基于纳米钯异质生长的上转换纳米杂化体系、制备方法及应用与流程

文档序号:16133647发布日期:2018-12-01 00:38阅读:361来源:国知局
基于纳米钯异质生长的上转换纳米杂化体系、制备方法及应用与流程

本发明涉及纳米生物材料制造技术领域,具体涉及一种基于纳米钯异质生长的上转换纳米杂化体系、制备方法与应用。

背景技术

一直以来,癌症仍然是导致人类死亡的重要原因之一。目前用于临床治疗肿瘤的方法主要有化疗和放疗,但是这两种治疗方法都有一定的缺点,化疗会产生耐药性,放疗副作用大,都达不到彻底治疗肿瘤的效果。而光热治疗是一种无创性的治疗技术,可以通过激光照射使得肿瘤中的局部温度增加进而导致癌细胞的消融,作为光热治疗药物的各种纳米材料引起了广泛的兴趣。

近年来,荧光成像已经成为光学成像的研究热点,这是因为荧光成像具有灵敏度高、信号强度大、对细胞和生物组织无损伤等优点。而在众多荧光材料中,稀土掺杂的上转换发光纳米(ucnps)材料作为一种新型的荧光材料受到了人们的广泛关注,这是因为它是基于反斯托克斯位移,通常是采用低能光激发(980nm激发),发射出高能光(红光、绿光等),这些优点可以消除背景荧光干扰以及低的信噪比,但是毕竟在组织中穿透深度有限,无法实现深层次组织的荧光成像。磁共振成像(mri)可以提供高空间分辨率的三维造影信息,没有穿透深度的限制,但是灵敏度和组织分辨率都不高。因此,将荧光成像和磁共振成像结合起来,就可以同时实现高灵敏度、高分辨率的成像。但是,要将这二者结合起来,在材料与工艺两个方面,都还存在着巨大的技术困难。

目前为了达到更加广泛、准确的对于癌症的诊断和治疗,发展双模态成像诊断引导的光热治疗纳米体系是非常有必要的,也成为了研究癌症诊断与治疗的新方向。

但是,现有工艺方法制备的光热治疗纳米体系,其组分稳定性、一致性不好,特别是水溶性不好,生物相容性差,使其应用领域受限;此外,其制备方法复杂、设备价格高昂,且不容易实现稳定量产。



技术实现要素:

本发明是针对现有技术的不足,而提供采用种子生长法的一种基于纳米钯异质生长的上转换纳米杂化体系、制备方法与应用,以克服其组分稳定性、一致性不好以及水溶性差、生物相容性等不足,扩展应用领域;同时简化其制备步骤,降低制备成本、易于产业化,最终实现荧光成像、磁共振成像、光热治疗一体化,使材料及制备工艺,均可以满足对于癌症等疾病的临床诊疗一体化的需求。

为实现上述目的,本发明采用的技术方案是:

一种基于纳米钯异质生长的上转换纳米杂化体系的制备方法,其特征在于,包括以下步骤:

1)将表面包覆一层惰性nagdf4的油溶性稀土上转换发光纳米颗粒(ucnps)和去离子水的混合溶液,用稀盐酸调节溶液ph为酸性,混合搅拌,得到第一分散液;

2)将十六烷基三甲基氯化铵(ctab)作为表面活性剂,以氯化钯和第一分散液为原料,分散搅拌混合,再加入抗坏血酸对其进行还原,静置;使上转换发光纳米颗粒的晶体结构与纳米钯的晶体结构具有晶格匹配度,该上转换发光纳米颗粒为纳米钯晶体的生长提供至少一个生长位点,使纳米钯晶体以上转换发光纳米颗粒为核并在其表面沉积、生长,得到第二分散液;

3)将水溶性的表面有机配体与第二分散液进行充分搅拌混合,即得到纳米钯异质生长的上转换纳米杂化体系,其是在稀土上转换发光纳米颗粒表面异质成核生长纳米钯所形成的纳米杂化体系。

步骤1)中所述第一分散液具体步骤为:预备一定体积的去离子水用少量稀盐酸溶液将ph调节到2~4,然后以4.5:3~1.5:1的比例将分散在环己烷中的表面包覆一层惰性nagdf4的油溶性稀土上转换纳米颗粒加入其中,并在室温下剧烈搅拌反应4~7h去除油酸配体,离心洗涤,得到第一分散液。

所述步骤2)第二分散液具体步骤为:先将十六烷基三甲基氯化铵(ctab)超声溶于等离子水中,然后将氯化钯溶于稀盐酸中,并在40~70℃加热条件下搅拌充分溶解,冷却至室温,其后与十六烷基三甲基氯化铵(ctab)溶液混合搅拌均匀,再加入第一分散液作为种子,充分搅拌均匀,再加入抗坏血酸混合搅拌均匀,静置5~8h,离心洗涤,得到第二分散液。

所述步骤3)的具体步骤为:在第一分散液中加入水溶性的表面有机配体聚乙烯吡咯烷酮(pvp)进行改性,与之充分搅拌混合,离心洗涤,即得到纳米钯异质生长的上转换纳米体系。

步骤1)所述第一分散液中,表面包覆一层惰性nagdf4的油溶性稀土上转换发光纳米颗粒包括:nayf4:yb,er@nagdf4、nayf4:yb,tm@nagdf4、nayf4:yb,ho@nagdf4、nayf4:yb,er,tm@nagdf4、nayf4:yb,er@nayf4@nagdf4、nayf4:yb,tm@nayf4@nagdf4、nayf4:yb,ho@nayf4@nagdf4、nayf4:yb,er,tm@nayf4@nagdf4。

所述步骤3)中水溶性的表面有机配体包括:聚乙烯吡咯烷酮(pvp),聚乙二醇(peg),聚丙烯酸(paa),聚乙烯亚胺(pei)。

一种由前述的方法制得的基于纳米钯异质生长的上转换纳米杂化体系,其特征在于,该体系是在稀土上转换发光纳米颗粒表面异质成核生长纳米钯形成的纳米杂化体系,所述稀土上转换发光纳米颗粒的表面包覆一层惰性nagdf4,并使其与纳米钯的晶体结构具有晶格匹配度,上转换发光纳米颗粒可以为纳米钯晶体的生长提供至少一个生长位点,使纳米钯晶体以上转换发光纳米颗粒为核并在其表面沉积、生长;并且在形成的纳米体系的表面经过有机配体的进一步改性后,其具有良好的水溶性。

前述的基于纳米钯异质生长的上转换纳米杂化体系的应用,其特征在于,将其作为助剂,用于双模态成像诊断引导的光热治疗,实现临床诊疗一体化。

所述的基于纳米钯异质生长的上转换纳米杂化体系的应用,其特征在于,将其用作双模态成像诊断引导中,上转换荧光成像的成像剂或磁共振成像的造影剂。

所述的基于纳米钯异质生长的上转换纳米杂化体系的应用,其特征在于,将其用作双模态成像诊断引导中,高转换效率的光热试剂。

本发明的有益效果在于:

(1)本发明提供的一种基于纳米钯异质生长的上转换纳米杂化体系的制备方法,通过对特别的组分、配比及反应条件的控制,采用种子生长法,利用抗坏血酸的还原性,及对ucnps和纳米pd晶体结构的晶格匹配,得到异质成核生长纳米钯修饰的稀土上转换发光纳米材料。该制备方法克服了现有方法的不足,整体工艺简洁、制备过程高效、反应条件温和、易于控制、加工重复性好,使用的设备投入较低,制得的材料均匀性好、组分稳定,一致性好,产量、质量均较为稳定,易于产业化。

(2)本发明提供的基于纳米钯异质生长的上转换纳米杂化体系,重点在于通过使ucnps和纳米pd晶体结构的晶格匹配,ucnps可以为纳米pd提供足够的生长位点,突破了单一材料的性能和结构的不足,使其具有独特的组分和纳米结构,同时发挥了不同组分的优点,扩展了该杂化体系的应用范围。

(3)本发明提供的基于纳米钯异质生长的上转换纳米杂化体系的应用,针对性地克服了现有工艺及材料的局限性,使其光热转换效率可达80%~90%;在充分利用纳米pd的高光热转换效率的同时,还使其具备了上转换荧光/磁共振成像功能,使该纳米杂化体系具有诊疗一体化的功效,在生物医学领域的应用前景非常广阔。

下面结合附图与具体实施方式,对本发明进一步详细说明。

附图说明

图1是本发明实施1制得的基于纳米钯异质生长的稀土铒掺杂上转换发光纳米杂化体系的tem照片;

图2是本发明实施例6制得的基于纳米钯异质生长的稀土铒掺杂上转换发光纳米杂化体系的荧光光谱图;

图3是本发明实施例7制得的基于纳米钯异质生长的稀土铒掺杂上转换发光纳米杂化体系的磁共振成像图;

图4是本发明实施例8所得的基于纳米钯异质生长的稀土铒掺杂上转换发光纳米杂化体系用于光热成像的照片。

具体实施方式

实施例1

参见附图1~4,本实施例提供的一种基于纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系的制备方法,核心是利用种子生长法,异质成核生长纳米钯修饰的稀土铒掺杂上转换发光纳米颗粒的方法制备,包括以下步骤:

1)将表面包覆一层惰性nagdf4的油溶性稀土上转换发光纳米颗粒和去离子水的混合溶液用稀盐酸调节溶液ph为酸性,混合搅拌,得到第一分散液;

具体地:预备一定体积的去离子水用少量稀盐酸溶液将ph调节到2~4,然后以4.5:3~1.5:1的比例将分散在环己烷中的表面包覆一层惰性nagdf4的油溶性稀土上转换纳米颗粒加入其中,并在室温下剧烈搅拌反应4~7h去除油酸配体,离心洗涤,得到第一分散液;

2)将十六烷基三甲基氯化铵(ctab)作为表面活性剂,以氯化钯和第一分散液为原料,分散搅拌混合,再加入抗坏血酸对其进行还原,静置,得到第二分散液;

具体地:先将十六烷基三甲基氯化铵(ctab)超声溶于等离子水中,然后将氯化钯溶于稀盐酸中,并在40~70℃加热条件下搅拌充分溶解,冷却至室温,其后与十六烷基三甲基氯化铵(ctab)溶液混合搅拌均匀,再加入第一分散液作为种子,充分搅拌均匀,再加入抗坏血酸混合搅拌均匀,静置5~8h,离心洗涤,使上转换发光纳米颗粒的晶体结构与纳米钯的晶体结构具有晶格匹配度,该上转换发光纳米颗粒为纳米钯晶体的生长提供多个足够的生长位点,使纳米钯晶体以上转换发光纳米颗粒为核并在其表面沉积、生长,得到第二分散液;

3)将水溶性的表面有机配体与第二分散液进行充分搅拌混合,即得到纳米钯异质生长的上转换纳米杂化体系,其是在稀土上转换发光纳米颗粒表面异质成核生长纳米钯形成的纳米杂化体系;

具体地:在第一分散液中加入水溶性的表面有机配体聚乙烯吡咯烷酮(pvp)进行改性,与之充分搅拌混合,离心洗涤,即得到纳米钯异质生长的上转换纳米体系。

其中,在所述第一分散液中,表面包覆一层惰性nagdf4的油溶性稀土上转换发光纳米颗粒包括:nayf4:yb,er@nagdf4、

nayf4:yb,tm@nagdf4、nayf4:yb,ho@nagdf4、nayf4:yb,er,tm@nagdf4、nayf4:yb,er@nayf4@nagdf4、nayf4:yb,tm@nayf4@nagdf4、

nayf4:yb,ho@nayf4@nagdf4、nayf4:yb,er,tm@nayf4@nagdf4。

所述步骤3)中水溶性的表面有机配体包括:聚乙烯吡咯烷酮(pvp),聚乙二醇(peg),聚丙烯酸(paa),聚乙烯亚胺(pei)。

更为具体地:

(1)预备10ml去离子水用少量稀盐酸溶液将ph调节到2~4,预备5ml分散在环己烷中粒径为28~35nm油溶性nayf4:yb,er@nagdf4加入其中,并在室温下反应4h去除油酸配体,离心洗涤,得到第一分散液;

(2)先将0.3g十六烷基三甲基氯化铵(ctab)超声溶于288ml等离子水中,然后将43mg氯化钯溶于20ml0.02mol/l稀盐酸中,并在40℃加热条件下搅拌充分溶解,冷却至室温,其后与十六烷基三甲基氯化铵(ctab)溶液混合搅拌均匀,再加入5ml第一分散液作为种子,充分搅拌均匀,再加入2ml0.1mol/l抗坏血酸混合搅拌均匀,静置5h,离心洗涤,得到第二分散液;

(3)在第二分散液中加入10mg水溶性的表面配体聚乙烯吡咯烷酮(pvp)进行改性,与之充分搅拌混合10h,离心洗涤,即得到纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系。

一种采用上述方法制备的基于纳米钯异质生长的上转换纳米杂化体系,是利用种子生长法和抗坏血酸的还原性,得到异质成核生长纳米钯修饰的稀土上转换发光纳米颗粒;该体系是在稀土上转换发光纳米颗粒表面异质成核生长纳米钯形成的纳米杂化体系,所述稀土上转换发光纳米颗粒的表面包覆一层惰性nagdf4,使其与纳米钯的晶体结构具有一定的晶格匹配度,上转换发光纳米颗粒可以为纳米钯晶体的生长提供多个足够的生长位点,使纳米钯晶体以上转换发光纳米颗粒为核并在其表面沉积、生长;并且在形成的纳米体系的表面经过有机配体的进一步改性后,其具有良好的水溶性。

前述的基于纳米钯异质生长的上转换纳米杂化体系的应用,将其作为助剂,用于双模态成像诊断引导的光热治疗,实现临床诊疗一体化。

所述的基于纳米钯异质生长的上转换纳米杂化体系的应用,将其用作双模态成像诊断引导中,上转换荧光成像的成像剂或磁共振成像的造影剂。

所述的基于纳米钯异质生长的上转换纳米杂化体系的应用,将其用作双模态成像诊断引导中,高转换效率的光热试剂。

参见图1,其为本发明实施1制得的一种基于纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系的tem照片,从图中可以看出纳米粒子组分稳定、分散性好,说明该方法能制得形貌良好、单分散性好的纳米材料,并且功能化后的纳米材料平均粒径在30~40nm,因为小尺寸的纳米颗粒更容易被细胞内吞,有利于在生物体内循环,对用于生物成像和治疗有重要意义。

实施例2

本实施例提供的一种基于纳米钯异质生长的稀土铥掺杂上转换纳米杂化体系、制备方法及其应用,其与实施例1基本相同,其不同之处在于,其包括以下步骤:

(1)预备8ml去离子水用少量稀盐酸溶液将ph调节到2~4,预备4ml分散在环己烷中粒径为28~35nm油溶性nayf4:yb,tm@nagdf4加入其中,并在室温下反应5h去除油酸配体,离心洗涤,得到第一分散液。

(2)先将0.4g十六烷基三甲基氯化铵(ctab)超声溶于300ml等离子水中,然后将44mg氯化钯溶于22ml0.02mol/l稀盐酸中,并在40℃加热条件下搅拌充分溶解,冷却至室温,其后与十六烷基三甲基氯化铵(ctab)溶液混合搅拌均匀,再加入6ml第一分散液作为种子,充分搅拌均匀,再加入3ml0.1mol/l抗坏血酸混合搅拌均匀,静置6h,离心洗涤,得到第二分散液。

(3)在第二分散液中加入12mg水溶性的表面配体聚乙二醇(peg)进行改性,与之充分搅拌混合12h,离心洗涤,即得到纳米钯异质生长的稀土铥掺杂上转换纳米杂化体系。

实施例3

本实施例提供的一种基于纳米钯异质生长的稀土铒、铥共掺上转换纳米杂化体系、制备方法及其应用,其与实施例1、2均基本相同,其不同之处在于,其包括以下步骤:

(1)预备12ml去离子水用少量稀盐酸溶液将ph调节到2~4,预备6ml分散在环己烷中粒径为28~35nm油溶性nayf4:yb,er,tm@nagdf4加入其中,并在室温下反应6h去除油酸配体,离心洗涤,得到第一分散液。

(2)先将0.6g十六烷基三甲基氯化铵(ctab)超声溶于340ml等离子水中,然后将44.5mg氯化钯溶于23ml0.02mol/l稀盐酸中,并在40℃加热条件下搅拌充分溶解,冷却至室温,其后与十六烷基三甲基氯化铵(ctab)溶液混合搅拌均匀,再加入7ml第一分散液作为种子,充分搅拌均匀,再加入4ml0.1mol/l抗坏血酸混合搅拌均匀,静置7h,离心洗涤,得到第二分散液。

(3)在第二分散液中加入14mg水溶性的表面配体聚乙烯亚胺(pei)进行改性,与之充分搅拌混合14h,离心洗涤,即得到基于纳米钯异质生长的稀土铒、铥共掺上转换纳米杂化体系。

实施例4

本实施例提供的一种基于纳米钯异质生长的稀土钬掺杂上转换纳米杂化体系、制备方法及其应用,其与实施例1-3均基本相同,其不同之处在于,其包括以下步骤:

(1)预备14ml去离子水用少量稀盐酸溶液将ph调节到2~4,预备7ml分散在环己烷中粒径为28~35nm油溶性nayf4:yb,ho@nagdf4加入其中,并在室温下反应7h去除油酸配体,离心洗涤,得到第一分散液。

(2)先将0.7g十六烷基三甲基氯化铵(ctab)超声溶于350ml等离子水中,然后将45mg氯化钯溶于24ml0.02mol/l稀盐酸中,并在40℃加热条件下搅拌充分溶解,冷却至室温,其后与十六烷基三甲基氯化铵(ctab)溶液混合搅拌均匀,再加入8ml第一分散液作为种子,充分搅拌均匀,再加入4ml0.1mol/l抗坏血酸混合搅拌均匀,静置7h,离心洗涤,得到第二分散液。

(3)在第二分散液中加入15mg水溶性的表面配体聚丙烯酸(paa)进行改性,与之充分搅拌混合14h,离心洗涤,即得到纳米钯异质生长的稀土钬掺杂上转换纳米杂化体系。

实施例5

本实施例提供的一种基于纳米钯异质生长的稀土铒掺杂核-壳-壳结构上转换纳米杂化体系、制备方法及其应用,其与实施例1-4均基本相同,其不同之处在于,其包括以下步骤:

(1)预备14ml去离子水用少量稀盐酸溶液将ph调节到2~4,预备7ml分散在环己烷中粒径为28~35nm油溶性nayf4:yb,er@nayf4@nagdf4加入其中,并在室温下反应7h去除油酸配体,离心洗涤,得到第一分散液。

(2)先将0.7g十六烷基三甲基氯化铵(ctab)超声溶于350ml等离子水中,然后将45mg氯化钯溶于24ml0.02mol/l稀盐酸中,并在40℃加热条件下搅拌充分溶解,冷却至室温,其后与十六烷基三甲基氯化铵(ctab)溶液混合搅拌均匀,再加入8ml第一分散液作为种子,充分搅拌均匀,再加入4ml0.1mol/l抗坏血酸混合搅拌均匀,静置7h,离心洗涤,得到第二分散液。

(3)在第二分散液中加入15mg水溶性的表面配体聚乙二醇(peg)进行改性,与之充分搅拌混合14h,离心洗涤,即得到纳米钯异质生长的稀土铒掺杂核-壳-壳结构上转换纳米杂化体系。

应用实施例6

将实施例1制得的纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系,将其作为助剂,上转换荧光成像的成像剂或磁共振成像的造影剂,用于双模态成像诊断引导的光热治疗,实现临床诊疗一体化;其具体用于细胞荧光成像的方法,包括以下步骤:

(1)预备实施例1得到的纳米杂化体系材料,用培养基配制成2~4mg/ml;

(2)将hela细胞在上述培养液中培养0.5,2,4,6h;

(3)用磷酸盐缓冲溶液(pbs)冲洗细胞5次,将没有被细胞吸收的纳米材料洗去;

(4)将培养好的细胞在共聚焦显微镜上进行成像,成像过程使用0~500mw功率可调、连续波激发的稳态980nm激光器作为激发光源,观测到位于560~600nm、600~700nm的发射光。

图2是应用实施例6采用本发明纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系,在980nm激光激发下的荧光光谱图,从图中可以观察到位于545nm和654nm处的发射峰,对应于er3+4s3/2/2h11/2→4h15/2和4f9/2→4i15/2跃迁,而980nm刚好位于生物组织的“光学窗口”,表明异质成核生长纳米钯修饰的上转换发光纳米材料仍然保持良好的上转换荧光性能,非常适合于细胞和小动物活体成像。

应用实施例7

所述的基于纳米钯异质生长的上转换纳米杂化体系的应用,是将其用作双模态成像诊断引导中,上转换荧光成像的成像剂或磁共振成像的造影剂。

将实施例1制得的纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系,作为上转换荧光成像的成像剂或磁共振成像的造影剂,用于磁共振成像的具体方法,包括以下步骤:

(1)预备实施例1中异质成核生长纳米钯修饰的表面包覆有一层nagdf4的上转换发光纳米材料,用去离子水将其配制成0~2mg/ml,超声5分钟分散,形成第三分散液;

(2)取不同浓度的第三分散液,在磁共振仪上分别测试其磁共振成像。

图3是本发明实施例7制得的纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系的磁共振成像图,通过gd3+浓度对1/t1作图并进行拟合后得到的弛豫常数r1,证实了该纳米材料可以作为造影剂用于磁共振成像。

应用实施例8

将实施例1制得的纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系,用作双模态成像诊断引导中,高转换效率的光热试剂。其具体作为试剂用于光热成像的方法,包括以下步骤:

(1)预备实施例1中一种异质成核生长纳米钯修饰的稀土上转换发光纳米材料,5个玻璃样品瓶,连续激发的808nm激光器,热成像仪;

(2)将(1)中的纳米体系用于等离子水配成的0~400μg/ml的溶液,超声5min分散,形成第三分散液;

(3)分别取500mg不同浓度的第三分散液加入到5个玻璃样品瓶中,并固定再铁架台上,用808激光器(1.5w/cm2)连续照射第三分散液,并用热成像仪记录下不同时间的分散液的热成像图片。

图4是本发明实施例8所得到基于纳米钯异质生长的稀土铒掺杂上转换纳米杂化体系用于光热成像的照片。用808nm激光照射后,随着样品浓度增大,样品的温度逐渐升高,最大样品浓度条件下的升高温度(△t)可达到53℃左右,通过计算可得光热转换效率可达80%~90%,说明该纳米体系具有良好的光热效应,比现有技术的同类纳米体系提高了20%以上。

本发明的重点在于,本发明基于纳米钯异质生长的上转换纳米杂化体系,并提高了其水溶性,使其具有应用于上转换荧光成像、磁共振成像和光热治疗的诊疗一体化的必要性能,可以满足临床诊疗一体化的需求。本发明提供的制备方法具有工艺简洁、高效、操作可控、可重复性好、投入成本低等优势,易于产业化。

本发明并不限于上述实施方式,采用与其相同或相似方法所得到的其它异质成核生长纳米钯修饰的稀土上转换发光纳米材料的方法,如不同稀土离子掺杂的上转换纳米颗粒(nayf4:yb,er@nagdf4、nayf4:yb,tm@nagdf4、nayf4:yb,ho@nagdf4、nayf4:yb,er@nayf4@nagdf4、nayf4:yb,tm@nayf4@nagdf4、nayf4:yb,ho@nayf4@nagdf4、nayf4:yb,er,tm@nayf4@nagdf4)等、用于最终进一步改性水溶性的不同的有机配体等均在本发明保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1