药物靶控指数,并预设门限值,基于设置的门限值控制增加或停止肌松药的注射;同时能够对脑电双频指数、伤害性刺激数据、神经肌肉阻滞深度数据变化趋势斜率等进行动态分析,对三种信号进行横向平衡调整控制。本发明同时还提供了该设备的工作方法。本发明克服了三种药使用不平衡的问题,解决了个体差异的影响,最大限度的保证了麻醉过程的安全,具有非常好的社会价值及应用前景。
【专利说明】麻醉药物平衡控制装置及其控制方法
【技术领域】
[0001]本发明涉及计算机领域,具体涉及一种麻醉药物平衡控制装置及其控制方法。
【背景技术】
[0002]据临床统计,大约只有60%的病人能够享受到完全优质的麻醉服务,约14%的患者被过度麻醉,16%的患者麻醉过浅,10%的患者处于时浅时深。
[0003]麻醉过浅,病人可能对手术有记忆甚至感到疼痛,严重的还会引起精神或睡眠障碍,术中可能引发的“恐怖回忆”成为术后生活的又一痛苦;而麻醉过深,可能造成神经后遗症,术后长时间可能有不适感,甚至危及生命。
[0004]镇静麻醉过深,药物过量会引起呼吸变慢,至呼吸停止,大脑缺氧,大脑长期缺氧,引起病人心脏停止,造成病人死亡。麻醉过浅,引起术中知晓,病人可能对手术有记忆甚至感到疼痛,严重的还会引起精神或睡眠障碍,术中可能引发的“恐怖回忆”成为术后生活的又一痛苦;术中知晓也即在全麻下手术过程中发生意识的恢复。在这种状况下,患者可存在意识,可听见周围环境的声音,但是无法控制肢体的任何运动,包括例如睁眼、咳嗽。有报道其发生率为0.1-0.2%。按照这个比例来算,美国每年有两千万人接受全麻手术,将有两万至四万人发生术中知晓。这个数目足以引起公众和媒体的关注。国内也有类似关于术中知晓的调查及分析,颅内肿瘤手术知晓率为1%,非心脏非脑科手术知晓率2%,心脏手术知晓率闻达6%。
[0005]术中知晓的不良影响:术中知晓可以给因手术而实施麻醉的患者带来近期乃至长期的不良影响。包括:噩梦,失眠,恐惧,幻觉重现,创伤性精神紧张性障碍,有的患者甚至被诊断为精神分裂症,有些可能发展为创伤后精神紊乱综合征,且持续时间比较长,需要给与药物治疗或心理疏导。
[0006]为了降低麻醉用药过浅或过深的发生率,就需要监测麻醉深度。全身麻醉深度监测主要目的是:确定麻醉深度,探测中枢神经系统的状态;同时避免术中知晓,避免病人术后有记忆,同时减小麻醉药物用量,缩短复苏过程,提高麻醉安全,必须进行麻醉深度的监测,目前通过脑电监测指数来监测麻醉深度是最广泛采用方式。
[0007]脑电双频指数(Bispectral index, BIS)是包括了频率、振幅、位相3种特性的脑电图定量分析指标,主要反映脑电图信号中频率间的相位偶联,是一种复合指数。它主要以0-100来定量不同脑电信号频率的联系程度。
[0008]但是,使用脑电指数监测麻醉深度有时不能正确的反映病人真实的麻醉深度。德国Panousis等总结多份病例报告后指出,麻醉状态下神经肌肉活动增加时,脑电双频指数并不能准确反映麻醉状态。研究者对纳入病例在给予呼气末地氟烷的同时加用胸段硬膜外麻醉进行镇痛,并通过PRST评分、0AA/S量表及BIS XP监测仪监测麻醉深度。结果表明,患者肌电活动明显增强,这提示神经肌肉阻滞作用正在消失,而此时其脑电双频指数值从40~55增至70~80,这提示麻醉深度可能不足根据年龄将地氟烷的呼气末给药浓度调至IMAC后,脑电双频指数值仍无变化,静脉注射瑞芬太尼后脑电双频指数值亦无变化。虽然脑电双频指数对肌电活动可起到提示作用,但如果肌电活动>35dB,脑电双频指数监测并不能准确反映麻醉深度。
[0009]麻醉,尤其是手术麻醉用药会受到多种因素的影响,直接影响麻醉的质量。首先,病人不同对麻醉药物的反应不同,年龄的区别,体重区别,肝肾器官功能的区别,药物的敏感程度的差异,都会影响麻醉药物作用的效果;第二,手术过程中,麻醉的深浅也是处于实时变化状态,手术刺激的大小会随着手术进程出现随时的变化,这会引起麻醉深度的变化,需要及时对变化情况进行处理,紧急情况需要在30秒内要对用药进行及时有效的调整。第三,麻醉还容易受到其他因素,比如电刀干扰和信号质量不好的干扰,这时如果没有好的方法排除,很容易造成医疗事故。
[0010]并且,良好的麻醉控制需要让镇静,镇痛,肌松三种麻醉药物在手术各个阶段的伤害性刺激变化中找到用药的平衡点,从而实现的麻醉深度的平衡。而目前关键的评估工作是由医生通过观察监护仪病人的血压心率等生命体征,根据其经验来实现的,经验缺乏的医生与经验丰富的医生对麻醉深度的评估速度,与评估结果也会不一致,这往往会带给麻醉不可预知的风险。同时手术过程中,麻醉的深浅也是处于实时变化状态,手术刺激的深浅,即时会引起麻醉深度的变化,医生能否及时的进行观察数据进行评估,及时调整注射剂量,都会影响到麻醉的最终效果。手术中,镇静、镇痛和肌松都需要满足个体合适用药量,任何一种用药过量或过少都会影响其他两种药的药效,对病人生命产生危险,使手术无法进行。现有技术中也出现了一些麻醉控制装置,但是其装置无法解决病人的个体差异问题,因为病人对药物的敏感性不同,其机器控制容易发生危险,威胁病人的生命安全,这也大大限制了麻醉控制系统的应该。不克服个体差异,机器对麻醉过程的直接控制就只是一句空谈。
[0011]而且,药物之间还存在相互作用相互影响的关系:麻醉三种药物,镇静药,镇痛药,肌松药,在进入人体后,起效时间,作用时间,和代谢时间各不相同,同时三种药物在体内会产生相互作用反应,镇痛药会影响镇静的效果,镇静会影响镇痛的效果,肌松药会影响镇静BIS脑电双频指数的反应,医生需要找到三种用药的平衡点相当复杂,这也使得目前的麻醉经常造成过深或过浅的问题,给手术过程带来无法预知的风险。

【发明内容】

[0012]本发明涉及计算机领域,具体涉及一种麻醉药物平衡控制装置及其控制方法。本发明提供的麻醉药物平衡控制装置及方法能有效排除多种因素干扰所造成的麻醉深度监测数值不准确的问题,能够实时把握和控制镇静药物、镇痛药物和肌松药物三种药物的用药平衡,实现良好的麻醉控制。
[0013]本发明所述的麻醉药物平衡控制装置,包括:
[0014]数据过滤模块,预设数据上下限值以及信号质量的下限值,对接收的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据进行对比分析,剔除掉高于数据上限值或低于数据下限值的数据,并剔除掉信号质量低于其下限值的数据,同时排除发散的数据,然后将数据传输至药物平衡控制模块;
[0015] 药物平衡控制模块,药物平衡控制模块中预先存入脑电指数、伤害性刺激数据的用药数据,分为脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据,将从数据过滤模块接收到的脑电指数、伤害性刺激数据分别与脑电指数、伤害性刺激数据的用药数据实时对应比较,根据一定时间段内脑电指数、伤害性刺激数据的变化选择对应的药物靶控指数,输出靶浓度控制参数,同时药物平衡控制模块中预设脑电指数、伤害性刺激数据闕值范围,根据实时的脑电指数、伤害性刺激数据与闕值的差异,逐步的增加或者减小靶浓度控制参数,直至脑电指数、伤害性刺激数据位于闕值范围之内;
[0016]所述的药物平衡控制模块中预设门限值,将接收到的神经肌肉阻滞深度数据与设置的门限值作比较,如果监测结果超过门限值则需要增加肌松药注射,否则停止注射;
[0017]所述的药物平衡控制模块在工作过程中,当接收到的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据出现波动时,哪些数据有波动就针对性调整对应的药物靶浓度,多个数据同时出现波动时,其控制顺序为:先控制调整镇痛靶浓度和肌松药注射,当伤害性刺激数据和神经肌肉阻滞深度数据维持在合理范围后,如果脑电信号仍然有波动,则控制调整镇静药靶浓度,否则不调整。
[0018]所述的脑电指数-镇静药物数据是根据镇静药物用量与脑电指数的关系,以一定时间段内同一镇静药物用量下对应的不同的脑电指数,按照脑电指数由高到低的顺序建立多个脑电双频指数与药物用量的关系数据,即将脑电指数按O~100分成多个区间,同时将不同区间对应药物用量进行映射;
[0019]所述的伤害性刺激数据-镇痛药物数据是根据镇痛药物用量与伤害性刺激数据的关系,以一定时间段内同一镇痛药物用量下对应的不同的伤害性刺激数据,按照伤害性刺激数据由高到低的顺序建立多个伤害性刺激数据与药物用量的关系数据库,即将伤害性刺激数据按O~100分成多个区间,同时将不同区间对应药物用量进行映射。
[0020]所述的数据过滤模块包括信号质量判断子模块和滤除异常数据子模块;
[0021]所述的信号质量判断子模块实时监测脑电指数、伤害性刺激数据、神经肌肉阻滞深度数据,预设数据上下限值以及信号质量的下限值,对接收的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据进行对比分析,找出高于数据上限值或低于数据下限值的数据,并找出信号质量低于其下限值的数据,同时找出发散的数据;然后传输数据以及判断指令至滤除异常数据子模块;
[0022]滤除异常数据子模块根据判断指令,滤除掉找出的异常数据,将正常数据传输至药物平衡控制模块。
[0023]所述的脑电指数、伤害性刺激数据、神经肌肉阻滞深度数据异常是指这三种数据忽然小于5或者大于100然后又恢复的情况,因此数据上限值定为100,数据下限值定为5 ;信号质量SQI的下限值为25,其中SQI以0-100表示信号质量,数值越大,信号质量越好。
[0024]所述的数据发散是指:取一时间段内的数据做平均值,例如平均值为20时,大于平均值20和小于平均值20的数据交替出现的情形。
[0025]所述的药物平衡控制模块包括脑电指数和伤害性刺激数据库、镇静药物控制子模块、镇痛药物控制子模块、肌松药物控制子模块、药物协调控制子模块;
[0026]所述的脑电指数和伤害性刺激数据库中分别包含脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据,其中脑电指数、伤害性刺激数据的变化对应药物用量的对应关系,根据对应关系分为脑电指数-镇静药物数据库、伤害性刺激数据-镇痛药物数据库;
[0027]所述的镇静药物控制子模块将从数据过滤模块接收到的脑电指数变化情况,和脑电指数-镇静药物数据库实时对应比较,根据一定时间段内脑电指数的变化,调用对应的给药数据,按照该给药数据选择对应其药物输出靶浓度控制参数;
[0028]所述的镇痛药物控制子模块将从数据过滤模块接收到伤害性刺激数据变化情况,和伤害性刺激数据-镇痛药物数据库时对应比较,根据一定时间段内伤害性刺激数据的变化,调用对应的给药数据,按照该给药数据选择对应其药物输出靶浓度控制参数;
[0029]所述的肌松药物控制子模块预设有神经肌肉阻滞深度数据门限值,将接收到的神经肌肉阻滞深度数据与设置的门限值作比较,如果监测结果超过门限值则判断需要增加肌松药注射,否则判断停止注射;
[0030]药物协调控制子模块,预设平衡调整规则,即当接收到的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据出现波动时,哪些数据有波动就针对性调整对应的药物靶浓度,多个数据同时出现波动时,其控制顺序为:先控制调整镇痛靶浓度和肌松药注射,当伤害性刺激数据和神经肌肉阻滞深度数据维持在合理范围后,如果脑电信号仍然有波动,则控制调整镇静药靶浓度,否则不调整。[0031]所述的麻醉药物平衡控制装置,还包括数据接收模块和注射控制模块;
[0032]所述的数据接收模块用于接收脑电双频指数、伤害性刺激数据和神经肌肉阻滞深度数据,并传输至数据过滤模块;
[0033]所述的注射控制模块根据药物平衡控制模块给出的三种药物控制参数,分别控制三种药物的给药量。
[0034]所述的注射控制模块通过步进电机和注射器推动传动装置来实现对给药量的调控;所述的步进电机和注射器推动传动装置一共有三套,分别组成A、B、C三个通道,通道A输送的为镇静药物,通道B输送的为镇痛药物,通道C输送的为肌松药物。
[0035]所述的麻醉药物平衡控制装置,还包括麻醉监护仪和肌松监测装置,通过麻醉监护仪监测获得脑电双频指数和伤害性刺激数据,传输至数据接收模块;通过肌松监测传感器实时监测神经肌肉阻滞程度获得神经肌肉阻滞深度数据,传输至数据接收模块。
[0036]所述的麻醉药物平衡控制装置所述的肌松监测装置,如名称为“闭环肌松注射装置”,专利号为“201020152817.8”的中国实用新型专利中记载的技术;肌松监测装置由肌松监测刺激单元和肌松监测传感器组成;肌松监测刺激单元刺激腕部尺神经监测拇内收肌,通过肌松监测传感器实时监测神经肌肉阻滞程度获得神经肌肉阻滞深度数据,传输至数据接收模块。
[0037]GE公司已上市的S/5麻醉监护仪,也能够监测神经肌肉阻滞程度,获得神经肌肉阻滞深度数据,也可以结合本发明的技术方案,作为神经肌肉阻滞深度数据的来源。
[0038]所述的伤害性刺激数据为心率变异性数据和/或心率。
[0039]所述的神经肌肉阻滞深度数据包括四次成串刺激数据或者四次成串刺激数据中
第一次颤搐反应高度数据。
[0040]所述的麻醉药物平衡控制装置,还包括同步曲线模块,用于建立脑电双频指数、伤害性刺激数据和神经肌肉阻滞深度数据及其相对应的给药参数同步曲线图。
[0041]本发明还提供了一种麻醉药物平衡控制装置的工作方法,包括以下步骤:
[0042]数据过滤模块预设数据上下限值以及信号质量的下限值,对接收的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据进行对比分析,剔除掉高于数据上限值或低于数据下限值的数据,并剔除掉信号质量低于信号质量下限值的数据,然后将数据传输至药物平衡控制1?块;
[0043]药物平衡控制模块中预先存入脑电指数、伤害性刺激数据的用药数据,分为脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据;所述的药物平衡控制模块中还设定有神经肌肉阻滞深度数据门限值;
[0044]药物平衡控制模块将从数据过滤模块接收到的脑电指数、伤害性刺激数据分别与脑电指数、伤害性刺激数据的用药数据实时对应比较,根据一定时间段内脑电指数、伤害性刺激数据的变化选择对应的药物靶控指数,输出靶浓度控制参数,同时药物平衡控制模块中预设脑电指数、伤害性刺激数据闕值范围,根据实时的脑电指数、伤害性刺激数据与闕值的差异 ,逐步的增加或者减小靶浓度控制参数,直至脑电指数、伤害性刺激数据位于闕值范围之内;所述的药物平衡控制模块中预设门限值,将接收到的神经肌肉阻滞深度数据与设置的门限值作比较,如果监测结果超过门限值则需要增加肌松药注射,否则停止注射;
[0045]在工作过程中,当接收到的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据出现波动时,哪些数据有波动就针对性调整对应的药物靶浓度,多个数据同时出现波动时,其控制顺序为:先控制调整镇痛靶浓度和肌松药注射,当伤害性刺激数据和神经肌肉阻滞深度数据维持在预设的数据闕值范围后,如果脑电信号仍然有波动或者没有位于预设的闕值范围,则控制调整镇静药靶浓度,否则不调整。
[0046]本发明的工作过程如下:
[0047]麻醉监护仪监测获得脑电双频指数和伤害性刺激数据,传输至数据接收模块;肌松监测传感器实时监测神经肌肉阻滞程度获得神经肌肉阻滞深度数据,传输至数据接收模块;
[0048]所述的伤害性刺激数据可以采用心率变异性数据和/或心率;所述的神经肌肉阻滞深度数据可以采用四次成串刺激数据或者四次成串刺激数据中第一次颤搐反应高度数据;
[0049]所述的数据接收模块接收脑电双频指数、伤害性刺激数据和神经肌肉阻滞深度数据,并传输至数据过滤模块;
[0050]所述的数据过滤模块包括信号质量判断子模块和滤除异常数据子模块;所述的信号质量判断子模块实时监测脑电指数、伤害性刺激数据、神经肌肉阻滞深度数据,预设脑电指数、伤害性刺激数据的上限值100和下限值5,以及信号质量的下限SQI值25,对接收的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据进行对比分析,找出高于数据上限值或低于数据下限值的数据,并找出信号质量低于信号质量下限值的数据,然后将数据传输至药物平衡控制模块;同时找出发散的数据,所述的发散的数据是指:取一时间段内的数据做平均值,大于平均值20和小于平均值20的数据交替出现的情形;
[0051]滤除异常数据子模块根据判断指令,滤除掉找出的异常数据,将正常数据传输至药物平衡控制模块。
[0052]所述的药物平衡控制模块包括脑电指数和伤害性刺激数据库、镇静药物控制子模块、镇痛药物控制子模块、肌松药物控制子模块、药物协调控制子模块;
[0053]所述的脑电指数和伤害性刺激数据库中分别包含脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据,其中脑电指数、伤害性刺激数据的变化对应药物用量的对应关系,根据对应关系分为脑电指数-镇静药物数据库、伤害性刺激数据-镇痛药物数据库;[0054]所述的脑电指数-镇静药物数据是根据镇静药物用量与脑电指数的关系,以一定时间段内同一镇静药物用量下对应的不同的脑电指数,按照脑电指数由高到低的顺序建立多个脑电双频指数与药物用量的关系数据,即将脑电指数按O~100分成多个区间,同时将不同区间对应药物用量进行映射;
[0055]所述的伤害性刺激数据-镇痛药物数据是根据镇痛药物用量与伤害性刺激数据的关系,以一定时间段内同一镇痛药物用量下对应的不同的伤害性刺激数据,按照伤害性刺激数据由高到低的顺序建立多个伤害性刺激数据与药物用量的关系数据库,即将伤害性刺激数据按O~100分成多个区间,同时将不同区间对应药物用量进行映射。
[0056]数据形式如下表:
[0057]表1脑电指数-镇静药物数据
[0058]
【权利要求】
1.一种麻醉药物平衡控制装置,其特征在于,包括: 数据过滤模块,预设数据上下限值以及信号质量的下限值,对接收的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据进行对比分析,剔除掉高于数据上限值或低于数据下限值的数据,并剔除掉信号质量低于其下限值的数据,同时排除发散的数据,然后将数据传输至药物平衡控制模块; 药物平衡控制模块,药物平衡控制模块中预先存入脑电指数、伤害性刺激数据的用药数据,分为脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据,将从数据过滤模块接收到的脑电指数、伤害性刺激数据分别与脑电指数、伤害性刺激数据的用药数据实时对应比较,根据一定时间段内脑电指数、伤害性刺激数据的变化选择对应的药物靶控指数,输出靶浓度控制参数,同时药物平衡控制模块中预设脑电指数、伤害性刺激数据闕值范围,根据实时的脑电指数、伤害性刺激数据与闕值的差异,逐步的增加或者减小靶浓度控制参数,直至脑电指数、伤害性刺激数据位于闕值范围之内; 所述的药物平衡控制模块中预设门限值,将接收到的神经肌肉阻滞深度数据与设置的门限值作比较,如果监测结果超过门限值则需要增加肌松药注射,否则停止注射; 所述的药物平衡控制模块在工作过程中,当接收到的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据出现波动时,哪些数据有波动就针对性调整对应的药物靶浓度,多个数据同时出现波动时,其控制顺序为:先控制调整镇痛靶浓度和肌松药注射,当伤害性刺激数据和神经肌肉阻滞深度数据维持在合理范围后,如果脑电信号仍然有波动,则控制调整镇静药靶浓度,否则不调整。
2.如权利要求1所述的麻醉药物平衡控制装置,其特征在于: 所述的脑电指数-镇静药物数据是根据镇静药物用量与脑电指数的关系,以一定时间段内同一镇静药物用量下对应的不同的脑电指数,按照脑电指数由高到低的顺序建立多个脑电双频指数与药物用量的关系数据,即将脑电指数按O~100分成多个区间,同时将不同区间对应药物用量进行映射; 所述的伤害性刺激数据-镇痛药物数据是根据镇痛药物用量与伤害性刺激数据的关系,以一定时间段内同一镇痛药物用量下对应的不同的伤害性刺激数据,按照伤害性刺激数据由高到低的顺序建立多个伤害性刺激数据与药物用量的关系数据库,即将伤害性刺激数据按O~100分成多个区间,同时将不同区间对应药物用量进行映射。
3.如权利要求1所述的麻醉药物平衡控制装置,其特征在于: 所述的数据过滤模块包括信号质量判断子模块和滤除异常数据子模块; 所述的信号质量判断子模块实时监测脑电指数、伤害性刺激数据、神经肌肉阻滞深度数据,预设数据上下限值以及信号质量的下限值,对接收的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据进行对比分析,找出高于数据上限值或低于数据下限值的数据,并找出信号质量低于其下限值的数据,同时找出发散的数据;然后传输数据以及判断指令至滤除异常数据子模块; 滤除异常数据子模块根据判断指令,滤除掉找出的异常数据,将正常数据传输至药物平衡控制模块。
4.如权利要求1所述的麻醉药物平衡控制装置,其特征在于: 所述的药物平衡控制模块包括脑电指数和伤害性刺激数据库、镇静药物控制子模块、镇痛药物控制子模块、肌松药物控制子模块、药物协调控制子模块; 所述的脑电指数和伤害性刺激数据库中分别包含脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据,其中脑电指数、伤害性刺激数据的变化对应药物用量的对应关系,根据对应关系分为脑电指数-镇静药物数据库、伤害性刺激数据-镇痛药物数据库; 所述的镇静药物控制子模块将从数据过滤模块接收到的脑电指数变化情况,和脑电指数-镇静药物数据库实时对应比较,根据一定时间段内脑电指数的变化,调用对应的给药数据,按照该给药数据选择对应其药物输出靶浓度控制参数; 所述的镇痛药物控制子模块将从数据过滤模块接收到伤害性刺激数据变化情况,和伤害性刺激数据-镇痛药物数据库时对应比较,根据一定时间段内伤害性刺激数据的变化,调用对应的给药数据,按照该给药数据选择对应其药物输出靶浓度控制参数; 所述的肌松药物控制子模块预设有神经肌肉阻滞深度数据门限值,将接收到的神经肌肉阻滞深度数据与设置的门限值作比较,如果监测结果超过门限值则判断需要增加肌松药注射,否则判断停止注射; 药物协调控制子模块,预设平衡调整规则,即当接收到的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据出现波动时,哪些数据有波动就针对性调整对应的药物靶浓度,多个数据同时出现波动时,其控制顺序为:先控制调整镇痛靶浓度和肌松药注射,当伤害性刺激数据和神经肌肉阻滞深度数据维持在合理范围后,如果脑电信号仍然有波动,则控制调整镇静药靶浓度,否则不调整。
5.如权利要求1所述的麻醉药物平衡控制装置,其特征在于: 还包括数据接收模块和注射控制模块; 所述的数据接收模块用于接收脑电双频指数、伤害性刺激数据和神经肌肉阻滞深度数据,并传输至数据过滤模块; 所述的注射控制模块根据药物平衡控制模块给出的三种药物控制参数,分别控制三种药物的给药量。
6.如权利要求5所述的所述的麻醉药物平衡控制装置,其特征在于:所述的注射控制模块通过步进电机和注射器推动传动装置来实现对给药量的调控;所述的步进电机和注射器推动传动装置一共有三套,分别组成A、B、C三个通道,通道A输送的为镇静药物,通道B输送的为镇痛药物,通道C输送的为肌松药物。
7.如权利要求5所述的麻醉药物平衡控制装置,其特征在于:还包括麻醉监护仪和肌松监测装置,通过麻醉监护仪监测获得脑电双频指数和伤害性刺激数据,传输至数据接收模块;通过肌松监测传感器实时监测神经肌肉阻滞程度获得神经肌肉阻滞深度数据,传输至数据接收模块。
8.如权利要求1所述的麻醉药物平衡控制装置,其特征在于:所述的伤害性刺激数据为心率变异性数据和/或心率。
9.如权利要求1所述的麻醉药物平衡控制装置,其特征在于:所述的神经肌肉阻滞深度数据包括四次成串刺激数据或者四次成串刺激数据中第一次颤搐反应高度数据。
10.如权利要求1所述的麻醉药物平衡控制装置,其特征在于:还包括同步曲线模块,用于建立脑电双频指数、伤害性刺激数据和神经肌肉阻滞深度数据及其相对应的给药参数同步曲线图。
11.一种麻醉药物平衡控制装置的工作方法,运用了如权利要求1所述的麻醉药物平衡控制装置,其特征在于包括以下步骤: 数据过滤模块预设数据上下限值以及信号质量的下限值,对接收的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据进行对比分析,剔除掉高于数据上限值或低于数据下限值的数据,并剔除掉信号质量低于其下限值的数据,然后将数据传输至药物平衡控制模块; 药物平衡控制模块中预先存入脑电指数、伤害性刺激数据的用药数据,分为脑电指数-镇静药物数据、伤害性刺激数据-镇痛药物数据;所述的药物平衡控制模块中还设定有神经肌肉阻滞深度数据门限值; 药物平衡控制模块将从数据过滤模块接收到的脑电指数、伤害性刺激数据分别与脑电指数、伤害性刺激数据的用药数据实时对应比较,根据一定时间段内脑电指数、伤害性刺激数据的变化选择对应的药物靶控指数,输出靶浓度控制参数,同时药物平衡控制模块中预设脑电指数、伤害性刺激数据闕值范围,根据实时的脑电指数、伤害性刺激数据与闕值的差异,逐步的增加或者减小靶浓度控制参数,直至脑电指数、伤害性刺激数据位于闕值范围之内;所述的药物平衡控制模块中预设门限值,将接收到的神经肌肉阻滞深度数据与设置的门限值作比较,如果监测结果超过门限值则需要增加肌松药注射,否则停止注射; 在工作过程中,当接收到的脑电指数、伤害性刺激数据和神经肌肉阻滞深度数据出现波动时,哪些数据有波动就针对性调整对应的药物靶浓度,多个数据同时出现波动时,其控制顺序为:先控制调整镇痛靶浓度和肌松药注射,当伤害性刺激数据和神经肌肉阻滞深度数据维持在预设的数据闕值范围后,如果脑电信号仍然有波动或者没有位于预设的闕值范围,则控制调整镇静药靶浓度,否则不调整。
【文档编号】A61B5/0245GK103908249SQ201410041325
【公开日】2014年7月9日 申请日期:2014年1月28日 优先权日:2014年1月28日
【发明者】麦超伟, 钟鼎辉, 周文军, 麦玉麟, 张誉雄, 黄文鉴 申请人:广西威利方舟科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1