金属涂覆的聚合薄膜及通过金属涂覆的聚合薄膜进行电过滤和电吸附的方法与流程

文档序号:11118048阅读:451来源:国知局
金属涂覆的聚合薄膜及通过金属涂覆的聚合薄膜进行电过滤和电吸附的方法与制造工艺

本发明涉及一种金属涂覆的聚合薄膜,一种用于制造其的方法,一种电过滤装置或吸附装置,以及一种通过金属涂覆的聚合薄膜进行电过滤和电吸附的方法。



背景技术:

长时间以来,已知微多孔薄膜。该薄膜主要由聚合物制成,既用于水净化(废水、饮用水、工业用水),还在制药工业中用于制造超纯净水,也在医疗技术中用作无菌过滤器或呼吸过滤器。使用范围是多样的且非常分散。微多孔薄膜通常具有在0.01μm与10μm之间的孔径大小,且限制了对应于该孔径大小的材料。

典型地,微多孔过滤器用于分离溶解在水中的材料及获得纯净的过滤液。这通常机械地通过孔径大小而实现。大于孔径大小的所有材料被机械地阻止。除了该特征,还有另一机构,其用于在通过薄膜时阻止材料。在此涉及通过构成薄膜自身的材料的非限定吸附,如聚醚砜、聚丙烯或聚偏氟乙烯(PVDF)。在此,不同的材料不同程度地吸附不同的被溶解的材料(“Analyte Loss Due to Membrane Filter Adsorption as Determined by High-Performance Liquid Chromatography”,M.Carlson和R.D.Thompson,Journal of Chromatographic Science,卷38,二月,2000)。

对小于微多孔薄膜的孔径大小的材料定向吸附,借助于薄膜材料的材料特性,通过处理薄膜材料的化学成分而实现。例如,通过连接具有正电荷(positiv geladenen)的四价铵化合物的薄膜材料产生正电荷。在US 5,282,971中或在US 7,396,465B2中已知的正电荷的薄膜,在US 7,132,049 B2中已知的负电荷的薄膜。例如,正电荷的微多孔薄膜用于机械地阻止细菌,及允许正电荷的材料通过,从而避免通过薄膜材料的非定向的、非量化的吸附。然而,正电荷和负电荷的薄膜还可用于通过吸附约束及聚集蛋白质。正电荷的微多孔的薄膜还用于除了过滤通过吸附约束内毒素和病毒,如在DE 1999981099947A1中所示的。

在CH 678403中,已知金属涂覆的薄膜,具有在大孔与金属侧上的微孔之间的可能轻微多孔的通道。例如,在DE 101 64 214 A1中,已知具有隧道状的通道的金属薄膜。所述隧道状的通道与在本申请的语言应用中的多孔的通道不同之处在于,例如,已知多孔的聚合薄膜,其在薄膜内的实际通道之外不形成空腔。由此,多孔不能通过表述而保持一致,薄膜具有孔,即,通道,如在DE 101 64 214 A1中的。由此,多孔的通道具有在薄膜内的表面,所述薄膜以相同厚度的薄膜明显超过具有相同的孔径大小的圆形通道的表面至少50%,特别地,超过多倍,特别地,超过至少3倍。

此外,在WO 1999/22843 A1中已知的通过金属喷涂的聚合薄膜。

此外,在US 4,857,080中已知的通过金属涂层封闭的薄膜。

吸附的另一种形式是电吸附。通过在两个电极上施加正、负电压,在表面上产生带电场,实现电吸附。由电吸附和超多孔过滤的组合出现在“Removal of arsenic and humic substances(HSs)by electro-ultrafiltration(EUF)”(Weng,Y.-H.et al.,Chem.Eng.R&D卷77,1999年7月,461-468页)中。在此,通过在超过滤薄膜的附近定位的外部电极产生电场,在过滤被砷污染的水过程中,通过超过滤,负电荷的砷(V)的吸附实现提升30%至90%。在US2013/0240361A1中描述了与薄膜组合的电吸附的类似应用。在具有强吸附特征的材料与通过电荷的其再生物的组合中,描述了对透析水的清洁。结合透析薄膜过滤器描述该方法。

在EP0872278A1中描述了电吸附薄膜。在此,提供一种具有由高温分解碳构成的导电层的陶瓷薄膜。同时,气孔通过高温分解碳被封闭,且陶瓷表面在高温下,通过陶瓷表面转换为碳化物而具有导电性。在吸附方面,盐通过表面上的电吸附与该陶瓷薄膜结合。



技术实现要素:

除了通过化学处理的正或负电荷的薄膜的优点,即,机械过滤和吸附组合的优点,也有缺点。因为电荷不能变化,通过吸附被结合的材料,在薄膜加载电荷之后,仅可通过涂覆电荷的移位通过待通过的溶液,通常通过pH值变化,再次脱离薄膜或被薄膜获取。特别地,这在获取例如蛋白质的有效物质时,通过浓缩而呈现额外的成本。

在陶瓷薄膜具有导电性的表面上可能的电吸附允许对材料的灵活吸附,当然在制造方面,费用非常昂贵。在此,薄膜的孔在制造具有导电性的表面的方法内被封闭,以便在接下来的制造步骤中,通过非常高的温度为陶瓷表面提供具有导电性的碳化物层。

本发明的目的在于提供用于简单制造具有金属涂覆的聚合薄膜的方法,其适用于电过滤和/或电吸附,而不会本质地减少孔隙率,且由此降低薄膜的过滤特性或封闭气孔。

本发明的目的还在于提供用于在聚合薄膜的基础上简单制造非常耐用的、灭菌的和/或惰性的薄膜的方法。

本发明的目的还在于提供有效的装置以及用于电过滤和/或电吸附的有效方法。

本发明的目的通过根据权利要求1所述的方法,以及通过根据权利要求5所述的电过滤和/或电吸附装置,根据权利要求10所述的金属涂覆的聚合薄膜以及根据权利要求12所述的用于制造金属涂覆的聚合薄膜的方法解决。从属权利要求2至4、6至9和11以及13至15提供有利的扩展方案。

通过磁控管喷涂(Magnetronsputtern)的沉积使得可大面积地制造具有均匀层厚度和复杂层结构的薄层。磁控管沉积的基础是在诸如氩的惰性气体环境中的等离子体放电(Plasmaentladung),其通过静态磁场增强(A.Anders,Handbook of Plasma Immersion Ion Implantation and Deposition,Wiley-VHC,2004)。过程气体的离子被阴极加速,及在撞击原子时从中飞出。因此,阴极(靶)必须由应沉积的材料构成。然后,从靶飞出的原子凝聚(kondensieren)在待涂覆的基底上,且形成连续的薄层。层厚度可受控地被生产成从几个纳米至几个微米。例如,在结构玻璃涂覆中,除了圆形的磁控管,特别是对大面积涂覆,扩展具有几米长度的矩形的变型方案。由此,可涂覆薄膜的表面。

原子层沉积(英文:atomic layer deposition-ALD)是一种方法,其用于通过自限制表面反应从气相中沉积原子薄且一致的表面层(S.M.George,Chem.Rev.110,2010,111-130)。通常采用在两种反应物之间的两级反应过程。在此,第一气态的前体(Precursor)被导入处理腔(Prozesskammer)中且被吸附在表面上。同时,由于在表面上仅可附着前体单层(Monolage),导致处理(Prozesses)的自限制。多余的部分在接下来的通常用氩气的惰性气体的冲扫步骤中离开反应腔。然后,第二前体气体被导入反应腔中,且同样被附着在表面上。现在进行两种被附着的前体的化学反应,这导致形成反应产物的单层厚的层。然后,气态反应产物再次通过惰性气体被冲扫出反应腔。通过该四级过程,前体仅在表面上且非气相地反应,由此,出现非常薄的且均匀的层。因此,通过重复所述步骤,可受限地逐原子层涂覆气体可进入的表面。从气相中吸附反应产物,使得可形成具有高长宽比的复杂结构的非常均匀的涂层,且因此,在目前的半导体工业中被广泛应用。

如发明人已知的,该方法的优点在于,聚合薄膜的多孔的通道、开口和空腔也可被有效涂覆,且由此,可产生惰性的和/或灭菌的多孔薄膜。由此,也可产生具有用于电吸附或电过滤的非常大的导电(leitender)表面的薄膜。

为了实现根据本发明的目的,其涉及金属和/或氧化铝涂覆的聚合薄膜及其制造,现在,聚合薄膜(例如聚砜、聚醚砜、聚丙烯或聚偏二氟乙烯)通过原子层沉积方法设置具有金属和/或氧化铝的薄层。在此,在处理中,选择薄膜短的停留时间,使得温度保持在200℃以下,且聚合薄膜在其原有的化学结构方面不受影响。作为示例聚醚砜薄膜设置具有20nm的由铝构成薄层的微多孔结构。在该薄膜上进行孔隙率检测。下表示出对薄膜的孔隙率的测量结果,一方面,在初始状态下,另一方面,具有20nm铝的限定厚度层。

表1:在初始状态下和具有20nm厚的铝层的微多孔的聚醚砜薄膜的孔径大小。

可看到,薄膜的孔隙率受影响低于10%。

根据所述方法,根据用于制造金属涂覆的聚合薄膜的权利要求1,金属:

a.提供聚合薄膜;

b.通过ALD方法对聚合薄膜进行金属涂层,其中特别地,聚合薄膜的温度不高于200℃。

在此,金属涂层和/或氧化铝至少平地被涂覆在聚合薄膜的第一侧上和/或至少被涂覆在气体可从一侧进入的面上,直至由聚合薄膜的金属和/或氧化铝构成的涂层的层厚度在基于初始沸点(Bubble)孔和/或平均气孔径大小相对于未涂覆的聚合薄膜在1%与45%之间。

特别地,涂层多孔且直接被涂覆。

直接表示,涂层通过ALD直接被涂覆到聚合薄膜上。对此,通常首先涂覆前体,且然后,涂覆真正的金属层。特别有利地,前体包含氧化铝,使得在之后的金属沉积中,涂层由金属和氧化铝构成。然而,针对一些应用,沉积氧化铝也是足够的。

例如,氧化铝涂覆的薄膜可用作为非常耐用的薄膜。该涂层被标识为多孔的,不是因为其自身强制性地具有多孔的表面,而是因为其尽可能地反映(widerspiegelt)且不封闭聚合薄膜的多气孔表面。

气体可从一侧进入的表面可以是薄膜的整个表面。孔可完全或部分地被封闭,从而减小气体可从一侧进入的表面。

也可实现两侧的涂层,将气体从聚合薄膜的两侧中的至少一侧进入的表面进行涂覆。因此例如,可产生两侧涂覆的薄膜,其内部区域未被涂覆,这是由于气孔在之前已被封闭。

随后,可再次打开孔。

因此,可产生涂覆的聚合薄膜,其具有略微减少的孔隙率和很好的传导性。若聚合薄膜不仅在一侧上,而是根据上述方法完全涂覆有金属和/或氧化铝,且由此,被封闭在金属和/或氧化铝中,即特别地,多孔通道的表面完全涂覆有金属和/或氧化铝,则产生惰性的且非常耐用的薄膜。

作为用于涂覆的金属,特别地,可考虑铜、铝、银、金、镍、铂和/或钨,或者包含铜、铝、银、金、镍、铂和/或钨的合金。

特别优选地,惰性的和/或灭菌的涂层,特别地,通过使用灭菌的和/或惰性的金属和/或氧化铝用于涂覆。例如,灭菌的涂层可在涂覆中使用银的情况下实现。例如,惰性的涂层可通过使用用于涂覆的钨实现。

作为聚合薄膜,例如,可考虑由聚砜、聚丙烯、聚醚砜、聚醚酰亚胺(Polyethermid)、聚丙烯腈、聚碳酸酯、聚对苯二甲酸乙二酯、聚偏氟乙烯(PVDF)和/或聚四氟乙烯构成的薄膜,或包括聚砜、聚丙烯、聚醚砜、聚醚酰亚胺、聚丙烯腈、纤维素、聚碳酸酯、聚对苯二甲酸乙二酯、聚偏氟乙烯(PVDF)和/或聚四氟乙烯的薄膜。

特别有利地,金属和/或氧化铝被沉积,直至聚合薄膜的由金属和/或氧化铝构成的涂层的层厚度在基于初始沸点孔和/或平均气孔径大小相对于未涂覆的聚合薄膜在1%与45%之间。

对于这些值,可统一协调高稳定性和传导性,具有很好的渗透性和较高的孔隙率。

优选地,金属和/或氧化铝被沉积,直至具有由金属构成的涂层的聚合薄膜的孔隙率在基于初始沸点孔和/或平均孔径大小相对于未涂覆的聚合薄膜减少1%至50%,特别地,减少1至20%。对于这些值,可统一协调高稳定性和传导性,具有很好的渗透性和较高的孔隙率。

优选地,金属和/或氧化铝被沉积,直至具有由金属和/或氧化铝构成的涂层的聚合薄膜的初始沸点孔和/或平均孔径大小为0.01至10μm。对此,选择具有大于0.01至10μm的初始沸点孔和/或平均孔径大小的聚合薄膜。

有利地,聚合薄膜在第一侧和与第一侧对置的第二侧上平且多孔地直接涂覆有金属和/或氧化铝。

由此,在忽略多孔通道以及边缘的涂层时,在两侧之间不出现传导连接,实现具有两个导电的且相互绝缘的表面的薄膜。例如,这可通过事先封闭及随后打开孔实现。若相反地,多孔的通道同样完全被涂覆,及若需要也涂覆边缘,则出现完全封闭的且非常耐用的薄膜。

有利地,金属和/或氧化铝被沉积,直至由金属和/或氧化铝构成的涂层的厚度或由金属和/或氧化铝构成的涂层的平均厚度为至少1nm,特别地,至少为5nm,及最大为50nm。对于这些值,可统一协调高稳定性,及在至少为5nm的情况下,也可统一协调良好的传导性,具有很好的渗透性和较高的孔隙率。

有利地,未涂覆的聚合薄膜的孔径大小选择在0.01与15μm之间,特别地,直至10μm。在此,可很好地防止封闭孔。

有利地,金属和/或氧化铝被沉积,直至薄膜内的孔的由金属和/或氧化铝构成的涂层的厚度,或薄膜内的孔的由金属和/或氧化铝构成的涂层的平均厚度最小为1nm,及最大为50nm。

具体地,本发明的目的将通过具有多孔通道的金属和/或铝涂层的聚合薄膜实现,其中,金属和/或铝涂层的聚合薄膜具有带有多孔通道的内置的聚合薄膜和由金属和/或氧化铝构成的涂层,其特征在于,聚合薄膜完全被由金属和/或氧化铝构成的涂层封闭,且由金属和/或氧化铝构成的涂层的厚度为1nm,特别地,为5nm,直至50nm。

在此,该涂层特别直接地、特别是通过ALD被涂覆在聚合薄膜上。由此特别地,被涂覆的聚合薄膜仅由聚合薄膜、所使用的前体或其组成部、以及金属和/或氧化铝涂层构成。在此特别地,氧化铝被用作为前体的组成部分,即特别地,薄膜由聚合薄膜、氧化铝和金属构成。然而,薄膜也可仅由聚合薄膜、氧化铝构成。

在聚合薄膜的、涂层的以及孔的有利实施方式和特征方面,参考针对所述方法的前述实施方式,其可类似具体有利地转换。

特别有利地,由此,具有由金属和/或氧化铝构成的涂层的聚合薄膜在基于初始沸点孔和/或平均孔径大小相对于未涂覆的聚合薄膜具有在1%与50%之间,特别地,在1与20%之间降低的孔隙率。

为实现根据本发明的目的,在电过滤或电吸附方面,根据本发明的方法是,

a.提供聚合薄膜,至少在该聚合薄膜的第一侧上具有由金属构成的平且多孔的涂层;

b.提供对应电极;

c.在用于收纳液体的容器中布置聚合薄膜和对应电极,而在它们之间不存在导电连接;

d.将液体注入容器;

e.在聚合薄膜的由金属构成的涂层与对应电极之间施加电压;

f.从容器中至少部分地移除液体,或至少部分地使液体通过薄膜;

g.电压反转。

如果在步骤f中移除全部液体,则有利地,在步骤g之前或之后供给液体,这是另一种可能的方式。特别地,按照设定的顺序实施各步骤,其中,步骤d和e还可以相反的顺序进行。

有利地,在具有金属涂层的聚合薄膜中,它是根据本发明的金属涂覆的或根据本发明的具有金属涂层的薄膜,如上所述的。特别地,下述情况是特别好的,即,多孔通道也涂覆金属。因为电活性的表面沉积呈现出明显更大。然而,也可使用其他金属涂覆的聚合薄膜。

特别地,在使用具有惰性涂层的聚合薄膜时,其为了金属涂覆而与液体相配合,使得所述聚合薄膜在接触液体时是惰性的。

特别有利地,对应电极通过另一平且多孔的由金属构成的涂层形成在与第一侧对置的第二侧上,其中,由金属构成的平的涂层彼此通过聚合薄膜绝缘,或者对应电极通过被布置在绝缘且可渗透的垫片的中间层之下的可渗透电极形成,特别地,通过金属网形成。

有利地,具有由金属构成的涂层的聚合薄膜的孔隙率在基于初始沸点孔和/或平均孔径大小被选择成相对于未涂覆的聚合薄膜减少1%至50%,特别地,减少1至20%。在此,在同时具有较高的孔隙率的情况下给出可靠的传导性。

有利地,这样地选择聚合薄膜,即,由金属构成的涂层的厚度为1nm,特别为5至50nm,和/或未涂覆的聚合薄膜的孔径大小,特别地,大于0.01μm,及特别地,小于15μm。在此,在同时具有较高的孔隙率的情况下,给出可靠的传导性。

特别有利地,提供用于测量目的的参考电极(Referenzelektrode),及测量参考电极上的电势。

有利地,除了根据本发明被作为电极的具有金属涂层的聚合薄膜、对应电极、以及如需要情况下的参考电极,需提供至少一个另一电极,特别是,至少一个另一具有金属涂层的聚合薄膜,特别地,根据本发明如上所述的作为另一电极。该附加的电极同样在容器中,且在电性地(elektrisch)由具有金属涂层的聚合薄膜和对应电极进行设置,特别是在步骤c中。

特别地,在至少一个另一电极上施加电压,该电压可这样选择,对应电极的电势在具有金属涂层的聚合薄膜与至少一个另一电极的电势之间。特别地,容器中的对应电极被布置在具有金属涂层的聚合薄膜与至少一个另一电极之间。

在该情况下,使用多个参考电极及分别布置在电极和/或对应电极之间也是有意义的。

在聚醚砜薄膜上实施电吸附的测试。对此,通过磁控管喷涂提供实验室过滤薄膜,其具有直径为d=47mm,铝层为15-nm。在铝表面上粘附铜线缆,及设置有绝缘漆。剩余的线缆约为30cm长且被绝缘。薄膜被置于商业标准的低压过滤单元中。超出部分填充纯净水,且在超出部分中置入由铂构成的对应电极。

在超出部分中置入内毒素,使得超出部分具有1000IE(内毒素国际单位)的内毒素浓度。在没有压力的情况下实现过滤。在没有涂层的初始状态下实现薄膜的过滤,及用具有15nm的涂层的薄膜实现过滤。在涂层的薄膜上施加+500mV的电压。在下表中示出测试结果。

可明显看到,通电的铝涂层,内毒素快速地完全被吸附,使得浓度趋近于零。在没有金属涂层的初始状态下的聚合薄膜,还有金属涂覆的聚合薄膜,在没有施加电压的情况下,吸附的较少。

薄膜上的金属层的层厚度影响孔的剩余大小。例如,在平均孔径大小为0.1μm的微过滤薄膜中,25nm的层厚度导致孔径大小在计算方面减小至大约0.05μm,40nm的层厚度导致减小至0.02μm。这导致孔隙率明显地减少。替代在微过滤薄膜中40nm的层厚度,在该示例中通常更有意义的是,选择孔径大小为0.05μm的过滤薄膜,及设置15nm的层厚度,其通过计算导出孔径大小为0.02μm。由此,可明显实现更高的孔隙率。

具体地,本发明的目的将通过电吸附和/或电过滤装置实现,其包括:对应电极;聚合薄膜,所述聚合薄膜在其至少一侧上具有平且多孔的由金属构成的涂层;以及用于在相对于对应电极上施加电压的由金属构成的涂层的接触部。

该装置还可包括用于产生电压的装置,特别地,将其布置成可在聚合薄膜的金属涂层与对应电极之间产生电势。

特别地,对应电极和具有平且多孔的由金属构成的涂层的聚合薄膜彼此电绝缘。

对此,特别地,电吸附和/或电过滤装置具有将液体收纳和/或输送至容器内,聚合薄膜和对应电极被设置为相互电绝缘。

电吸附和/或电过滤装置可包括一个或多个参考电极。

有利地,电吸附和/或电过滤装置也可包括至少一个另一电极,如参照上文中所描述的电吸附和/或电过滤方法。有利地,其他参照该方法描述的具体特征也可转换到电吸附和/或电过滤装置中。

有利地,具有金属涂层的聚合薄膜是根据本发明的金属涂覆的或根据本发明的具有金属涂层的薄膜,如上文中所描述的。特别地,下述情况是特别好的,即,当多孔通道也涂覆金属时。因为电活性的表面沉积明显更大。然而,也可使用其他金属涂覆的聚合薄膜。

特别有利地,对应电极为在与第一侧对置的第二侧上的另一、平且多孔的由金属构成的涂层,或者,对应电极为被布置在绝缘的和可渗透的垫片的中间层之下的可渗透的电极形成,特别是由金属网形成。

附图说明

在图1中示意性地示出根据本发明的电过滤装置。通过该装置可实施根据本发明的电过滤方法。

具体实施方式

液体被注入接收容器,及在通过薄膜构成的电极与对应电极之间施加电压的情况下,通过由金属涂覆的聚合薄膜构成的薄膜过滤到收集容器中。玻璃料用于稳定薄膜。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1