一种生物医用Zn‑Mn‑Cu系锌合金及其制备方法与流程

文档序号:11266876阅读:745来源:国知局
一种生物医用Zn‑Mn‑Cu系锌合金及其制备方法与流程

本发明涉及一种生物医用zn-mn-cu系锌合金及其制备方法,具体涉及一种zn-mn-cu系锌合金的制备方法及其在可降解医用植入体中的应用,属于医用可降解金属材料成分设计和制备技术领域。

技术背景

金属材料、无机材料、高分子材料、复合材料及仿生材料等是目前应用于临床生物医用的材料,其中医用金属材料因力学性能和加工性能较好而获得了最广泛的应用,如:316l不锈钢、co-cr-mo合金、we43镁稀土合金、ti-6al-4v合金、zn-mg合金、纯铁等。这些材料可分为2类,一类为在人体内可降解的材料,另一类为在人体内不可降解的材料。在人体内不可降解的材料,如316l不锈钢、ti-6al-4v合金、co-cr-mo合金等,为永久性植入,当植入体在人体内的服役期满后必须通过二次手术取出,给患者增添了生理痛苦和经济负担。而在人体内可降解的材料,如纯铁、镁合金、锌合金等,适于需要临时服役的器件,如血管支架、尿道支架、骨折固定板等。这些器件植入人体起到辅助和促进组织修复的作用,随着组织修复逐渐完成,这些器件被体液逐渐降解,其分解产物一部分被人体吸收促进组织修复,另一部分通过新陈代谢排出体外,无需二次手术取出,不会给患者增加苦痛和经济负担。可降解医用生物金属材料已成为当前国际生物材料领域的研究热点。

近年来,可降解生物医用镁合金材料成为研究的热点之一,开发了一系列的生物医用可降解镁合金,以含稀土元素的镁合金最具临床使用前景。德国biotronik公司用mg-re(稀土)合金制备的dreams1g血管支架,材料的抗拉强度达195mpa,但延伸率只有2%,吸收周期为0.5年。由此可知目前镁合金作为可降解生物医用材料存在的主要问题是塑性较低以及在人体中被腐蚀的速度太快。

最近,锌合金作为可降解生物医用材料得到了人们的关注,相关研究尚在起步阶段。在传统工程应用中,金属zn常作为牺牲阳极材料涂层对基体金属起到防腐蚀保护作用,如,热镀锌钢材。但在生物医用领域,与镁相比,金属锌及其合金具有更高的腐蚀电位,因此比镁的腐蚀速度慢,更加符合临床需求,有望成为新型生物医用可降解植入材料。中国发明专利cn104212998a中公布了一种zn-mg系锌合金及其制备方法与应用,中国发明专利cn104195369b中公布了一种zn-ca系锌合金及其制备方法与应用,中国发明专利cn102011029a中公布了一种拉链牙带用zn-cu-al-mg系合金及其制备方法。

锌、锰和铜均是人体需要的金属元素。锌在人体中作用非常大,有生命的火花塞之称。人体正常含锌量为2~3克,成人每天需要锌13-15毫克,它是人体内多种酶的主要成分。锌分布于大部分组织器官中,其中肝脏、肌肉和骨骼中含量较高。人体缺锌将会视觉恶化、伤口和创伤愈合速度变慢、身体和智力发育不良,严重时导致侏儒症。锰在人体中的作用也不小,中国营养学会制定的锰的安全和适宜的摄入量参考指标中,各年龄阶段人群对应的指标有所差异,其中11岁以上各年龄段人群每天均为2~3毫克。人体缺锰会影响骨骼的正常生长和发育,影响糖的新陈代谢,引发神经衰弱综合症,加速人体衰老等严重后果。铜也是人体必需的元素,世界卫生组织建议成人每公斤体重每天应摄入0.03毫克铜,孕妇和婴儿应加倍。铜是人体多种蛋白的组成元素,对中枢神经、免疫系统、大脑、肝脏和心脏等多个脏器的发育和功能有重要影响。铜在人体内含量约100~150毫克,是人体中含量位居第二的必需微量金属元素。缺铜会引发骨质酥松,导致贫血、冠心病、不孕症等。

目前国内外还没有文献和专利报道本专利所发明的zn-mn-cu系锌合金的制备方法及性能,并提出将这种zn-mn-cu系锌合金用作可降解生物医用材料。



技术实现要素:

本发明的目的是提供一种zn-mn-cu系锌合金及其制备与应用方法,涉及一种zn-mn-cu系锌合金的制备方法及其在可降解医用植入体中的应用。本发明制备的锌合金具有优异的综合力学性能,能够在生物体内提供长期有效的支撑力,具有优异的细胞相容性、血液相容性和组织、器官相容性,可用于生物医用植入体的制备。

本发明提供的zn-mn-cu系锌合金,包括zn元素、mn元素和cu元素。合金元素成分范围是0.1~5%的mn,0.1~2%的cu,余量为zn,上述成分以质量百分比计算,所述zn-mn-cu合金中mn的质量百分数范围是0.1~5%;cu的百分数范围是0.1~2%。

如上所述的zn-mn-cu系锌合金,合金元素按重量百分比计算:

(1)由98.5%~99.6%的zn,0.3%~0.8%的mn和0.1%~0.7%cu组成;

(2)由98.8%的zn、0.8%的mn和0.4%的cu组成;

(3)由99.2%的zn、0.4%的mn和0.4%的cu组成。

本发明制备的zn-mn-cu系锌合金为致密结构,具备良好的组织相容性,是一种可靠的生物医用植入材料。

如上所述的zn-mn-cu系锌合金的制备方法,具体制备步骤如下:

1)铸造:以纯zn、纯mn和纯cu为原料,在氩气气氛保护的真空感应熔炼炉中,在750~800℃精炼3~7分钟,然后浇入模具空冷至室温;

2)塑性加工:塑性加工方法包括轧制、挤压和拉拔中至少一种。

如上所述的zn-mn-cu系锌合金所述轧制分为2种轧制工艺路线,按这2种工艺路线的任何一种都可制得成品板材:

(1)热轧:温度为250~380℃;

(2)热轧→冷轧:热轧温度为250~380℃,冷轧温度为室温;上述热轧和冷轧的变形量为20~95%。

进一步的,所述挤压温度为200~350℃进行,挤压比为10~90。

进一步的,所述拉拔温度为室温至250℃,拉拔面缩率为5~95%。

如上所述锌合金的表面还可涂覆可降解高分子涂层、陶瓷涂层或药物涂层。

所述可降解高分子涂层、所述陶瓷涂层和所述药物涂层的厚度均可为0.01~5mm。

所述可降解高分子涂层的制备材料可为下述至少一种:聚乳酸(pla)、l-聚乳酸(plla)、聚羟基乙酸(pga)、聚乙酸内脂(pcl)、聚氰基丙烯酸脂(paca)、聚对二氧杂环乙烷酮(poly-(p-dioxanone))。

所述陶瓷涂层的制备材料可为下述至少一种:羟基磷灰石(hydroxyapatite)、磷酸三钙(tcp)或磷酸四钙(ttcp)。

所述药物涂层可为下述至少一种:雷帕霉素(rapa)及其衍生物涂层,如羟乙基衍生物依维莫司(everolimus)涂层。

本发明利用zn及zn合金可在生物体内降解的特点,选择对人体有益的mn元素和cu元素作为合金元素改善纯zn的力学性能。本发明的zn-mn-cu系合金的力学性能符合医用植入体材料的强度和塑性要求,同时又可体内降解,既可以克服mg及mg合金降解速率过快导致植入体内力学性能快速丧失的缺点,又不存在ti及ti合金、不锈钢、co-cr-mo合金等医用金属材料不可降解的问题。本发明的zn-mn-cu系锌合金兼具可生物降解和长期有效的特点。

本发明提供的zn-mn-cu系锌合金可用于制备如下医用植入体:心脏支架、尿道支架、肠道支架、气管支架、胆道支架、骨组织修复支架、接骨器、固定线、固定螺丝、固定针、夹骨板、牙髓针或牙齿填充材料。

本发明具有如下优点:

(1)本发明设计的zn-mn-cu系锌合金,含量最多的合金元素采用低成本的mn元素,且合金元素总含量低,合金的成本低,适于大范围推广使用;

(2)本发明制备的zn-mn-cu系锌合金的力学性能符合医用植入体材料的强度和塑性要求,同时可体内降解,具有适宜的体内降解速度,可提供长期有效的支撑效果;

(3)本发明设计的zn-mn-cu系锌合金用于可降解医用植入体时,在植入一段时间内能发挥金属材料高强度的优势,完成植入体的功能。植入人体病变部位后,随着病变部位的修复,其被人体体液逐渐腐蚀降解,最终被完全降解。降解过程中释放的mn离子可以促进组织器官的生长复原,并且具有减少肝脏内脂肪含量、促进胆固醇合成等诸多益处。降解过程中释放的cu离子构成含铜酶与铜结合蛋白,参与铁的代谢和红细胞生成。未能被人体吸收的zn、mn和cu可以通过人体新陈代谢排出体外。

附图说明

图1为实施例1制备的铸造zn-mn-cu系锌合金的拉伸应力-应变曲线。

其中图1a为铸造zn-0.8mn-0.4cu系锌合金的拉伸应力-应变曲线,

图1b为铸造zn-0.4mn-0.4cu系锌合金的拉伸应力-应变曲线;

图2为实施例2制备的热轧zn-mn-cu系锌合金的拉伸应力-应变曲线。

其中图2a热轧zn-0.8mn-0.4cu系锌合金的拉伸应力-应变曲线,

图2b热轧zn-0.4mn-0.4cu系锌合金的拉伸应力-应变曲线,

图3为实施例2制备的热轧zn-0.4mn-0.4cu合金在模拟体液中的电化学腐蚀极化曲线。

具体实施方式

下述实施例中所使用的实验方法如无特别说明,均为常规方法。

下述实施例中所用的材料、试剂等,如无特别说明,均可从商业途径得到。

下述实施例中所用的百分含量,如无特别说明,均为质量百分含量。

实施例1:

制备铸造zn-mn-cu系合金并测量材料的力学性能。

以纯zn(99.99%)、纯mn(99.9%)、纯cu(99.9%)作为原料,按下述2种质量百分比混合,放入真空感应熔炼炉中的al2o3坩埚中:(1)98.8%的zn、0.8%的mn和0.4%的cu;(2)99.2%的zn、0.4%的mn和0.4%的cu。先抽真空,待真空感应熔炼炉内气压将至30pa后通入氩气,使氩气压力达0.04mpa。然后在氩气保护下加热装有原料的al2o3坩埚,在760℃精炼5分钟,然后将合金熔体浇入直径75mm的圆柱形高纯石墨模具中,空冷至室温,制得zn-0.8mn-0.4cu和zn-0.4mn-0.4cu合金铸锭。

按照gb/t228.1-2010《金属材料拉伸试验第1部分,室温试验方法》制备圆棒拉伸试验样品,采用万能材料力学试验机在室温下进行拉伸试验,拉伸应变速率为10-3/s。铸造zn-mn-cu系锌合金的拉伸工程应力应变曲线如图1所示,由图1a可得铸造zn-0.8mn-0.4cu合金的拉伸屈服强度为113.2mpa,抗拉强度为120.1mpa,延伸率为0.44%;由图1b可得铸造zn-0.4mn-0.4cu合金的抗拉强度为83.9mpa,延伸率为0.25%,因为延伸率太低难以采用工程常用的rp0.2作为屈服强度,因此取rp0.1作为屈服强度,其值为76.7mpa。

实施例2:

制备热轧zn-mn-cu系合金板材并测量材料的力学和腐蚀性能。

按照实施例1中提供的方法制备zn-mn-cu系合金铸锭,从铸锭上切取厚度为30mm的板材。热轧前先对板材进行预热,工艺制度为320℃保温1小时。然后从加热炉中将板材取出送入热轧机,经过5道次热轧将其厚度减至5mm,热轧变形量达83.3%。

按照gb/t228.1-2010《金属材料拉伸试验第1部分,室温试验方法》制备板拉伸试验样品,采用万能材料力学试验机在室温下进行拉伸试验,拉伸应变速率为10-3/s。热轧zn-mn-cu系合金的拉伸工程应力-应变曲线如图2所示,由图2a可得热轧zn-0.8mn-0.4cu合金的拉伸屈服强度为195.5mpa,抗拉强度为277.5mpa,延伸率为15.3%;由图2b可得热轧zn-0.4mn-0.4cu合金的拉伸屈服强度为198.4mpa,抗拉强度为292.4mpa,延伸率为29.6%。

从热轧zn-0.4mn-0.4cu合金上切取尺寸为2mm(厚)×10mm×10mm的样品,用800#至2000#的sic砂纸打磨样品表面,然后机械抛光。样品清洗烘干后,浸泡在ph值为7.40的模拟体液(在1000ml的模拟体液中按顺序添加下列物质:8.035gnacl,0.355gnahco3,0.225gkcl,0.231gna2hpo4·3h2o,0.311gmgcl2·6h2o,39ml1.0m·hcl,0.292gcacl2,0.072gnaso4,6.118gtris,0~5ml1.0m·hcl)中,保持模拟体液的温度为37℃,在其中浸泡5分钟后开始测量电化学腐蚀极化曲线,扫描速度为1mv/s。图3为测量结果,从中计算可得热轧zn-0.4mn-0.4cu合金的腐蚀速率为0.056mm/年。

实施例3:

制备冷轧zn-mn-cu系合金板材。

按实施例1提供的方法制备zn-mn-cu系合金铸锭,从铸锭上切取厚度为30mm的板材。先进行热轧,热轧前先对板材进行预热,工艺制度为320℃保温1小时。然后从加热炉中将板材取出送入热轧机,经过2道次热轧将其厚度减至15mm,热轧变形量是50%。待热轧板材的温度降为室温,将其送入冷轧机,经过4个道次将其厚度减至3mm,冷轧变形量是80%。

实施例4:

制备挤压zn-mn-cu系合金棒材。

按实施例1提供的方法制备zn-mn-cu系合金铸锭,从铸锭上切取直径为40mm的棒材。挤压前对棒材进行预热,工艺制度为300℃保温2小时。然后从加热炉中取出棒材放入正向挤压机中,经过1道次挤出直径为8mm的棒材,挤压比是25。

实施例5:

制备拉拔zn-mn-cu系合金线材。

按实施例1提供的方法制备zn-mn-cu系合金铸锭,从铸锭上切取直径为30mm的棒材。挤压前对棒材进行预热,工艺制度为300℃保温2小时。然后从加热炉中取出棒材放入挤压机中,经过1道次挤出直径为5mm的棒材,挤压比是36。将直径为5mm的棒材在室温通过3个道次冷拉拔成直径为2mm的线材,拉拔总面缩率是84%。

实施例6:

在zn-mn-cu系合金表面涂覆治疗性药物雷帕霉素(rapa)和可降解聚合物聚乳酸(pla)。

从实施例2制备的热轧zn-mn-cu系合金板材上取样品,用800#至2000#的sic砂纸打磨样品表面,机械抛光,然后在去离子水中用超声波清洗机清洗15分钟,取出干燥。将样品置于超声雾化喷涂机内进行喷涂处理,在推进器中盛放携带雷帕霉素的聚乳酸-氯仿均匀溶液,其中氯仿为有机溶剂。雷帕霉素与聚乳酸的比例为1:8,聚乳酸与氯仿的体积比为1:15。涂覆层的厚度为50μm。将涂覆后的样品放入真空干燥箱中,在37℃干燥18小时,去除残余的氯仿。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1