使用散布内插改善基于阻抗的定位跟踪性能的制作方法

文档序号:16754193发布日期:2019-01-29 17:11阅读:169来源:国知局
使用散布内插改善基于阻抗的定位跟踪性能的制作方法

本发明总体涉及医疗探头的定位跟踪,并且具体地讲涉及用于医疗工具的基于阻抗的定位跟踪的方法和系统。



背景技术:

各种跟踪技术,诸如有源电流位置(acl)和磁定位感测可用于跟踪医疗探头(例如,导管)在患者体内的定位。

例如,美国专利申请公布2014/0232717描述了提供用于合并三维模型的系统和方法,诸如基于三维距离传感器的模型和基于三维相机的模型。根据本公开的各方面,可使用增强容积合并技术来合并三维模型。

美国专利申请公布2006/0178828描述了一种用于生成代表环境的证据网格的方法。该方法包括以下步骤:使用立体传感器在环境内的多个位置处收集立体图像集,并且处理该立体图像集以确定与该立体图像集中代表的空间中每个点相关联的占用和距离数据;将传感器模型应用于空间中的每个点,以确定代表空间中每个点的每个体素的占用概率;并且通过组合每个体素的概率来生成环境的证据网格。



技术实现要素:

本文描述的本发明的实施方案提供了一种方法,该方法包括从校准探头接收在患者的器官中采集到的多个数据点,每个数据点包括(i)校准探头的相应定位,和(ii)相应电气值集,该相应电气值集表示在该定位和附接到患者体外的多个电极之间的相应阻抗。通过针对每个接收到的数据点执行以下步骤来构建电气值集和器官中的相应定位之间的映射:如果该映射已经在数据点的预定义邻域内包含一个或多个现有数据点,则响应于接收到的数据点调整一个或多个现有数据点,并且如果预定义邻域不包含任何现有数据点,则将接收到的数据点添加到该映射。随后使用该映射在器官中跟踪医疗探头的定位。

在一些实施方案中,构建映射包括通过根据映射中的至少一些数据点距接收到的数据点的相应距离而对映射中的至少一些数据点进行排序,来找到落入预定义邻域内的一个或多个现有数据点。在其他实施方案中,对数据点进行排序包括应用二分搜索技术。在其他实施方案中,校准探头包括磁定位跟踪系统的磁定位传感器。

在一个实施方案中,预定义邻域包括以接收到的数据点中指定的定位为中心,由小于10mm的半径限定的圆。在另一个实施方案中,调整一个或多个现有数据点包括计算一个或多个现有数据点和接收到的数据点之间的定位和电气值的加权算术平均值,以及通过应用散布的内插过程来调整一个或多个现有数据点的定位和电气值。

在一些实施方案中,跟踪定位包括:在器官的给定位置处从医疗探头接收给定的电气值集,从映射的数据点中选择数据点,该数据点包括落入包括给定集的电气值预定义范围内的电气值,并且通过识别具有与给定集的电气值最接近的电气值的选定数据点中的一者或多者来估计医疗探头在给定位置处的定位。在其他实施方案中,识别选定数据点中的一者或多者包括应用二分搜索技术。

根据本发明的实施方案另外提供了一种包括接口和处理器的设备。该接口被配置为从校准探头接收在患者的器官中采集到的多个数据点,每个数据点包括(i)校准探头的相应定位,和(ii)相应电气值集,该相应电气值集表示在所述定位与附接到患者体外的多个电极之间的相应阻抗。该处理器被配置为通过针对每个接收到的数据点执行以下步骤来构建电气值集与器官中的相应定位之间的映射:如果该映射已经在数据点的预定义邻域内包含一个或多个现有数据点,则响应于接收到的数据点调整一个或多个现有数据点,并且如果预定义邻域不包含任何现有数据点,则将接收到的数据点添加到该映射。

以下结合附图根据本发明的实施方案的详细说明将更全面地理解本发明,在附图中:

附图说明

图1是根据本发明实施方案的用于消融患者组织的系统的示意性图示;

图2是根据本发明实施方案的用于构建器官的映射的方法的示意性图示;并且

图3是根据本发明的实施方案,示意性地示出用于构建器官的映射的方法的流程图。

具体实施方式

概述

在下文中描述的本发明的实施方案提供了用于改善基于阻抗的映射和定位跟踪的分辨率和效率的技术。

在一些实施方案中,生物阻抗测量系统,诸如有源电流位置(acl)系统用于跟踪患者体内的导管或另一医疗探头的定位。在acl中,跟踪导管通常基于测量导管和外部体电极之间的阻抗。然后将每个测量值转换成体内导管的相应定位。该转换通常基于预先构建的合适的映射,并将使用电极测量的电气值(其电气值表示相应的阻抗)转换成导管的相应定位。

在本公开的上下文和权利要求书中,术语“电气值”是指阻抗、电流、电压或表示阻抗的任何其他合适的电气值。

映射的设计对于实现高定位跟踪性能很重要,诸如导管的实际定位与acl系统报告的定位之间的定位精度、横向分辨率和最小延迟。

在一些实施方案中,使用包括两个传感器的校准探头来构建映射:磁定位跟踪系统的磁定位传感器和acl系统的生物阻抗传感器。校准探头被配置为采集患者器官(例如,心脏)中多个位置处的多个数据点。每个数据点包括由磁定位传感器测量的探头的相应定位以及表示患者体内的探头与附接到患者皮肤的一个或多个相应电极之间的组织阻抗值的一个或多个电气值。数据点的集合在本文中被称为“映射”。

原则上,可以在一起覆盖整个心脏体积的三维(3d)体积像素(体素)网格上校准acl系统。如上所述,可使用校准导管映射一些体素。在该假设方案中构建映射之后,医师可执行医疗过程,其中他或她将导管导航到心脏中未访问的位置。acl系统可在未访问位置处接收一个或多个阻抗测量值,并且例如通过对映射网格的相邻映射体素进行内插来使用所测量的阻抗计算导管的定位。然而,基于体素插值计算定位通常会消耗大量的计算和存储器资源。例如,配置小的体素尺寸会得到准确的定位测量值,但会导致高延迟和复杂性,反之亦然。

在本文所述的一些实施方案中,acl系统的处理器被配置为使用所采集的数据点有效地构建阻抗值和心脏中的相应定位之间的映射,而不使用规则的体素网格。在该实施方案中,处理器被配置为针对所采集的每个新的数据点检查映射是否已经包含新的数据点的预定义邻域内的一个或多个现有数据点。如果是,则处理器响应于新的数据点来调整映射中的一个或多个现有数据点。如果预定义邻域不包含任何现有数据点,则处理器被配置为将新的数据点添加到映射。

本发明所公开的技术能够:(i)通过使用一维数据点而不是3d体素来改善空间分辨率和定位准确度,以及(ii)通过减少跟踪导管定位所需的计算和存储器资源量来改善系统的延迟。

系统说明

图1是根据本发明实施方案的用于消融患者14组织的系统10的示意性图示。在一些实施方案中,系统10支持(i)在消融之前构建映射,以用于映射患者14的心脏40,以及(ii)使用所构建的映射,在消融规程期间导航心脏40内的医疗工具,如将在下文详细描述的那样。

在一些实施方案中,系统10包括导管12,该导管包括远侧末端13,该远侧末端包括多个装置(未示出),诸如消融电极、磁定位传感器和阻抗传感器。在这种配置中,使用具有远侧末端13的导管12作为校准探头,如将在下文描述的那样。在映射阶段期间(以及在消融规程期间),医师16可经由插入点30将导管12插入患者14的脉管系统,然后可将导管末端导航至患者的心脏。随后,使用导管12以用于在消融组织之前映射心脏40的组织。

在一些实施方案中,操作控制台18包括射频(rf)发生器22,其被配置为生成由心脏40的组织上的导管12施加的rf消融信号。

在一些实施方案中,控制台18包括处理器20(通常是通用计算机),该处理器具有合适的前端和接口电路,以用于从导管12处接收信号并且用于控制本文描述的系统10的其他部件。处理器20可通过软件进行编程,以执行由系统所使用的功能,并且该处理器将用于软件的数据存储在存储器(未示出)中。例如,该软件可通过网络以电子形式被下载到控制台18,或者其可设置在非临时性有形介质诸如光学、磁学或电子存储器介质上。另选地,可通过专用或可编程数字硬件部件来执行处理器20的功能中的一些或全部。

在一些实施方案中,系统10还包括磁定位跟踪系统和基于阻抗的有源电流位置(acl)系统。这些系统中的每个系统可用于跟踪远侧末端13的定位,以便将导管12导航至患者14的心脏40内的消融位置处。

在一些实施方案中,磁定位跟踪系统包括放置在患者14体外已知定位处(例如,患者躯干下方)的磁场发生器36。在一个实施方案中,控制台18有助于执行本文所述的技术。

在一些实施方案中,控制台18包括驱动器电路21,该驱动器电路被配置为经由缆线38驱动场发生器36。当远侧末端13由医师16导航至心脏40时,远侧末端13处的磁定位传感器响应于由场发生器36产生的所感测的外部磁场而生成定位信号,从而使处理器20能够识别远侧末端13在心脏40的腔室内的定位。

磁定位传感器在导管近侧端部处连接至与处理器20联接的接口电路。在一个实施方案中,远侧末端13的定位示出在心脏40的图像42上,该图像显示在用户显示器34上。在一些实施方案中,使用解剖成像系统诸如计算机断层摄影(ct)系统或任何其他合适的成像技术来采集图像42。

这种基于磁场的定位感测方法例如在由biosensewebsterinc.(diamondbar,calif.)生产的cartotm系统中实施,并且详细地描述于美国专利5,391,199、6,690,963、6,484,118、6,239,724、6,618,612和6,332,089、pct专利公布wo96/05768,以及美国专利申请公布2002/0065455a1、2003/0120150a1和2004/0068178a1中,这些专利的公开内容全文以引用方式并入本文。

如上所述,系统10包括acl系统,其可用作基于磁场的系统的另选定位跟踪系统。在一些实施方案中,acl系统包括多个电极28,这些电极例如经由贴附于患者14的皮肤的贴片29联接到患者14的身体。在图1的示例中,系统10包括六个电极,其中电极28a、28b和28c联接到患者14的前部(例如,胸部),并且电极28d、28e和28f联接到患者14的背部(例如,躯干)。如图1所示,这些电极如下成对布置:电极28a和28d在患者14的右侧面向彼此,电极28c和28f在患者14的左侧面向彼此,并且电极28b和28e在患者14的胸部和躯干的上部面向彼此。

在其他实施方案中,系统10可包括任何合适数量的电极,这些电极以任何合适的布置联接到患者皮肤。

电极28通常经由缆线32连接到处理器20,该处理器被配置为从电极接收信息诸如阻抗值,并且基于该信息使用将在下面描述的技术来估计远侧末端13在心脏40内的定位。

显示器34通常被配置为通过将相关信息显示给医师16来促进消融规程的执行。例如,处理器20可在上述跟踪系统的坐标系与ct系统(其采集图像42)的坐标系之间进行配准,以便例如通过将代表导管12的远侧末端13的图标叠加在心脏40的图像42上,在图像42内显示远侧末端13的位置和取向。

如上所述,电极28通常用于使用基于阻抗的跟踪技术在患者14的体内对导管12进行导航,诸如在美国专利8,456,182和美国专利申请公布2015/0141798中所述的技术,这些专利的公开内容以引用方式并入本文。此类技术涉及响应于在远侧末端13与每个电极28a至28f之间测量的不同阻抗来估计远侧末端13的位置和取向。如上所述,可将远侧末端13的估计位置作为显示器34上的适当图标指示给医师。基于该指示,医师16可将导管12的远侧末端13导航至心脏40内的一个或多个期望位置。

在一些实施方案中,通常通过向远侧末端13施加已知振幅的电信号来估计远侧末端13在任何给定时间的位置和取向,并且在每个电极对28处测量所得的电压和/或电流。在另选的实施方案中,电信号可由电极28施加,并且由远侧末端13测量所得的电气值。

在一些实施方案中,由于远侧末端13与每对电极28之间的不同量的电阻碍组织(以及因此不同的阻抗程度),这些施加的电信号使得电极对28(例如,电极对28a和28d、电极28c和28f以及电极28b和28e,这些电极对中的每个电极相对于导管位于不同定位处)表现出不同的相应电气值。

在一些实施方案中,这些测量的电气值经由缆线32发送到处理器20,该处理器使用这些值估计远侧末端13相对于电极28(其定位是已知的)的相对位置和取向。另选地,可生成导管的远侧末端与电极之间的电压,并且可测量流过电极的所得电流并将其用于估计远侧末端13的位置和取向。

如上所述,医师16导航远侧末端13以访问心脏40内的多个位置。在一些实施方案中,处理器20被配置为在每个访问位置处从导管12接收两个值集。第一集包括来自磁定位跟踪系统的定位坐标,并且第二集包括来自acl系统的一个或多个相应的电气值(例如,来自每个电极对28的电流值或阻抗值)。

在一些实施方案中,处理器20被配置为构建数据点集,每个数据点集包括在由远侧末端13访问的相应定位处测量的定位和电气值。该数据点集将多个选定电气值映射到相应的定位中,并且在本文中被称为“映射”。在一个实施方案中,当完成时,将映射应用于(例如,在消融期间)由远侧末端13和/或电极28采集的电气值,以用于将测量的电气值转换为心脏40中的定位测量值。需注意,可针对患者14的选定呼吸操作(例如,在完全吸气操作之后,在完全呼气操作之后,或者在吸气与呼气操作之间的中点)构建单独的映射。在另一个实施方案中,为每个电极对构建单独的映射。

准确和高效的基于阻抗的定位跟踪

图2是根据本发明的实施方案用于构建将阻抗测量值转换成定位的映射的方法的示意性图示,该映射将用于acl系统中的准确定位跟踪。

在一些实施方案中,处理器20被配置为应用散布内插技术对散布数据的给定3d数据集(诸如在心脏40中采集的阻抗值)执行内插。散布内插将返回给定3d数据集的一个或多个内插值。isaacamidror在“scattereddatainterpolationmethodsforelectronicimagingsystems:asurvey”,journalofelectronicimaging,2002年4月,第11卷第2期,第157-176页中提供了关于散布内插技术的进一步细节,该文献以引入方式并入本文。

在一些实施方案中,处理器20被配置为计算由远侧末端13在心脏40中采集的数据点52a、54a和56的映射。在一些实施方案中,具有表示为“i”的索引的每个数据点与定位坐标(例如,笛卡尔坐标中的xi、yi、zi)以及三个阻抗值(在本文中称为vf1、vf2和vf3)相关联。定位坐标由磁定位跟踪系统采集,并且三个值是指在远侧末端13与acl系统的每个相应电极对(电极28a和28d、电极28c和28f以及电极28b和28e)之间测量的相应阻抗。

在图2的示例中,数据点52a、54a和56是现有的(即,已收集的)数据点,并且数据点50是由导管12新采集的数据点。

在一些实施方案中,处理器20检查一个或多个现有数据点是否处于例如由具有半径“r”的圆58表示并且以数据点50为中心的预定义邻域内。在图2的示例中,数据点52a和54a在预定义邻域内,数据点56在预定义邻域之外。随后,处理器20响应于针对数据点50测量的定位和阻抗值来调整数据点52a和54a的定位和阻抗值。

在一个实施方案中,可通过计算数据点50、52a和54a上的加权算术平均值并且因此用所调整的数据点52b和54b代替数据点52a和54a来执行调整。需注意,所调整的映射仅包括数据点52b、54b和56,而从映射中移除数据点52a、54a和50。

在该实施方案中,数据点52b和54b包括与相应数据点52a和54a不同的相应定位和阻抗值。需注意,数据点56的位置和阻抗值不受数据点50的影响,因此保持不变。

在另选的实施方案中,可执行任何其他合适的调整方法,而不是计算由r的值定义的预定义邻域内的数据点上的加权算术平均值。需注意,设置r的值取决于若干参数,诸如心脏40的解剖结构(例如,心脏的体积)、消融规程的类型、心脏40内的位置以及阻抗的相应定位和值。在图2的示例中,半径r的长度为大约1至2mm,但也可使用任何其他合适的r值。

在另选的实施方案中,预定义邻域可通过任何其他方法表示,诸如通过考虑所考虑的器官的形状的几何形状来表示。

在另一个实施方案中,新采集的数据点(未示出)可以不具有预定义邻域内的任何现有点。例如,医师16可将远侧末端13导航至心脏40内尚未访问的区域。

此外,即使在诸如图2所示的区域的已访问区域中,r的预定义值可小于0.5mm,使得现有数据点52a、54a和56都不落入数据点50周围的预定义邻域内。在该实施方案中,数据点50将作为新条目添加到具有最初由远侧末端13采集的定位和阻抗值的映射中。

随后,医师16完成心脏40内的感兴趣区域的映射,并且处理器20完成如上所述的相应映射的构建。上述技术促使了映射中的数据点的量减少,从而能够通过acl系统快速计算远侧末端13的定位,而无需使用磁定位跟踪系统。

在消融规程期间,医师16在心脏40中导航导管12或包括阻抗传感器和消融电极的其他导管。当医师16将远侧末端13导航到未访问位置时,处理器20从导管12处接收阻抗的测量值,在映射的现有数据点中执行查询,并且计算远侧末端13在未访问位置处的定位。

实际上,该映射中数据点的数量可为大约数千个。在查询操作期间,在一些实施方案中,处理器20可按照已包含在映射中的数据点距新的未访问位置的距离以升序对映射中的数据点进行排序。

该排序过程使得处理器能够高效地识别落入未访问位置的预定义邻域内的现有数据点(如果有的话)。排序过程应该是快速的,以便为医师16提供远侧末端13在心脏40内的定位的低延迟实时测量。

在一个实施方案中,处理器20被配置为基于在远侧末端13的当前定位的邻域中所测量的阻抗值来进行二分搜索(或任何其他合适类型的搜索)。

应当理解,通过假设远侧末端13在心脏40内的物理运动,预期两个相邻位置之间的阻抗值的差异很小。当医师16将远侧末端13导航至未访问位置(在本文中也称为新采集点)时,处理器20从导管12接收未访问位置处的阻抗测量值。

在一些实施方案中,在该规程期间,处理器20可按照相对于新的未访问位置的阻抗值以升序对已包含在映射中的数据点进行排序。

在一个实施方案中,在映射现有数据点中的二分搜索期间,处理器20被配置为应用包括未访问位置处的阻抗测量值的预定范围的值。该技术能够缩短对心脏40中新采集点的定位的计算时间。

例如,在包含10,000个数据点的映射中,仅1,000个数据点预期具有在新采集点处测量的阻抗值的+/-5%。

在该实施方案中,预期处理器20完成查询,并且与在整个10,000数据点集上携带的完整查询相比,在平均约10%的时间内报告新采集的远侧末端13的定位。

图3是根据本发明的实施方案示意性地示出用于构建心脏40中acl系统的映射的方法的流程图。该方法始于采集步骤100,其中医师16在心脏40中导航远侧末端13,该远侧末端采集新的数据点,诸如数据点50。在一些实施方案中,数据点50包括由磁定位传感器采集的远侧末端13的定位以及表示远侧末端13与附接到患者14的皮肤上的电极对28(例如,电极对28a和28d、电极对28c和28f以及电极对28b和28e)之间的相应阻抗的电气值。

在第一决定步骤102处,处理器20检查映射中的现有数据点(诸如数据点52a、54a和56)是否落入以数据点50为中心的预定义邻域(例如,如由半径r的值所确定)内。

如果映射已包含数据点50的预定义邻域(例如,圆58)内的一个或多个现有数据点,则该方法应用映射调整步骤104,其中处理器20响应于数据点50调整圆58内的现有数据点(例如,数据点52a和54a)。在该实施方案中,处理器20利用具有所调整的定位和电气值的相应数据点52b和54b代替数据点52a和54a。需注意,数据点56的位置和阻抗值将不受数据点50的影响,并且数据点50将从映射中排除。

在圆58不包含任何现有数据点的情况下,该方法继续到新的数据点设置步骤106处,其中处理器20将数据点50配准为具有最初由远侧末端13采集的定位和电气值的现有数据点。

在第二决定步骤108处,如果通过远侧末端13采集到新的数据点,则该方法循环回到采集步骤100。另选地,在远侧末端13不发送新的数据点的情况下,映射完成并且方法在结束步骤110处结束。

尽管本文描述的实施方案主要是在消融规程中映射人类心脏,但本文描述的方法和系统也可用于映射包括导电材料,诸如血池的任何器官。

因此应当理解,上述的实施方案以举例的方式引用,并且本发明不限于上文已具体示出和描述的内容。相反,本发明的范围包括上文所述的各种特征的组合和子组合,以及本领域技术人员在阅读上述说明时会想到且未在现有技术中公开的其变型和修改。以引用方式并入本专利申请的文献被视为本申请的整体部分,但是如果这些并入的文献中限定的任何术语与本说明书中明确或隐含地给出的限定相冲突,则应只考虑本说明书中的限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1