用于可调整植入物中的含信息的磁性反馈的系统的制作方法

文档序号:12281568阅读:183来源:国知局
用于可调整植入物中的含信息的磁性反馈的系统的制作方法与工艺

在随本申请提交的申请资料页中标识出国外或国内优先权要求的任何以及所有申请都在37 CFR 1.57下特此以引用方式并入。



背景技术:

脊柱侧凸是通常在胸部或胸腰部区中针对脊骨的侧向(横向)弯曲的一般术语。脊柱侧凸通常分为不同的治疗群组:青少年特发性脊柱侧凸,早期发作脊柱侧凸,以及成人脊柱侧凸。

青少年特发性脊柱侧凸(AIS)通常影响10岁与16岁之间的孩子,且在身体正在发育时发生的生长突增期间变得最严重。在10岁与16岁之间的孩子有百分之一到百分之二有某种程度的脊柱侧凸。在每1000个孩子中有两个到五个的发育弯曲,所述弯曲严重到需要治疗。通常通过Cobb角来描述脊柱侧凸的程度,所述Cobb角通常是根据x射线图像通过取得弯曲部分的顶点上方和下方的最倾斜椎骨并且测量垂直于顶部椎骨的顶部和底部椎骨的底部而绘制的相交线之间的角度来确定的。术语“特发性”指代此曲率的确切起因是未知的事实。一些人已经推测当脊骨的黄韧带过紧并妨碍脊骨的对称生长时在快速生长阶段期间发生脊柱侧凸。举例来说,在脊骨的前部部分比后部部分伸长更快时,胸脊骨开始变直,直到其横向弯曲,常带有伴随的旋转。在较严重的情况下,此旋转实际上产生显著的变形,其中一个肩部低于另一肩部。当前,许多学区例如在所有五年级学生中执行脊骨的外部视觉评估。对于标识出“S”形或“C”形而不是“I”形的那些学生,给予让医生进行脊骨检查的建议,且通常随后进行周期性脊骨x射线。

通常,Cobb角为20°或更小的患者无需治疗,但常常以后续的x射线进行周期性监视。Cobb角为40°或更大的患者通常推荐进行融合手术。应注意,许多患者出于众多原因而不接受此脊骨评估。许多学区不执行此评估,且许多孩子并不常规地看医生。因此,所述弯曲常常快速且严重地发展。有大量人群的成人有未治疗的脊柱侧凸,在极端情况下具有高达或大于90°的Cobb角。但许多这些成人并未经历与此变形相关联的疼痛,并过着相对正常的生活,但经常移动和运动受到限制。在AIS中,低于10°的弯曲的女性与男性的比率为约一比一。然而,在高于30°的角度时,女性超过男性,达到高达八比一。可以对AIS患者或对成人脊柱侧凸患者执行融合手术。在典型的后部融合手术中,沿着背部的长度向下做出刀口,且沿着脊骨的弯曲部分放置钛或不锈钢拉直杆。这些杆通常以允许脊骨拉直的方式例如借助钩或骨螺钉(例如,锥弓根螺钉)紧固到椎骨主体。通常,移除椎间盘并且放置骨移植材料以产生融合。如果这是自体同源材料,那么经由单独的刀口从患者的臀部采集骨移植材料。

替代地,可以在前部执行融合手术。做出横向和前部刀口以用于接入。通常,使一个肺放气以便允许接达脊骨。在前部程序的较低侵入性型式而不是单个长刀口中,在患者的一侧上的肋间空间(肋骨之间)做出大约五个刀口,每一刀口为约三到四厘米长。在此最小侵入性手术的一种型式中,放置系栓和骨螺钉并且紧固到弯曲的前部凸部分上的椎骨。执行一些临床试验,其使用长钉来代替系栓/螺钉组合。此手术与后部方法相比的一个优点在于来自刀口的疤痕不太明显,但它们仍位于经常可见的区域中(例如当穿上游泳衣时)。长钉在临床试验中存在难题,因为它们在达到临界应力水平时趋于从骨中拉出。

在一些情况下,在手术之后,患者将在融合过程发生时穿戴保护性支具达几个月。一旦患者达到脊骨成熟,便难以在后续手术中移除杆和相关联的五金件,因为椎骨的融合通常并入了杆本身。标准实践是终身保留植入物。关于这两种手术方法中的任一种,在融合之后,患者的脊骨是笔直的,但取决于多少椎骨已融合,在弯曲和扭转方面的脊骨灵活性程度上经常存在限制。随着融合患者恢复,融合的区段会对邻近的非融合椎骨赋予大的应力,且这些区域中经常会发生其它问题,包含疼痛,有时候必须进行进一步手术。这往往是在年龄较大的患者容易出问题的脊骨的腰部部分中。许多医生现在关注于用于脊柱侧凸的无融合手术,这可能能够消除融合的一些缺陷。

脊骨尤其为动态的一个患者群组是称为早期发作脊柱侧凸(EOS)的子组,其通常在五岁之前的孩子中发生,且更经常在男孩而非女孩中发生。虽然这是在10,000个孩子中仅约一个或两个中发生的相对不常见情况,但其可能是严重的,影响内部器官的正常发育。由于这些孩子的脊骨在治疗之后仍将较大量地生长的事实,已经开发称为生长杆的非融合牵引装置以及称为VEPTR——垂直可扩张假体钛肋骨(“钛肋骨”)的装置。这些装置通常大约每六个月进行调整,以匹配于孩子的生长,直到孩子至少八岁大,有时候直到他们15岁大。每一次调整都需要手术刀口来接达装置的可调整部分。因为患者可以在小到六个月大的年龄接受所述装置,所以这种治疗可能需要大量的手术,从而增加这些患者感染的可能性。

Cobb角在20°与40°之间的AIS患者的治疗方法是有争议的。许多医生指定支具(例如,Boston支具),患者必须将支具穿戴于他们的身体上和衣服下每天18到23小时,直到他们变为骨骼上成熟,例如直到16岁。因为这些患者全部通过他们的社交需求青春期,所以被迫做出以下选择可能是严重的问题:1)穿戴覆盖上部身体的大部分的有些笨重的支具;2)进行可能留下大伤疤并且还限制运动的融合手术;3)或不做任何事并且冒着变为损伤外貌和/或残疾的风险。通常已知患者例如在学校之外在灌木丛中隐藏他们的支具(以便避免任何相关的尴尬)。患者对支具的顺应性已经成问题而使得已经设计出特殊的支具来感测患者的身体,并且监视每天穿戴支具的时间量。即使如此,也已知有些患者将物体放到此类型的未穿戴的支具中以便骗过传感器。除了不一致的患者顺应性,许多医生相信甚至当恰当地使用时支具也没有有效治疗脊柱侧凸。这些医生可能同意支撑方法可能减慢或甚至临时停止弯曲(Cobb角)发展,但他们已经注意到只要治疗周期结束且不再穿戴支具,脊柱侧凸就快速发展到比在治疗开始时更严重的Cobb角。一些医生相信支具是低效的,因为它们仅对躯干的一部分而不是整个脊骨起作用。称为BrAIST(青少年特发性脊柱侧凸试验中的支撑)的预期的随机化500患者临床试验当前在登记患者。将使用支具来治疗50%的患者,且将简单地监视50%的患者。将连续地测量Cobb角数据直到骨骼成熟,或直到达到50°的Cobb角。达到50°的Cobb角的患者将很可能经受矫正手术。许多医生相信BrAIST试验将证实支具是低效的。如果情况是这样,那么关于如何治疗Cobb角在20°与40°之间的AIS患者的不确定性将仅仅变得更突出。应注意,“20°到40°”患者群体多达“40°和更大”患者群体的十倍。

已经成功使用牵引骨生成来加长身体的长骨,也称为牵引骨痂延长术和牵张成骨术。通常,骨如果尚未破裂则借助于骨皮质切开术有意地使其破裂,且将骨的两段逐渐牵引分开,从而允许新的骨在间隙中形成。如果牵引速率过高,那么存在不联合的风险,如果速率过低,那么存在在牵引完成之前所述两段将彼此完全融合的风险。当使用此过程实现骨的所需长度时,允许骨愈合。牵引骨生成应用主要集中于股骨或胫骨的生长,但骨生成也可以主要应用于股骨或胫骨的生长,而且也可以包含肱骨、颚骨(小颌)或其它骨。使骨加长或生长的原因是多方面的,且包含但不限于:后期骨肉瘤骨癌;矮身材或矮小/软骨发育不全的整容加长(腿股骨和/或胫骨);加长一个肢体以匹配另一肢体(先天、后期损伤、后期骨骼病症、假体膝关节);以及非联合。

使用外部固定件的牵引骨生成已经进行许多年,但外部固定件对于患者可能是笨重的。外部固定件也可能使患者疼痛,且患者经受针道感染、关节僵硬、食欲不振、沮丧、软骨受损和其它副作用的风险。使外部固定件处于适当位置也延迟了康复的开始。

响应于外部固定件牵引的缺点,已经在手术中植入髓内牵引钉,其完全包含于骨内。一些经由患者肢体的重复旋转而自动拉长,这有时候会使患者疼痛并且经常会以不受控的型式进行。这因此使得难以遵守避免非联合(如果过快)或早期愈合(如果过慢)的严格的每日或每周拉长方案。下肢牵引可以是每天约一毫米。已经开发出其它髓内钉,其具有通过天线来遥控的植入的电机。这些装置被设计为以受控方式拉长,但由于其复杂性而可能无法制造为人们负担得起的商品。其它方面已经提出含有植入的磁体的髓内牵引器,所述磁体允许通过外部定子以电磁方式驱动牵引。由于外部定子的复杂性和大小,此技术尚未精简为可以带回家而允许患者进行每日拉长的简单的有成本效率的装置。非侵入式(磁性)可调整可植入牵引装置已经得到开发且在脊柱侧凸患者和肢体拉长患者中都得到临床使用。

膝骨关节炎是膝关节的退化性疾病,其影响大量的患者,尤其是40岁以上的患者。此疾病的流行已经在近几十年来显著增加,部分地但不是完全地归因于人群的年龄上升以及肥胖症的增加。所述增加也可能部分是由于人群中的活动较多的人的数目增加。膝骨关节炎主要是由于膝盖上的长期应力造成,所述应力使覆盖膝关节中的骨的关节连接表面的软骨退化。在特定的损伤事件之后问题经常变得更严重,但这也可能是遗传过程。症状可能包含疼痛、僵硬、减少的运动范围、肿胀、变形、肌无力以及若干其它症状。骨关节炎可以包含膝盖的三个室中的一个或多个:胫股关节的内侧室,胫股关节的外侧室,以及髌股关节。在若干情况下,执行膝盖的部分或全部置换以便以用于膝盖的新的重量支承表面来置换退化/疾病的部分。这些植入物通常是由植入物级塑料、金属或陶瓷制成。置换手术可能涉及显著的手术后疼痛,且需要实质的物理治疗。恢复周期可能持续数周或数月。此手术的若干潜在并发症存在,包含深静脉血栓形成、运动丧失、感染和骨折。在恢复之后,已经接受单室或全膝置换的手术患者必须显著减少他们的活动,从其生活中完全去除了跑步和高能量运动。

出于这些原因,外科医生可能尝试早期干预以便延迟或者甚至排除膝置换手术。可以对股骨或胫骨执行截骨手术以改变股骨与胫骨之间的角度,从而调整膝关节的不同部分上的应力。在闭合式楔和闭合楔截骨术中,移除骨的成角度楔且使剩余表面融合在一起以产生新的改善的骨角度。在开放楔截骨术中,在骨中做出切口,且使切口的边缘开放,从而产生新的角度。经常使用骨移植物来填入新开放的楔形空间,且经常用骨螺钉将一块板附接到骨。在这些类型的截骨术中的任一者期间获得正确的角度几乎总是困难的,且即使结果接近于所希望的结果,也会存在矫正角度的后续损失。此技术经历的其它并发症可能包含非联合和材料失效。

除了经配置以得到非侵入式调整的许多不同类型的可植入牵引装置之外,也已经设想可植入的非侵入式可调整非牵引装置,例如用于胃肠道病症的可调整限制装置,所述胃肠道病症例如为GERD、肥胖症或括约肌松弛(例如大便失禁中)或者例如尿失禁中的括约肌松弛等其它病症。这些装置也可能并入有磁体以实现非侵入式调整。



技术实现要素:

在一些实施例中,一种用于调整医疗植入物的遥控装置包含驱动器、至少一个传感器以及输出。所述驱动器经配置以发射无线驱动信号以调整植入的医疗植入物。所述医疗植入物的调整包含以所述医疗植入物产生力以及改变所述医疗植入物的尺寸中的一者或多者。所述至少一个传感器经配置以感测所述植入物对所述驱动信号的响应。所述输出经配置以响应于所述驱动信号而报告由所述医疗植入物产生的力以及所述医疗植入物的尺寸改变中的一者或多者。在一些实施例中,所述输出是视觉输出(例如,显示器)、音频输出(例如,扬声器、警报)、USB输出、蓝牙输出、固态存储器输出(例如,任何可移除式或可读固态存储器)等。

在一些实施例中,一种医疗植入物,用于身体内的尺寸的无线调整,其包含:第一部分,其经配置以用于耦合到所述身体中的第一位置;第二部分,其经配置以用于耦合到所述身体中的第二位置;以及磁性驱动件,其经配置以调整所述第一部分与所述第二部分之间的相对距离。所述磁性驱动件包含至少一个受驱动磁体且经配置以响应于由所述身体之外的可旋转驱动器磁体强加的磁场而围绕轴线回转。所述植入物经配置以发射指示所述受驱动磁体对所述驱动器磁体的移动的响应性的信号,其中所述响应性的改变指示由所述身体施加于第一和第二连接器的力的改变。

附图说明

图1说明外部调整装置的一个实施例。

图2说明图1的外部调整装置的显示器和控制面板的详细视图。

图3说明图1的外部调整装置的下部或底侧表面。

图4说明沿着图3的线4-4取得的图3的外部调整装置的截面图。

图5说明沿着图3的线5-5取得的图3的外部调整装置的截面图。

图6说明外部调整装置的一个实施例的磁体相对于牵引装置的磁体的定向。

图7说明外部调整装置的一个实施例的电路板上的各种传感器。

图8说明外部调整装置的一个实施例的电路板上的各种霍尔效应传感器。

图9A说明外部调整装置的一个实施例的霍尔效应传感器相对于磁体的特定配置。

图9B说明图9A的霍尔效应传感器的输出电压。

图9C说明图9A的霍尔效应传感器,其中磁体处于非同步条件。

图9D说明图9C的霍尔效应传感器的输出电压。

图10A说明涉及一个实施例的磁体的霍尔效应传感器的配置。

图10B说明图10A的霍尔效应传感器的输出电压。

图11说明外部调整装置的一个实施例的外部磁体和内部永久磁体的磁通量密度绘图。

图12A说明在外部调整装置的定位期间外部调整装置的一个实施例的外部磁体和内部永久磁体的截面图。

图12B说明在外部调整装置的定位期间外部调整装置的一个实施例的外部磁体和内部永久磁体的侧视图。

图12C说明在外部调整装置的定位期间外部调整装置的一个实施例的外部磁体和内部永久磁体的俯视图。

图13A说明外部调整装置的一个实施例的外部磁体与内部永久磁体之间的零扭矩条件。

图13B说明外部调整装置的一个实施例的外部磁体与内部永久磁体之间的磁性耦合。

图13C说明随着外部调整装置的一个实施例的外部磁体与内部永久磁体之间的耦合扭矩增加的持续旋转。

图13D说明外部调整装置的一个实施例的外部磁体与内部永久磁体之间的滑移。

图14是具有磁性传感器阵列的外部调整装置的一个实施例的内部视图。

图15是含有磁性传感器的电路板。

图16是具有磁性传感器阵列的外部调整装置的一个实施例的正视图。

图17是磁性传感器相对于外部调整装置的一个实施例的外部磁体和内部永久磁体的布置的正视图。

图18是沿着线18取得的图17的磁性传感器的布置的截面图。

图19是用于调整可调整植入物的系统的外部调整装置的一个实施例的图。

图20是用于调整可调整植入物的系统的外部调整装置的一个实施例的逻辑序列的图。

图21是用于调整可调整植入物的系统的外部调整装置的一个实施例的用户接口。

图22是在一系列间隙距离上的电压的曲线图。

图23是在一系列间隙距离上的最大可能牵引力的曲线图。

图24是用于若干电压差分的实际力的曲线图。

图25是磁性传感器对的差分电压的曲线图。

图26说明用于调整脊骨的长度或脊骨上的力的可调整植入物的实施例。

图27是用于调整骨的区段之间的距离或力的可调整植入物的实施例。

图28是用于调整骨的区段之间的旋转角度或扭矩的可调整植入物的实施例。

图29是用于调整骨的区段之间的角度或力的可调整植入物的实施例。

图30是用于调整骨的区段之间的角度或力的可调整植入物的实施例。

图31是用于调整身体组织上的位置或力(张力)的可调整植入物的实施例。

图32是用于调整身体的管道上的限制的可调整植入物的实施例。

图33是磁性传感器相对于外部调整装置的一个实施例的一个或多个外部电磁体和内部永久磁体的布置的正视图。

图34是磁性传感器阵列相对于外部调整装置的一个实施例的外部磁体和内部永久磁体的部分截面图。

具体实施方式

图1到3说明经配置以用于调整可调整植入物的外部调整装置700,所述可调整植入物例如力施加装置,更具体来说由(但不限于)牵引装置1000表示。牵引装置1000可以包含任何数目的牵引或大体上可调整的力施加装置,例如以下各者中描述的那些装置:第7,862,502、7,955,357、8,197,490、8,449,543和8,852,187号美国专利,其公开内容特此以全文引用的方式并入,和/或美国专利申请序列号12/121,355、12/411,107、12/250,442、12/761,141、13/198,571、13/655,246、14/065,342、13/791,430、14/355,202、14/447,391和14/511,084,其公开内容特此以全文引用的方式并入。牵引装置1000大体上包含旋转安装的内部永久磁体1010,其响应于由外部调整装置700施加的磁场而旋转。磁体1010在一个方向上的旋转造成装置1000的牵引,而磁体1010在相反方向上的旋转造成装置1000的缩回。装置1000的缩回可以产生压缩力,而装置1000的牵引可以产生拉伸力。外部调整装置700可以由可再充电电池或由电源线711供电。外部调整装置700包含第一手柄702和第二手柄704。第二手柄704是环形的,且可用以携带外部调整装置700和/或在使用期间使外部调整装置700稳定。第一手柄702从外部调整装置700的第一末端线性延伸,而第二手柄704位于外部调整装置700的第二末端处且大体上离轴延伸或相对于第一手柄702成角度。在一个实施例中,第二手柄704可以相对于第一手柄702大体上垂直定向,但其它布置是可能的。

第一手柄702含有电机705,所述电机经由传动装置、带或类似物而驱动第一外部磁体706和第二外部磁体708(图3中最佳所见)。在第一手柄702上的是包括身体轮廓806的任选的定向图像804,以及示出在患者身体上放置外部调整装置700的正确方向的任选的定向箭头808,使得在正确方向上操作牵引装置。在保持第一手柄702的同时,操作者用他的拇指按压牵引按钮722,所述按钮具有牵引符号717且是第一颜色(例如,绿色)。这牵引了牵引装置1000。如果牵引装置1000被过度牵引且希望其缩回或减少装置1000的牵引,那么操作者用他的拇指按压缩回按钮724,所述按钮具有缩回符号719。

牵引使磁体706、708在一个方向上转动,而缩回使磁体706、708在相反方向上转动。磁体706、708具有在窗811中可见的条纹809。这允许容易识别磁体706、708是静止的还是转动的,和它们转动的方向,以及允许装置的操作者的快速故障排除。操作者可以确定患者身上植入牵引装置1000的磁体的点,且接着通过标记患者皮肤的对应部分并且接着通过外部调整装置700的对准窗716查看此点而相对于牵引装置1000将外部调整装置700放置在正确位置。

图2说明包含若干按钮814、816、818、820和显示器715的控制面板812。按钮814、816、818、820是软键,且能够经编程以用于大量不同功能。在一些实施例中,按钮814、816、818、820具有在显示器中出现的对应图例。为了设定将对牵引装置1000执行的牵引的长度,使用增加按钮814和/或减小按钮816调整目标牵引长度830。具有绿色正号图形的图例822对应于增加按钮814,且具有红色负号图形的图例824对应于减小按钮816。应理解,本文提到用于特定特征的具体颜色应当视为说明性的。除了本文具体叙述的那些颜色之外的颜色可以与本文描述的发明性概念结合使用。每当按下增加按钮814时,其造成目标牵引长度830增加0.1mm。以相同方式,每当按下减小按钮816时,其造成目标牵引长度830减小0.1mm。也可以使用除了0.1mm之外的减量/增量。当所需的目标牵引长度830显示且外部调整装置700放置于患者上时,操作者按住牵引按钮722,且外部牵引装置700使磁体706、708转动直到实现目标牵引长度830(在此点外部调整装置700停止)。在牵引过程期间,显示实际牵引长度832,以0.0mm开始且增加/减小直到实现目标牵引长度830。在实际牵引长度832增加/减小时,显示牵引进展图形834。例如浅色框833,其从左到右以深色填充。在图2中,目标牵引长度830是3.5mm,已发生2.1mm的牵引,且显示牵引进展图形834的框833的60%。可以按压对应于复位图形826的复位按钮818以将数字中的一个或两个复位回到零。可以指派额外按钮820用于其它功能(例如,帮助、数据等)。此按钮可以具有其自身的对应图形828(图2中示出为“?”)。替代地,可以使用触摸屏,例如电容式或电阻式触摸键。在此实施例中,图形/图例822、824、826、828也可以是触摸键,从而置换或增强按钮814、816、818、820。在一个特定实施例中,在822、824、826、828处的触摸键分别执行按钮814、816、818、820的功能,且消除了按钮814、816、818、820。在一些实施例中,可以使用除了显示器之外的输出,包含例如音频输出、USB输出、蓝牙输出,或可以向用户有效地报告从外部调整装置700的使用得到的数据的任何其它数据输出。

可以用若干方式保持手柄702、704。举例来说,可以手掌向上保持第一手柄702,同时尝试找到患者身上牵引装置1000的植入磁体的位置。手指包围在手柄702周围且四个手指的指尖或中点稍微向上按压于手柄702上,从而使其在某种程度上平衡。这允许极为敏感的感觉,其允许牵引装置1000中的磁体与外部调整装置700的磁体706、708之间的磁场更明显。在牵引期间,可以手掌向下保持第一手柄702,从而允许操作者将装置700向下稳固地推动到患者身上,以使外部调整装置700的磁体706、708与牵引装置1000的磁体1010之间的距离最小,且因此使扭矩耦合最大。如果患者体型较大或过重,那么这是尤其适当的。取决于操作者的偏好,在磁体感测操作和牵引操作期间可以手掌向上或手掌向下保持第二手柄704。

图3说明外部调整装置700的底侧或下表面。在外部调整装置700的底部,接触表面836可以由软硬度的材料制成,例如弹性体材料,例如(美国加利福尼亚州托伦斯市的Arkema,Inc.)或聚氨酯。这允许防震以在装置700掉落时对其进行保护。而且,如果在患者的裸露皮肤上放置所述装置,那么此性质的材料不会像某些其它材料那样快地从患者带走热量;因此,它们“不会被感到像”硬塑料或金属“那样冷”。手柄702、704还可以具有覆盖它们的类似材料,以便用作防滑把手。

图3还说明儿童友好的图形837,包含笑脸的选项。替代地,这可以是动物脸,例如泰迪熊、马或小兔子。一组多个脸可以是可移除的且可互换的,以匹配于各种年轻患者的喜好。另外,装置的底侧上的脸的位置允许操作者向较年轻的孩子展示所述脸,但保持其对可能不会如此愉快的较年长的孩子隐藏。替代地,可以产生以人、动物或其它角色为特征的布袋木偶或装饰性覆盖物,使得装置可以被它们稀疏地覆盖,而不会影响装置的操作,但另外,可以在执行牵引程序之后对年轻患者给予所述木偶或覆盖物。预期这可以帮助保持年轻的孩子更有兴趣返回到未来的程序。

图4和5是沿着各种中心线取得的图3中所示的外部调整装置700的截面图,其说明外部调整装置700的内部组件。图4是沿着图3的线4-4取得的外部调整装置700的截面图。图5是沿着图3的线5-5取得的外部调整装置700的截面图。外部调整装置700包括第一外壳868、第二外壳838以及中心磁体区段725。第一手柄702和第二手柄704包含把手703(在第一手柄702上示出)。把手703可以由弹性体材料制成且当手握持时可具有软的感觉。所述材料也可以具有粘的感觉,以便帮助稳固握持。经由电源线711供应电力,所述电源线保持到具有应变消除部844的第二外壳838。电线727连接各种电子组件,包含电机840,所述电机分别经由齿轮箱842、输出齿轮848和中心齿轮870使磁体706、708旋转。中心齿轮870使两个磁体齿轮852旋转,每一磁体706、708上一个(图5中说明一个此类齿轮852)。输出齿轮848经由耦合件850附接到电机输出,且电机840和输出齿轮848均经由底座846紧固到第二外壳838。磁体706、708保持于磁体杯862内。磁体和齿轮附接到轴承872、874、856、858,所述轴承有助于低摩擦旋转。电机840由电机印刷电路板(PCB)854控制,而显示器由附接到框架864的显示器PCB 866控制。

图6说明在牵引程序期间第一和第二外部磁体706、708以及牵引装置1000的植入磁体1010的磁极的定向。为了描述,将相对于时钟上的数字来描述所述定向。第一外部磁体706与第二外部磁体708同步转动(通过传动装置、带等),使得当第二外部磁体708的南极904指向十二点钟位置时第一外部磁体706的北极902指向十二点钟位置。因此,在此定向下,在第二外部磁体708的北极908指向六点钟位置的同时,第一外部磁体706的南极906指向六点钟位置。第一外部磁体706和第二外部磁体708两者如相应箭头914、916说明在第一方向上转动。旋转磁场对植入磁体1010施加扭矩,从而使其如箭头918说明在第二方向上旋转。图6中示出了在扭矩递送期间植入磁体1010的北极1012和南极1014的示范性定向。当第一外部磁体706和第二外部磁体708在与图示方向相反的方向上转动时,植入磁体1010将在与图示方向相反的方向上转动。第一外部磁体706和第二外部磁体708相对于彼此的定向用以优化向植入磁体1010的扭矩递送。在外部调整装置700的操作期间,经常难以确认两个外部磁体706、708如所需那样被同步驱动。

转到图7和8,为了确保外部调整装置700恰当地工作,电机印刷电路板854包括一个或多个编码器系统,例如光斩波器920、922和/或霍尔效应传感器924、926、928、930、932、934、936、938。光斩波器920、922各自包括发射器和检测器。径向条纹环940可以附接到外部磁体706、708中的一者或两者,从而允许光斩波器光学地编码角运动。在径向条纹环940与光斩波器920、922之间示意性说明光921、923。

霍尔效应传感器924、926、928、930、932、934、936、938可以独立地用作非光学编码器以跟踪外部磁体706、708中的一者或两者的旋转。虽然图7中说明八(8)个此类霍尔效应传感器,但应理解,可以采用更少或更多的此类传感器。霍尔效应传感器在允许霍尔效应传感器随着外部磁体706、708旋转而感测磁场改变的位置处连接到电机印刷电路板854。每一霍尔效应传感器924、926、928、930、932、934、936、938输出对应于磁场强度的增加或减小的电压。图9A指示霍尔效应传感器相对于传感器924、938的一种基本布置。第一霍尔效应传感器924相对于第一外部磁体706位于九点钟。第二霍尔效应传感器938相对于第二外部磁体708位于三点钟。在磁体706、708以同步运动旋转时,第一霍尔效应传感器924的第一电压输出940和第二霍尔效应传感器938的第二电压输出942具有如图9B中所见的相同图案,其描绘了外部磁体706、708的完整旋转循环的电压的曲线图。所述曲线图指示输出电压的正弦变化,但削截的峰是由于信号的饱和。即使在设计中使用的霍尔效应传感器造成此效应,也仍存在足够信号来随着时间将第一电压输出940与第二电压输出942进行比较。如果两个霍尔效应传感器924、938中的任一者在操作或外部调整装置700期间不输出正弦信号,那么这证明对应的外部磁体已经停止旋转。图9C说明其中外部磁体706、708均以相同的近似角速度旋转但北极902、908未正确同步的条件。由于此原因,第一电压输出940和第二电压输出942不同相,且展现相移(φ)。这些信号由处理器915(图8中所示)处理且错误警告显示于外部调整装置700的显示器715上,使得装置可以再同步。

如果使用独立的步进电机,那么再同步过程可以简单地为再编程的过程,但如果两个外部磁体706、708通过例如传动装置或带而耦合在一起,那么可能需要机械返工。图10A中说明图9A的霍尔效应传感器配置的替代方案。在此实施例中,霍尔效应传感器928相对于外部磁体706位于十二点钟,且霍尔效应传感器934相对于外部磁体708位于十二点钟。通过此配置,当外部磁体708的南极904指向霍尔效应传感器934时,外部磁体706的北极902应当指向霍尔效应传感器928。通过此布置,霍尔效应传感器928输出了输出电压944,且霍尔效应传感器934输出了输出电压946(图10B)。输出电压944按设计与输出电压946不同相。图9A的霍尔效应传感器配置的优点在于,每一传感器在其与相对的磁体之间具有较大距离(例如,霍尔效应传感器924与外部磁体708相比),使得存在较小的干扰可能性。图10A的霍尔效应传感器配置的优点在于有可能制作更紧凑的外部调整装置700(较小宽度)。也可以分析图10B的不同相图案以确认磁体同步性。

返回到图7和8,示出了额外的霍尔效应传感器926、930、932、936。这些额外的传感器允许外部调整装置700的外部磁体706、708的旋转角反馈的额外精度。再次,霍尔效应传感器的特定数目和定向可以变化。也可以使用磁阻编码器来代替霍尔效应传感器。

在再另一实施例中,额外信息可以由处理器915处理且可以在显示器715上显示。举例来说,使用外部调整装置700的牵引可以在诊疗室中由医疗人员或者由患者或患者的家庭成员在家执行。在任一情况下,可能需要存储来自每一牵引阶段的信息以在稍后存取。举例来说,每一牵引的日期和时间、尝试的牵引的量,以及获得的牵引的量。此信息可以存储在处理器915中或者与处理器915相关联的一个或多个存储器模块(未图示)中。另外,医生可能能够输入牵引长度极限,例如在每一阶段中可以牵引的最大量、每天可以牵引的最大量、每周可以牵引的最大量等。医生可以通过使用患者将不能接达的装置的键或按钮使用安全输入来输入这些极限。

返回到图1,在一些患者中,可能需要朝向患者的头部放置牵引装置1000的第一末端1018且朝向患者的足部放置牵引装置1000的第二末端1020。牵引装置1000的此定向可以称为顺行。在其他患者中,可能需要以牵引装置1000的第二末端1020朝向患者的头部且牵引装置1000的第一末端1018朝向患者的足部来定向牵引装置1000。牵引装置1000的此定向可以称为逆行。在其中磁体1010旋转以便使螺母内的螺钉转动的牵引装置1000中,牵引装置1000在患者内顺行或逆行的定向可能意味着外部调整装置700将必须在牵引装置1000顺行放置时根据定向图像804来放置,但在牵引装置1000逆行放置时与定向图像804相反而放置。软件可以经编程以使得处理器915辨识出牵引装置1000已经顺行还是逆行植入,且接着在放置牵引按钮722时在适当方向上转动磁体706、708。

举例来说,可以命令电机705当牵引顺行放置的牵引装置1000时在第一方向上旋转磁体706、708,且当牵引逆行放置的牵引装置1000时在第二相反方向上旋转磁体706、708。医生可以例如由显示器715提示使用控制面板812输入牵引装置1000是顺行还是逆行放置。患者可以接着继续使用同一外部调整装置700以确保电机705在恰当方向上转动磁体706、708以用于牵引和折射。替代地,牵引装置可以并入有RFID芯片1022(图1中所示),其可以通过外部调整装置700上的天线1024来读取和写入。牵引装置1000在患者内的位置(顺行或逆行)可以写入到RFID芯片1022,且可以因此由任何外部调整装置700的天线1024读取,从而允许患者接受正确的牵引和/或缩回,而无论使用哪一种外部调整装置700。

图11是在外部调整装置700的两个外部磁体706、708和牵引装置1000的内部永久磁体1010周围的区中的磁场特性的磁通量密度绘图100。为了本公开的目的,并入有可旋转磁体的任何类型的可调整力施加(或扭矩施加)植入物预期作为替代方案。在通量密度绘图100中,绘制一系列通量线110作为具有定向和量值的向量,量值由箭头的长度表示。由于外部磁体706、708与内部永久磁体1010磁性耦合且由电机840(图4)转动从而造成内部永久磁体1010转动(如关于图6描述),因此通量线110在量值和定向上相当大地改变。本发明的实施例使用例如霍尔效应传感器等磁性传感器阵列来接收关于改变的磁场特性的信息,且确定有助于外部调整装置700且更重要来说牵引装置1000自身的使用和功能的参数。第一参数是外部调整装置700的外部磁体706、708到牵引装置1000的内部永久磁体1010的一般接近度。希望外部调整装置700的外部磁体706、708放置为足够靠近牵引装置1000的内部永久磁体1010,使得其将起作用。系统的目标可能是使外部磁体706、708赋予内部永久磁体的扭矩最大化,且因此使牵引装置1000递送的牵引力最大化。第二参数是外部调整装置700与牵引装置1000之间的距离、尤其是外部调整装置700的外部磁体706、708与牵引装置1000的内部永久磁体1010之间的距离的估计。如将更详细阐释的此距离估计可以用于估计后续参数。第三参数是牵引装置1000的估计可变尺寸,例如牵引长度。在一些类型的可调整植入物上,所述可变尺寸可以是长度。在其它类型的可调整植入物上(例如,在限制装置中),可调整参数可以是直径或圆周。第四参数是牵引力。牵引力可为脊柱侧凸中的有用参数,尤其是因为在生长的患者中骨骼系统上增加的拉伸负载会加速生长。这称为Heuter-Volkmann原理。牵引力在关于增加骨的长度或者改变骨的角度或旋转定向的临床应用中也是有用的。再次,取决于植入物,第四参数可以例如在损伤应用中并入有其它力,例如可调整压缩植入物中的压缩力,例如第8,852,187号美国专利中公开的那些。在使用可调整医疗植入物的其它医疗应用中,可能有用的是知道施加于身体部位上的力矩而不是所施加的力,或者同时知道这两者。举例来说,在脊柱侧凸曲线中,“不弯曲力矩”描述了牵引装置对所述曲线施加以使其拉直的力矩。对于特定力值,此力矩将变化,所述变化取决于牵引装置横向位于距脊柱侧凸曲线的顶点有多远。如果所述横向距离例如经由X射线图像是已知的,那么可以通过确定所施加的力而计算不弯曲力矩。

确定外部调整装置700的最佳定位并不总是可能的。当然,植入的牵引装置1000对外部调整装置700的操作者不可见,且使用x射线成像来确定其确切位置可能是困难的,且由于额外辐射而是不合意的。即使具有界定植入的牵引装置1000的位置的x射线图像,外部调整装置700在邻近患者皮肤的所需位置中的放置也可能因以下方面而复杂:患者身体的表面的极端曲率(例如,在躯干中具有显著变形的脊柱侧凸患者中),或者骨骼系统周围的肌肉和脂肪的变化的厚度(例如,在肢体拉长患者中的股骨周围圆周向)。图12A以笛卡尔形式示出了与Y轴线对准的外部调整装置700的中心线106以及与外部调整装置700的外表面的切线707和与牵引装置1000的外表面的切线709之间的间隙G。外部磁体706、708与内部永久磁体1010之间的距离可以稍微大于间隙G,原因在于其分别在外部调整装置700和牵引装置1000内的位置(即,外壳稍微增加了间隙G)。在外部磁体706、708放置为较靠近牵引装置1000的内部永久磁体1010时,可产生的牵引力增加。对准的横向偏移由外部调整装置700的中心线106与内部永久磁体1010的中心之间的沿着x轴线的XO表示。在其中外部调整装置700具有仅一个外部磁体的实施例中,所述横向偏移将由外部磁体的中心与内部永久磁体1010的中心之间的沿着x轴线的距离表示。在许多情况下,较小的XO允许较高的最大可能牵引力。还以虚线示出了外部调整装置700',其已经翻转角度R1,从而造成外部磁体706'比在R1接近零的情况下更远离内部永久磁体1010。

图12B类似于图12A,但图12B示出了外部调整装置700和内部永久磁体1010的侧视图,其中z轴线为左右方向且y轴线为上下方向。在外部磁体708的轴向中心与内部永久磁体1010的轴向中心之间绘制轴向偏移ZO。还示出了替代配置,其中外部磁体708'以角度R2翻转。轴向偏移ZO将趋于降低最大可能牵引力。图12C是示出了外部磁体706与内部永久磁体1010之间的第三翻转角度R3的俯视图。但在临床使用中,R2和R3几乎总是非零量值,它们越大,潜在的耦合扭矩越低,且因此潜在的牵引力越低。

图13A到13D说明在调整程序期间外部磁体706、708与内部永久磁体1010之间的磁性耦合的变化。图13A示出零扭矩条件,其可以例如在起始外部磁体706、708的旋转之前或者在外部调整装置700的操作刚好开始时存在。如所示,外部磁体706的北极902指向正y方向,且外部磁体706的南极906指向负y方向,而外部磁体708的南极904指向正y方向,且外部磁体708的北极908指向负y方向。内部永久磁体1010的北极1011被朝向外部磁体706的南极906吸引且因此保持于大体上负x方向,且内部永久磁体1010的南极1013被朝向外部磁体708的北极908吸引且因此保持于正x方向。所有磁体706、708、1010处于平衡状态且彼此不冲突。在外部调整装置700操作以使得外部磁体706、708开始转动时(如图13B中所示),情况经常是在可旋转地保持内部永久磁体1010的机构上存在标称阻扭矩。举例来说,在销或轴上的摩擦,或者在牵引机构的导螺杆与螺母之间的摩擦。在此特定阐释中,假定外部调整装置具有单个外部磁体706,或者具有彼此同步旋转的两个或更多个外部磁体706、708(但其它实施例是可能的),且因此为了简单,当前将仅参考外部磁体706。在外部磁体706在第一旋转方向102上转动直到第一角度α1时,其尚未对内部永久磁体1010施加足够大的施加扭矩τA以致使其起始在第二相反旋转方向104上的旋转。举例来说,当施加扭矩τA小于内部永久磁体1010的静态阈值阻扭矩τST时。然而,当超过角度α1时,施加扭矩τA变为大于内部永久磁体1010的静态阈值扭矩τST,且因此内部永久磁体1010在第二旋转方向104上的旋转开始,且在外部磁体706旋转通过角度α2的同时继续。因此,当外部磁体706到达角度α(α=α12)时,内部永久磁体1010已经旋转角度β,其中角度β小于角度α。角度β小于或等于角度α2。在动态阻扭矩τDR随着内部永久磁体1010旋转通过角度β而增加的情况下,角度β小于角度α2

图13C说明在额外旋转已发生之后以及在动态阻扭矩τDR已增加时磁体706、708、1010的定向。这通常在牵引装置1000的牵引力增加时发生,原因在于牵引装置1000的机构内增加的摩擦,且可以在第一次旋转期间或在若干次旋转之后发生。因此,如图13C中所见,内部永久磁体1010已经旋转比外部磁体706小的额外量。使用术语“相位滞后”来描述外部磁体706与内部永久磁体1010之间的旋转定向的差。随着动态阻扭矩τDR增加,相位滞后增加。在图13A中说明的零扭矩条件下外部磁体706的北极902与内部永久磁体1010的北极1011之间的相位滞后将被界定为90°。然而,为了本发明的实施例的目的,在图13A的零扭矩条件下将相位滞后界定为0°。无论选择界定相位滞后的方法如何,重要因数都是相位滞后随着时间(或随着旋转数目)的改变。在动态阻扭矩τDR甚至进一步增加时,到达其中动态阻扭矩τDR变为高于施加扭矩τA的点。这产生滑移条件(或暂停条件),其中外部磁体和内部永久磁体的接合磁极滑移经过彼此,或失去其磁性接合。因此,外部调整装置700的外部磁体706、708不再能够致使内部永久磁体1010旋转。恰在滑移之前,相位滞后可以多达90°。在滑移的点,随着磁极滑移经过彼此,内部永久磁体1010通常突然且快速地在旋转方向102(与其已经转动的旋转方向104相反)上向后旋转小于完整一圈的某个角度。这在图13D中示出。

智能调整系统500在图14中说明,且包括具有磁性传感器阵列503的外部调整装置502,所述外部调整装置经配置以调整可调整医疗装置400,所述可调整医疗装置包括第一部分404和相对于第一部分404可调整的第二部分406。可调整医疗装置400以非侵入方式可调整,且含有可旋转永久磁体402,例如径向磁极式圆柱形永久磁体。可调整医疗植入物400经配置以在身体内施加可调整力。永久磁体402可以旋转耦合到导螺杆408,其经配置以与第二部分406内的阴螺纹410接合,使得永久磁体402的旋转造成导螺杆408在阴螺纹410内的旋转,因此使第一部分404和第二部分406相对于彼此纵向移动。通过以外部调整装置502的一个或多个外部磁体510(或图16的511)施加扭矩,永久磁体402可非侵入式旋转。可调整医疗装置400经配置以用于植入在患者内,且如所描绘,进一步经配置以使得第一部分404可在第一位置耦合到患者且第二部分406可在第二位置耦合到患者。在一些实施例中,可调整医疗装置400可经非侵入式调整以增加第一位置与第二位置之间的牵引力。在一些实施例中,可调整医疗装置400可经非侵入式调整以减小第一位置与第二位置之间的牵引力。在一些实施例中,可调整医疗装置400可经非侵入式调整以增加第一位置与第二位置之间的压缩力。在一些实施例中,可调整医疗装置400可经非侵入式调整以减小第一位置与第二位置之间的压缩力。在一些实施例中,可调整医疗装置400可经非侵入式调整以执行这些功能中的两个或更多个。替代地,可调整医疗装置可为限制装置,其经配置以经调整以增加或减小直径。举例来说,至少部分地限制身体导管的直径,例如血管、胃肠道或尿道。在此性质的实施例中,第一部分406相对于第二部分406的移动可以增加或减小缆绳或张力部件上的牵引或张力,其又造成限制装置的直径中的限制(或者根据情况可能是增加)。

磁性传感器阵列503可以包括两个电路板516、518,例如印刷电路板(PCB)。第一电路板516可以与第二电路板518相对而定位。举例来说,第一电路板516可以位于第二电路板518上方且与其大体上平行。每一电路板516、518可具有磁性传感器536、538、540、542的子阵列520,例如霍尔效应传感器。第二外部磁体511(图16)或甚至更多外部磁体可以安置于外部调整装置502上。在图14中,已经移除第二外部磁体511以示出磁性传感器阵列503的细节。支架块526、528可以安置于外部调整装置502上以将第一电路板516和第二电路板518保持在适当位置。支架块526、528可以在一个或多个方向上可移动以允许在需要时对每一电路板516、518的多个维度的精细调整,以调谐磁性传感器阵列503。所述一个或多个外部磁体510可旋转地紧固到基座532,且可被覆盖有静止的圆柱形磁体盖530。可能希望足够好地将所述一个或多个外部磁体510可旋转地紧固到基座以使得它们不会振动或弹动,从而有利地增加磁性传感器的信噪比以及传感器阵列503的总体有效性。

电路板516、518可以大体上彼此相同,或者可以是彼此的镜像。图15更详细地示出了电路板516。五个霍尔效应传感器(HES)包含前HES 534、后HES 536、左HES538、右HES 540和中HES 542。在图14中,示出了电路板516具有向上延伸的霍尔效应传感器534、536、538、540、542,而示出了电路板518具有其向下延伸的霍尔效应传感器(图14中不可见)。在一些实施例中,可为有利的是具有向下延伸的电路板518的HES以最小化霍尔效应传感器与永久磁体402之间的距离。在一些实施例中,电路板518可因此具有电路板516的镜像,使得电路板516的左HES 538在电路板518的左HES正上方等。然而,如果用于左HES的霍尔效应传感器与用于右HES的霍尔效应传感器相同,且前HES和后HES也是一样,那么对于电路板516、518两者可以使用同一电路板,因此降低了制造成本。设想将使用印刷电路板(PCB)来允许用于连接到用于每一霍尔效应传感器的电压源(例如,+5伏特)的导电轨道。

在一些实施例中,霍尔效应传感器534、536、538、540、542包括线性霍尔效应传感器。电路板516、518的配置(即,一个在另一个上方)有助于它们在不同模式中的使用,如关于图17将描述。因为在电路板516、518两者中的中HES 542是距外部磁体510、511最远的霍尔效应传感器,所以其可能较不容易趋于饱和。因此,在这些实施例中,可使用较敏感的霍尔效应传感器作为中HES 542。举例来说,可使用由美国加利福尼亚州尔湾市的Allegro Microsystems LLC生产的A1324,其具有约4.75与约5.25毫伏/高斯(mV/G)之间、或更特定来说5.0mV/G的灵敏度。对于位于较靠近外部磁体510、511处且更有可能饱和的其它霍尔效应传感器(例如,534、536、538、540),可使用较低灵敏度的霍尔效应传感器。举例来说,可使用也是由美国加利福尼亚州尔湾市的Allegro Microsystems LLC生产的A1302,其具有约1.3mV/G的灵敏度。

转到图16,相对于每一外部磁体510、511的中心示出了每一电路板516、518的定向。示范性布置包括外部磁体510、511具有约2.54cm(1.0英寸)与8.89cm(3.5英寸)之间的直径,且更特定来说约2.54cm(1.0英寸)与6.35cm(2.5英寸)之间的直径。外部磁体510、511的长度可为约3.81cm(1.5英寸)与12.7cm(5.0英寸)之间,或者约3.81cm(1.5英寸)与7.62cm(3.0英寸)之间。在特定实施例中,外部磁体具有约3.81cm(1.5英寸)的直径以及约5.08cm(2.0英寸)的长度,且是由稀土材料制成,例如,例如使用大于N42、大于N45、大于N50或约N52的等级的钕-铁-硼。返回到图14,永久磁体402的示范性大小可以包含约6.35mm(0.25英寸)与8.89mm(0.35英寸)之间、约6.85mm(0.27英寸)与8.13mm(0.32英寸)之间或约7.11mm(0.28英寸)的直径。永久磁体402可以具有约1.27cm(0.50英寸)与3.81cm(1.50英寸)之间、约1.77cm(0.70英寸)与3.18cm(1.25英寸)之间,或约1.85cm(0.73英寸)或约2.54cm(1.00英寸)的长度。在特定实施例中,永久磁体402可由稀土材料制成,例如,例如使用大于N42、大于N45、大于N50或约N52的等级的钕-铁-硼。

再次转到图16,电路板516(也称为上部电路板)可位于距外部磁体510、511的中心约15mm到32mm或约21mm的距离Y1处。电路板518(也称为下部电路板)可位于距外部磁体510、511的中心约17mm到35mm或约26mm的距离Y2处。外部调整装置502可以包含两个外部磁体510、511之间的凹部544,以允许当外部调整装置在患者上下压时皮肤和/或脂肪移动到所述凹部中,从而允许外部磁体510、511放置为尽可能靠近永久磁体402。在具有两个外部磁体510、511的外部调整装置502的一些实施例中,两个外部磁体510、511的中心轴线可以彼此分离约50mm与100mm之间、约55mm与80mm之间或者约70mm。

在图17中,(图14和16的)外部调整装置502的正视图示出了耦合到同一差分放大器的霍尔效应传感器对。电路板516的左HES 538与电路板518的右HES 540配对。电路板518的左HES 538与电路板516的右HES 540配对。在图18中,电路板516的前HES 534与电路板518的前HES 534配对。电路板516的中HES 542与电路板518的中HES 542配对。且,电路板516的后HES 536与电路板518的后HES 536配对。图17和18两者中已经绘制点线来更好地说明所述配对。

在图19中,具有传感器阵列503且具有经配置以用于旋转的至少一个外部磁体510的外部调整装置502由电源504供电。此电源504(或单独的电源)对差分放大器505供电,霍尔效应传感器(图17和18的534、536、538、540、542)耦合到所述差分放大器。外部调整装置502的至少一个外部磁体510旋转(例如,通过图4的电机840)且磁性耦合到可调整医疗装置400的永久磁体402。至少一个外部磁体510与永久磁体402之间的耦合可以具有可变耦合和扭矩特性(例如,增加动态阻扭矩τDR),其造成由分量(即,向量)512和514表示的变化磁场。应提及,仍然在本发明的范围内的是可以构造实施例以使得一个或多个可旋转外部磁体510、511是一个或多个电磁体,从而产生与例如由两个可旋转永久磁体产生的那些磁场相当的可旋转磁场。图33说明包括用于产生可旋转磁场的两个电磁体606、608的外部调整装置600。外部调整装置600另外类似于图14到19的外部调整装置502。返回到图19,处理器506(例如微处理器)处理来自差分放大器505的信号,且所得信息在用户接口508上显示。

图20说明智能调整系统(例如,图14的500)内的系统逻辑200,其允许所述系统取得由传感器阵列503接收的信号并且确定或估计:1)外部调整装置700、502的外部磁体706、708、510、511到牵引装置1000、400的内部永久磁体1010、402的一般接近度,2)外部调整装置700、502与牵引装置1000、400之间的距离,尤其是外部调整装置700、502的外部磁体706、708、510、511与牵引装置1000、400的内部永久磁体1010、402之间的距离,3)牵引装置1000、400的估计牵引长度,以及4)牵引力。在一些实施例中以连续模式采集数据,且例如以1,000Hz的取样率采集。在步骤202中,分析来自中HES 542、左HES 538和右HES 540的差分输入,具有每一完整旋转循环的最大和最小值(电压),因此在步骤204中,识别中HES 542的波形的振幅。此振幅将在若干后续功能编程206步骤期间使用。在步骤208中,执行旋转检测。举例来说,在一个实施例中,如果波形的振幅小于4.2伏特,那么确定牵引装置1000、400的永久磁体1010、402旋转固定。在步骤210中,确定外部调整装置700、502到牵引装置1000、400的永久磁体1010、402的一般接近度。举例来说,外部调整装置700、502是否足够靠近永久磁体1010、402以允许外部调整装置700、502的操作的是或否确定。在一个实施例中,分析数据采集阵列,且如果第一和最后元素(即,数据采集阵列中测得的所有值)小于0.5伏特,那么由霍尔效应传感器产生的波形的峰完成以用于处理。如果波形的振幅大于9.2伏特,那么外部调整装置700、502可接受地靠近牵引装置1000、400的永久磁体1010、402以保证持续的调整而不中止。

在步骤212中,对外部调整装置700、502与牵引装置1000、400之间(或外部磁体706、708、510、511与永久磁体1010、402之间)的实际距离完成估计。使用经验数据和曲线拟合数据来估计此距离(间隙G)。举例来说,对于一个特定实施例,图22说明针对一系列间隙G的电压(V)的所获得经验数据的曲线图266。曲线拟合产生等式:

V=286.71 G-1.095

其中V是以伏特为单位的电压,且G是以毫米为单位的间隙G。

返回到图20,在步骤214中,基于经验数据和曲线拟合数据估计在当前距离(间隙G)处的最大牵引力。举例来说,对于一个特定实施例,图23说明针对一系列间隙G的以磅(lbs.)为单位的最大可能力的曲线图268。曲线拟合272产生等式:

F=0.0298 G2–2.3262 G+60.591

其中F是以磅(lbs.)为单位的力,且G是以毫米为单位的间隙G

返回到图20,在步骤216中,基于经验数据和曲线拟合数据执行牵引力的实时估计。举例来说,对于一个特定实施例,图24说明在一个电压差分范围上以磅(lbs.)为单位的估计或实际牵引力的曲线图270。曲线拟合274产生等式:

F=0.006 Vd3–0.2168 Vd2+3.8129 Vd+1.1936

其中F是以磅(lbs.)为单位的力,且Vd是以伏特为单位的差分电压。

返回到图20,每当需要此力的值时可在用户接口226上按下按钮,或者可将其设定为连续更新。在步骤218中,检测外部磁体706、708、510、511与永久磁体1010、402之间的滑移。首先,在步骤222中,获取左HES 538与右HES 540之间的差分输入,且获得最大值和最小值。接着,在步骤224中,运行暂停检测逻辑。在一个实施例中,如果两个周期之间的波形的最大值与最小值之间的比率大于在有效波形周期期间的0.77伏特,且如果其在一行中发生两次,那么检测到滑移(例如,电路板516的左HES 538与电路板518的右HES 540之间和/或电路板516的右HES 40与电路板518的左HES 538之间)。在一个特定实施例中,如果当前振幅是前一个当前振幅的1.16倍(或更大)(或者是1.16分之一或更小),那么检测到滑移。在一个实施例中,如果最大指数与最小指数之间的差小于12伏特,那么检测到滑移。如果左HES 538和右HES 540检测到暂停,那么检测到滑移。如果检测到滑移,那么可以用声音或光发出警报228。图25说明在本发明的实施例中随着时间的两个差分电压的曲线图276。电路板516的中HES对542与电路板518的542之间的差分电压286(细线)可用以计算许多参数。三角形扰动290通常位于差分电压286的循环内。三角形扰动的振幅的改变可表示例如滑移或者可表示耦合扭矩的改变。侧面对之间(例如,电路板516的左HES 538与电路板518的右HES 540之间)的差分电压288(粗线)用于确认磁性滑移。扰动292通常位于差分电压288的循环内。扰动292的振幅的改变可在磁性滑移期间发生。

返回到图20,在步骤230中,当请求实时扭矩值时(例如,但在用户接口226上按下按钮),记录波形的电压或振幅。在步骤220中,对旋转循环进行计数(这连续地发生)。还对牵引长度进行计数。举例来说,在一个实施例中,对于内部永久磁体1010、402的每个旋转发生0.32mm的线性牵引。在另一个实施例中,对于内部永久磁体1010、402的每个旋转发生0.005mm的线性牵引。旋转数目可为内部永久磁体1010、402的旋转数目,或者内部永久磁体1010、402的旋转数目的分数或倍数(即,“旋转”可为非整数数目且可小于1或大于1)。举例来说,在内部永久磁体1010、402与导螺杆408之间具有齿轮模块412(图14)的牵引装置1000、400中,可能需要对内部永久磁体1010、402的旋转数目除以齿轮减速进行计数。举例来说,在64:1的齿轮减速中,其中导螺杆408以每单位时间为内部永久磁体1010、402的旋转数目的1/64的旋转数目进行旋转,则系统500计数的数目可以是内部永久磁体1010、402的旋转数目除以64。

除了关于磁性传感器阵列503可能的所描述功能之外,还有可能使用磁性传感器阵列503代替关于图7到10B描述的实施例的霍尔效应传感器924、926、928、930、932、934、936、938,以便跟踪外部磁体706、708、510、511的旋转。

图21中说明用于向用户传达信息且接收来自用户的输入的用户接口226的一个实施例。用户接口226可以包括图形用户接口(GUI)且可以包含显示器和控制按钮或者一个或多个触摸屏。用户接口可以包含估计间隙显示232,其告知用户外部调整装置700、502与牵引装置1000、400之间或者外部调整装置700、502的外部磁体706、708、510、511与牵引装置1000、400的内部永久磁体1010、402之间的近似距离(间隙G)。如果此间隙G足够小,那么可以点亮、振动或发声“可以牵引”指示器234,这取决于其是视觉(例如,LED)、触觉还是音频指示器。在此点,用户可以通过按压外部调整装置700、502的“开始”按钮236而起始牵引装置1000、400的牵引/缩回。替代地,在确定间隙G在可接受水平内之前,“可以牵引”指示器234或“开始”按钮236都不会在用户接口226上出现,且接着仅“开始”按钮236将显示于用户接口226上。举例来说,在一个实施例中,可接受间隙G是一个距离,低于所述距离时可在外部调整装置700、502的外部磁体706、708、510、510与牵引装置1000、400的内部永久磁体1010、402之间产生足以产生显著牵引力(例如,足以牵引骨、关节或组织)的耦合。在一些实施例中,这可以是51mm或更小的间隙G。在其它实施例中,这可以是25mm或更小的间隙G。在其它实施例中,这可以是12mm或更小的间隙。在一些实施例中,用以牵引骨、关节或组织的显著牵引力可为1磅或更大。在其它实施例中,其可为20磅或更大。在其它实施例中,其可为50磅或更大。在一些实施例中,如果间隙G过小,那么可存在额外指示器。举例来说,如果间隙是1mm或更小,那么系统500可设定为不工作,例如以便保护身体组织的组件免于过大的力或扭矩。此特征可基于例如来自图22的数据等数据而起作用。最大可能力显示240可指示在当前条件(即,间隙G)的情况下的预期最大可能力,其方式为如所示以图形方式,或显示数字,例如来自例如图23的数据等数据。

如果按压“开始”按钮236且外部调整装置700、502开始牵引牵引装置1000、400,那么系统500将开始对内部永久磁体1010、402的转数进行计数且如所描述确定估计牵引长度。这可以在牵引长度显示238上显示。估计力或实际力显示242可示出当前牵引力(或者压缩力或其它力)。这可以任何范围的更新速率来更新。替代地,其可仅当用户按压“确定力”按钮244时更新。如果检测到磁体510、511与内部永久磁体402之间或者磁体706、708与内部永久磁体1010之间的滑移,那么可以点亮、振动或发声“不拉长”指示器250,这取决于其是视觉(例如,LED)、触觉还是音频指示器。如果在任何时间发生用户应当被通知的任何显著事件,那么可以点亮、振动或发声警报246,这取决于其是视觉(例如,LED)、触觉还是音频指示器。这些事件可包含达到过高的力,或者达到牵引装置1000、400的极限,例如其最大或最小长度。数据输入模块248可用以输入数据,例如牵引装置1000、400的开始牵引长度、牵引装置的型号和/或任何相关患者人口统计数据。在系统500的操作期间的任何点,用户可按压“停止”按钮252以停止所有活动。用户接口226上可包含曲线图254,例如示出随着时间的最大可能力256和实际力258。最大可能力256随着时间的移位260可以因为间隙G由于用户在外部调整装置700、502上施加较多或较少压力而改变所造成。实际牵引力258的曲线图可以包含斜升262,因为牵引装置1000、400首先移动而无显著阻力,且接着开始遇到由组织或骨造成的阻力。其也可包含滑移跳跃264,因为内部永久磁体1010、402上的施加扭矩τA增加很少,且接着随着滑移发生而快速下降,随后被外部磁体706的下一磁极抓住且稍微增加。

系统500可具有在电压值证明装置正不恰当地使用的情况下关闭系统的限制。以上对外部磁体706、708的参考在适当情况下可视为也参考外部磁体510、511,且反之亦然。举例来说,如果患者将向后转动外部调整装置502,和/或在不正确的方向上运行外部磁体510、511。对于内部永久磁体1010和402、牵引装置1000和可调整装置400以及外部调整装置700、502也是这样。

图26到32中说明经配置以用于与系统500一起使用的可调整植入物的若干实施例。图26的可调整脊骨植入物300紧固到具有椎骨282和椎间盘284的脊骨280。第一末端312通过椎弓根螺钉318紧固到脊骨280的一部分,例如紧固到第一椎骨316。第二末端314通过椎弓根螺钉322紧固到脊骨280的一部分,例如紧固到第二椎骨320。替代地,可以使用钩、线或其它锚定系统将可调整脊骨植入物300紧固到脊骨280。椎骨的许多不同部分可用以紧固可调整脊骨植入物300。举例来说,例如在前部放置的可调整脊骨植入物300中,椎弓根、棘突、横突、骨板和椎骨体。可调整脊骨植入物300可替代地在任一或两个末端紧固到肋骨或髂骨。可调整脊骨植入物300包括第一部分301和第二部分302。第一部分301包含中空外壳324,且第二部分302包含杆326,所述杆在两个方向上轴向可延伸,且以伸缩方式包含于中空外壳324内。永久磁体304包含于中空外壳324内且经配置以用于旋转。永久磁体304经由中间齿轮模块310耦合到导螺杆306。在一些实施例中可消除齿轮模块310,其中永久磁体304直接连接到导螺杆306。在任一实施例中,永久磁体304的旋转(例如,包含通过施加外部调整装置700、502的外部施加移动磁场)造成导螺杆306的旋转(以相同旋转速度或者以不同旋转速度,这取决于使用的传动装置)。导螺杆306与安置于杆326内的阴螺纹308以螺纹方式接合。可调整脊骨植入物300的某些实施例可用于脊骨280的牵引或脊骨280的压缩。可调整脊骨植入物300的某些实施例可用以矫正例如由于脊柱侧凸、超高(或超低)脊柱后凸或者超高(或超低)脊柱前凸而具有脊骨变形的患者的脊骨。可调整脊骨植入物300的某些实施例可用以牵引脊骨,以便打开可能已经造成患者疼痛的脊骨管。可调整脊骨植入物300的某些实施例可用于脊骨的可调整动态稳定,以用于运动范围的控制。可调整脊骨植入物300的某些实施例可用以矫正脊椎前移。可调整脊骨植入物300的某些实施例可用以在融合期间稳定脊骨,从而允许受控负载共享或者脊骨的可选择卸载。可调整脊骨植入物300可在某些实施例中配置为可调整人工椎间盘或者经配置以调整椎骨体高度。在早期发作脊柱侧凸的治疗中,可调整脊骨植入物300在脊柱侧凸曲线296上紧固到患者的脊骨280,且通过系统500间歇性地拉长。为了获得脊骨的所需生长速率,可以确定对于所述患者最有效的特定力。或者,可确定总体平均力(例如20磅)为有效的,作为在拉长(牵引程序)期间的力目标。系统500允许操作者确定是否达到目标力,且也可保护以免过大的力施加于脊骨280上。在图26中,示出脊骨调整装置300的中心与在顶点椎骨282处的脊骨280之间的距离D。这可以例如从X射线图像测得。目标力可以从如下界定的目标“不弯曲”力矩导出:

MU=D FT

其中MU是目标不弯曲力矩,D是距离D,且FT是目标力。

图27说明骨328,其中可调整髓内植入物330放置于髓管332内。在此特定情况下,骨328是股骨,但多种其它骨是预期的,包含但不限于胫骨和肱骨。可调整髓内植入物330包含具有腔338的第一部分334以及以伸缩方式安置于第一部分334内的第二部分336。在第一部分334的腔338内的是可旋转永久磁体340,其例如经由齿轮模块344以旋转方式耦合到导螺杆342。第一部分334例如使用骨螺钉350紧固到骨328的第一区段346。第二部分336例如使用骨螺钉352紧固到骨328的第二区段348。永久磁体340的旋转(例如,通过施加外部调整装置700、502的外部施加移动磁场)造成导螺杆342在安置于第二部分336中的阴螺纹354内的旋转,且使第一部分334和第二部分336移动到一起或分开。在肢体拉长应用中,可能希望通过产生截骨356且接着逐渐牵引两个骨区段346、348远离彼此而增加骨328的长度。大约每天一毫米的速率已经展示为在使骨的长度增长方面为有效的,具有最小的非联合或早期愈合。周围软组织的拉伸可造成患者显著疼痛。通过使用系统500,患者或医生可以确定患者的疼痛阈值与由系统500测得的力之间的关系。在未来的拉长中,可以测量力,且避免疼痛阈值力。在某些应用中(例如,损伤、有问题的肢体拉长),可能希望在两个骨区段346、348之间施加受控的压缩力,以便形成愈合组织,引发受控骨生长,或在不需要肢体拉长的情况下简单地引发治愈。系统500可用以对两个骨区段346、348之间的空间施加受控压缩。

图28中说明骨328,其中可调整髓内植入物358放置于髓管332内。在此特定情况下,骨328是股骨,但多种其它骨是预期的,包含但不限于胫骨和肱骨。可调整髓内植入物358包含具有腔362的第一部分360以及以旋转方式安置于第一部分360内的第二部分364。在第一部分360的腔362内的是可旋转永久磁体366,其例如经由齿轮模块370以旋转方式耦合到导螺杆368。第一部分360例如使用骨螺钉350紧固到骨328的第一区段346。第二部分364例如使用骨螺钉352紧固到骨328的第二区段348。永久磁体366的旋转(例如,通过施加外部调整装置700、502的外部施加移动磁场)造成导螺杆368在安置于旋转模块374中的阴螺纹372内的旋转,且使第一部分360和第二部分364相对于彼此旋转地移动。旋转模块374可以利用第8,852,187号美国专利中公开的实施例。在骨旋转变形应用中,可能希望通过产生截骨356且接着使骨区段346、348相对于彼此逐渐旋转来改变骨328的第一部分346与第二部分348之间的定向。周围软组织的拉伸可造成患者显著疼痛。通过使用系统500,患者或医生可以确定患者的疼痛阈值与由系统500测得的力之间的关系。在未来的旋转中,可以测量力,且避免疼痛阈值力。

图29和30中说明膝关节376,且其包括股骨328、胫骨394和腓骨384。有膝关节376的骨关节炎的某些患者可能适合于经配置以非侵入式调整在胫骨394中制作的楔截骨388的角度的植入物,所述截骨将胫骨394划分为第一部分390和第二部分392。两个此类植入物包含可调整髓内植入物386(图29)和可调整板植入物420(图30)。可调整髓内植入物386包含使用一个或多个骨螺钉378、380紧固到胫骨394的第一部分390的第一部分396,以及使用一个或多个骨螺钉382紧固到胫骨394的第二部分392的第二部分398。可调整髓内植入物386内的永久磁体381以旋转方式耦合到导螺杆383,所述导螺杆又接合第二部分398的阴螺纹385。在特定实施例中,骨螺钉378在枢转接口387处穿过可调整髓内植入物386。在截骨388的角度随着一次或多次非侵入式调整而增加时,骨螺钉378能够相对于可调整髓内植入物386枢转,同时仍将可调整髓内植入物386牢固地保持到胫骨394的骨。每天约0.5mm与2.5mm之间的速率可在使骨的角度增长方面为有效的,具有最小的非联合或早期愈合。周围软组织的拉伸可造成患者显著疼痛。通过使用系统500,患者或医生可以确定患者的疼痛阈值与由系统500测得的力之间的关系。在未来的拉长中,可以测量力,且避免疼痛阈值力。

可调整板植入物420(图30)包含使用一个或多个骨螺钉426、428在外部紧固到胫骨394的第一部分390的具有第一板438的第一部分422,以及使用一个或多个骨螺钉430在外部紧固到胫骨394的第二部分392的具有第二板440的第二部分424。可调整板植入物420内的永久磁体432以旋转方式耦合到导螺杆434,所述导螺杆又接合第二部分424的阴螺纹436。周围软组织的拉伸可造成患者显著疼痛。通过使用系统500,患者或医生确定患者的疼痛阈值与由系统500测得的力之间的关系。在未来的拉长中,可以测量力,且避免疼痛阈值力。

图31中说明可调整缝合锚钉444。虽然在肩关节136的肩袖134中示出实施例,但可调整缝合锚钉444也应用于前部十字韧带(ACL)修复,或其中紧固张力是影响因素的任何其它软组织到骨的附接。可调整缝合锚钉444包括第一末端446和第二末端448,所述第二末端经配置以穿过皮质骨146和松质骨142插入到肱骨138的头部140中。在第一末端446处的螺纹460紧固到皮质骨146,且第二末端448可以另外插入到穴144中用于进一步稳定。缝线450缠绕在可调整缝合锚钉444内的线轴458周围,延伸出可调整缝合锚钉444,且例如在肱骨138的较大结节148处通过一个或多个绳结452穿过穿孔152附接到肌肉132的腱150。永久磁体454可旋转地保持于可调整缝合锚钉444内,且例如经由齿轮模块456可旋转地耦合到线轴458。可能希望在手术期间和/或在手术之后保持肌肉在极特定范围的张力下紧固到骨,使得使治愈最大化且优化运动范围。使用系统500,可以在手术时、紧接在手术之后以及在手术之后的数周的治愈周期期间测量、相应地调整力。

图32说明具有可调整环472的可调整限制装置462,所述可调整环经配置以紧固在体管120周围并且以封闭物或搭扣474封闭。可调整限制装置462可以在腹腔镜手术中植入。具有缝合突片466的外壳464紧固到患者,方法例如是通过缝合突片466中的孔468缝合到患者的组织,例如腹部肌肉的筋膜。在外壳464内的是磁体478,其以旋转方式耦合到导螺杆482。螺母480以螺纹方式与导螺杆482接合,且还与张力线476接合,所述张力线可包括例如镍钛诺线等线。张力线476穿过保护鞘470,且在构成可调整环472的柔性护套484的内部周围经过。柔性护套484可由硅酮构造,且可具有波状形状486,这有助于其收紧到较小直径的能力。在可调整环472的边缘处以横截面示出管道120,以便示出管道120的受限内部488。可以可调整地限制某些胃肠管道,包含胃、食道和小肠。也可以可调整地限制例如肛门括约肌和尿道括约肌等括约肌。也可以可调整地限制例如肺动脉等血管。在可调整限制装置462的调整期间,外部调整装置700、502接近于患者放置且磁体478以非侵入方式旋转。磁体478的旋转使导螺杆482旋转,这取决于旋转方向而朝向磁体478拉动螺母480或者推动螺母远离磁体478,从而分别增加限制或释放限制。因为受限制的管道可能具有复杂的几何形状,所以其有效大小难以表征,甚至使用例如CT或MRI等三维成像形态也是如此。管道上的收紧力可能是估计有效限制的较准确方式。举例来说,以大约一磅的切向力(类似于张力线476上的张力)限制胃。通过每英寸具有约80个螺纹的精细导螺杆,可以做出螺母480及因此可调整环的精细调整。通过在磁体478与导螺杆482之间包含齿轮模块490,且可做出甚至更精确的调整。通过使用系统500,可以在调整期间测量力,使得在患者内发生改变(组织生长、变形等)之后可以返回到“理想限制”。

图34说明具有一个或多个磁体1106、1108的外部调整装置1100,所述磁体可包括永久磁体或电磁体,如本文的其它实施例中描述。在一些应用中,霍尔效应传感器534、538、540中的一者或多者可能经历不希望的量的饱和。图34中示出具有在肌肉/脂肪1116内延伸的骨1118以及皮肤1104的上部腿部分1102。具有磁体1010的例如肢体拉长植入物等植入物1110放置于骨1118的髓管内。例如在具有大量肌肉或脂肪1116的患者中的较大上部腿部分1102中,磁体1010与霍尔效应传感器534、538、540之间的距离“A”减小了磁体1010可对霍尔效应传感器534、538、540赋予的信号,因此增加了一个或多个磁体1106、1108对霍尔效应传感器534、538、540具有的相对影响。外部调整装置1100包含与一个或多个磁体1106、1108间隔的一个或多个霍尔效应传感器597、599。所述一个或多个霍尔效应传感器597、599可以直接或远程地电耦合到外部调整装置1100。在一些实施例中,所述一个或多个霍尔效应传感器597、599可以机械附接到外部调整装置1100,或者可附接到患者的身体,例如附接到上部腿部分1102。距离B和C可各自在约5cm与15cm之间、约7cm与11cm之间或约8cm与10cm之间的范围内。在一些实施例中,霍尔效应传感器597、599中的一者或两者可包含例如板等屏蔽件1112、1114。所述屏蔽件可包括铁或(美国伊利诺伊州本森维尔市的Magnetic Shield Corporation)。所述屏蔽件可以某一方式成形或定向以使得其不在特定霍尔效应传感器597、599与磁体1010之间,但在特定霍尔效应传感器597、599与一个或多个磁体1106、1108之间。霍尔效应传感器597、599可各自用以获取差分电压,如关于其它霍尔效应传感器534、538、540所描述。霍尔效应传感器597、599与一个或多个磁体1106、1108之间的较大距离可有利地使由于磁体1106、1108所致的饱和量最小化。另外,屏蔽件1112、1114可使饱和量显著地最小化。

虽然已经示出和描述了实施例,但在不脱离本文公开的发明性概念的范围的情况下可以做出各种修改。因此,本发明应当只受到所附权利要求书及其等效物的限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1