可在体内减少a的制作方法

文档序号:1078323阅读:308来源:国知局
专利名称:可在体内减少a的制作方法
技术领域
本发明涉及一种用于治疗病灶性局部缺血性大脑梗塞(局部缺血性中风)的新型方法。
当流至大脑特定区域的动脉血减少到可导致神经元细胞死亡的临界水平以下时,可发生病灶性局部缺血性大脑梗塞。人们认为通过过量的兴奋性氨基酸谷氨酸可刺激诸如中风、癫痫和阿尔茨海默病这样的中枢神经系统(CNS)中的神经元变性(2)。在CNS中注射谷氨酸兴奋剂实际上可诱导类似于在神经变性疾病中所观察到的海马神经元细胞死亡(3)。
兴奋毒素诱导的神经元变性由组织型纤溶酶原激活物(t-PA)来介导(4)。与这一观察结果一致,缺乏t-PA小鼠可抵抗、且输注纤溶酶原激活物抑制剂-1(PAⅠ-1)可防止兴奋毒素介导的海马神经元变性(4-6)。
此外,纤溶酶原(Plg)即t-PA的酶原底物的缺乏和输注α2-抗纤溶酶(α2-AP)可防止小鼠受到兴奋毒素诱导的海马神经元死亡的侵害(5)。已经提出纤溶酶介导的层粘连蛋白变性可通过破坏神经元-胞外基质相互作用使海马神经元对细胞死亡敏感(7)。
Wang等(8)近来证明由大脑中动脉瞬时闭合所诱发的病灶性大脑局部缺血后的神经元损害在t-PA缺乏小鼠中也得到了减少而通过输注t-PA加重。这提示纤溶酶原系统可能与建立大脑局部缺血性梗塞及其在溶栓疗法中的扩展有关。近来证明使用包括链激酶和葡萄球菌激酶在内的其它血栓溶解剂也可使t-PA对持续病灶性大脑局部缺血的神经毒性作用发生(9)。因此,在那些患有持续性大脑动脉闭塞的患者中,用于局部缺血性中风的溶栓疗法可以导致梗塞扩展,这不仅可以部分抵销建立的动脉再通的全部有益作用(10、11),而且确实对一小组患者有害。因为不能够把将用溶栓疗法实现大脑动脉再通的患者与将不能用溶栓疗法实现大脑动脉再通的那些患者区分开来,所以开发可抵抗血栓溶解剂对持续病灶性大脑局部缺血的神经毒性作用的特殊结合策略看起来是正确的。
因此,本发明的目的是提供一种用于治疗局部缺血性中风的新型方法。
在对产生本发明的研究中,关注的是下面的内容。尽管推定在大脑内病灶性局部缺血过程中的神经元损伤主要作为诸如谷氨酸这样的兴奋毒素累积的结果而发生,但是还没有证明皮质神经元细胞死亡的发病机制中纤溶酶介导的层粘连蛋白变性的作用或另一种机理。为了描述纤溶酶原(纤维蛋白溶解)系统的各成分对病灶性大脑局部缺血性梗塞的作用,本发明者对通过将小鼠体左侧大脑中动脉(MCA)与靶向灭活编码Plg的基因、其激活物组织型纤溶酶原激活物(t-PA)或尿激酶类纤溶酶原激活物(u-PA)或纤维蛋白溶解抑制剂PAⅠ-1或α2-AP结合起来产生的梗塞大小进行了定量。此外,研究了t-PA和PAⅠ-1基因的腺病毒转移和输注人α2-AP对大脑梗塞的作用。
Strickland等同时发现t-PA缺乏可防止病灶性大脑局部缺血性梗塞,这已经得到了完全证明;且通过PAⅠ-1缺乏可导致梗塞大小明显加大的观察结果所扩大,Plg缺乏可防止兴奋毒素诱发的神经元细胞死亡这一观察结果还没有得到证实。不过,发现Plg缺乏的小鼠体内病灶性大脑梗塞的大小显著扩大,而相反,α2-AP缺乏的小鼠体内的病灶性大脑梗塞的大小显著减小。
总之,这些发现表明纤溶酶原系统成分在两个不同水平上影响病灶性大脑局部缺血性梗塞的大小1)t-PA活性的降低(t-PA基因失活或PAⅠ-1基因转移)减少,而其增大(t-PA基因转移或PAⅠ-1基因失活)增加了梗塞大小;和2)Plg活性的降低(Plg基因失活或注射α2-AP)增加,而其增大(α2-AP基因失活或α2-AP中和)减小了梗塞大小。这些发现与t-PA介导的纤溶酶生成导致神经元细胞死亡的唯一连接途径不相适应,而提示了以反向起作用的两种独立的(分别是t-PA介导的和Plg-介导的)机理。
没有预测到固有的与α2-AP一致的观察结果,而它们大部分与治疗局部缺血性中风有关。首先发现了梗塞大小与含有杂合子的基因型的相关性,从而显示出那些野生型与纯合表型之间的梗塞大小。其次,将人α2-AP(hα2-AP)快速浓注入α2-AP-/-小鼠引起了与剂量相关的梗塞扩展。重要的是,在MCA闭合后40分钟静脉给予来自亲和特异性多克隆家兔抗-hα2-AP抗体的Fab片段显著减小了大脑局部缺血性梗塞的大小。这一观察结果提示了使用α2-AP抑制剂(例如中和单克隆抗体或中和α2-AP活性的化合物)抵销病灶性局部缺血性梗塞的潜在途径。通过给MCA闭合小鼠输注纤溶酶而证实了这种手段,该手段通过中和α2-AP而显著减小了梗塞大小。α2-AP在人血浆中的浓度为1mM(12),相当于约500mg的总体收集量。等剂量的单克隆Fab片段约为400mg,而纤溶酶的剂量约为500mg,这种剂量较高但对于单一治疗给药来说并不过量。此外,梗塞大小与α2-AP水平(来源于基因剂量作用和剂量反应)成正比的观察结果提示血浆水平的部分下降可能具有显著的有益作用。
根据上述描述,本发明由此涉及可在体内减少α2-AP活性的化合物在治疗病灶性大脑局部缺血性梗塞(局部缺血性中风)中的用途。
在本发明的具体实施方案中,涉及使循环的α2-AP浓度降低的化合物的用途。较低浓度的α2-AP会导致活性较低。在另一个实施方案中,直接降低循环的α2-AP的活性。
例如,适合于降低α2-AP浓度和活性的化合物是α2-AP中和抗体或其衍生物。优选的抗体是单克隆抗体。优选的衍生物是Fab片段、ScFv片段。
例如,中和α2-AP活性的化合物是纤溶酶、小纤溶酶(缺乏前4个Kringles)或微纤溶酶(缺乏全部5个Kringles)。
在下列实施例中更具体地证明了本发明,然而,它们并不用来限定本发明的范围。在实施例中,参考下列附图附

图1-3是在小鼠体内连接大脑中动脉(MCA)后比较病灶性大脑局部缺血性梗塞体积(以mm3计)的柱形图。数据代表平均值和直条SEM,在柱中给出了实验号。
附图1表示纤溶酶原系统成分缺乏(横坐标上的基因型)对于病灶性局部缺血性大脑梗塞大小(以mm3计)的作用。WT野生型(50%C57BL6/50%S129、100%C57BL6和100%S129遗传背景的采集值)。
附图2表示t-PA或PAⅠ-1基因的腺病毒转移分别对t-PA或PAⅠ-1缺乏小鼠体内的病灶性局部缺血性大脑梗塞大小的作用。
附图3表示α2-AP对病灶性局部缺血性大脑梗塞大小的作用。
A.α2-AP基因型对大脑梗塞大小的作用。
B.注射hα2-AP或hαα2-AP、随后是注射抗-hα2-AP Fab对大脑梗塞大小的作用。
通过皮下注射200mg悬浮在完全弗洛因德佐剂中的纯化的人α2-AP、随后通过在双周间隔注射悬浮在不完全弗洛因德佐剂中的抗原而在家兔体内使多克隆抗血清升高。通过重复耳静脉穿刺而获得血清。将采集的血清在蛋白质-A琼脂糖上进行层析(0.5ml血清/ml湿凝胶)、用0.1MTris.HCl(pH8.1)平衡并用0.1M甘氨酸.HCl(pH2.8)洗脱IgG,从而产生约10mg蛋白质/ml血清。亲和特异性抗体通过用人α2-AP(2.5mg/ml湿凝胶)取代并用0.1M甘氨酸.HCl(pH2.8)洗脱的CNBr-活化的琼脂糖柱上层析而获自透析的IgG采集液,从而产生所用的约0.1mg特异性IgG/mg。
通过用木瓜蛋白酶消化而从亲和特异性IgG中获得Fab片段。由此将IgG溶解至5mg/ml的浓度并在50mM半胱氨酸、1mMEDTA、0.1M磷酸盐缓冲液(pH7.0)存在的情况下用1%(w/w)的木瓜蛋白酶消化5小时。通过将碘乙酰胺加至终浓度为75mM而终止反应。在透析后,将该混合物在用PBS平衡的蛋白质-A琼脂糖柱上纯化。通过对IgG标准品校准用ELISA来测定Fab浓度。SDS凝胶电泳主要显示出均匀的Fab片段(未示出)。2.2腺病毒载体的生产基本上如上所述通过293个细胞中的同源重组来产生重组腺病毒AdCMVt-PA和AdCMVPAⅠ-1(20)。对于AdCMVt-PA来说,将编码野生型人t-PA的质粒pSTEt-PA的XbaⅠ-片段连入XbaⅠ-消化的pACCMVpLpA(21)以便产生pACCMVt-PA。通过将含有人PAⅠ-1全编码序列的1.4-kb pPAⅠ-1RBR的EcoRⅠ/BglⅡ片段连入EcoRⅠ/BamHⅠ-消化的pACCMVpLpA来产生腺病毒前体pACCMVPAⅠ-1。在这些质粒中,t-PA和PAⅠ-1 cDNA定位在人巨细胞病毒立即早期增强子/启动子与SV40t-抗原内含子/聚腺苷酸化信号之间以便形成一种完整的转录单位。
用10mg的pACCMVt-PA或pACCMVPAⅠ-1和5mg的pJM17(20)即一种含有全长腺病毒5d1309基因组的质粒共转染293个细胞的单层培养物(22)。这些质粒之间的同源重组导致重组病毒基因组形成,其中腺病毒E1区被相应的t-PA或PAⅠ-1转基因所取代。在所培养的293个细胞中重组病毒的复制得到从整合入293个细胞基因组的E1拷贝中转染(trans)产生的E1A基因产物的支持。
在转染后,收集重组的病毒噬斑并如(23)中所述扩增。通过对由生产性感染的293个细胞制备的病毒DNA进行限制分析和DNA印迹分析来测定重组病毒的同一性。以相同方式从pACRR5和pJM17中产生在E1位缺乏插入基因的重组腺病毒AdRR5并将其用作对照腺病毒(24、25)。在进一步应用前使重组病毒重新形成噬斑(replaqued)以便确保克隆的同一性。如上所述进行大规模重组腺病毒的生产(23)。用0.1mg/ml无菌牛血清清蛋白(BSA)补充纯化的病毒、使其在液氮中骤冷并保存在-80℃下直到应用为止。通过在37℃下吸附1小时的单层293个细胞上的噬斑试验来测定感染性病毒颗粒在纯化储备溶液中的滴度。一般获得>1010噬斑形成单位(pfu)/ml的纯化病毒储备溶液。已经另外描述了在通过静脉快速浓注腺病毒转移后t-PA和PAⅠ-1表达的动力学和器官分布(26、27)。2.3人纤溶酶的制备基本上如上所述由新鲜冷冻的人血库血浆来制备人纤溶酶原(28)。向人血浆(6升)中加入20个单位的抑酶肽(Trasylol,Bayer,Germany)/ml、通过在4℃下以4,000 rpm离心15分钟使其澄清。向上清液中加入赖氨酸-琼脂糖(200g湿重,取代度约为1mg赖氨酸/g湿琼脂糖凝胶),在4℃下将该混合物搅拌1小时并在布氏漏斗上回收所述凝胶。然后向滤液中加入120g赖氨酸-琼脂糖,搅拌该混合物并如上所述回收凝胶。将合并的凝胶级分用18升含有10个单位抑酶肽/ml的0.2MK2HPO4/KH2PO4缓冲液(pH7.5)洗涤,然后倾入5×60cm柱上并在4℃下用含有10单位/ml抑酶肽的0.02MNaH2PO4、0.1MNaCl缓冲液(pH7.5)洗涤,直到洗涤液在280nm处的吸收度小于0.05为止。接着将该柱用含有0.05M6-氨基己酸的洗涤缓冲液和含有收集级分的蛋白质洗脱。从6升血浆中获得含有650mg蛋白质的约145ml液体。将该采集液在Amicon PM10滤器上浓缩2.5倍并在用0.02M NaH2PO4、0.1MNaCl缓冲液(pH 7.5)平衡的5×90cmultragel AcA44柱上以60ml/小时的速率进行凝胶过滤。将来自主峰的含有约590mg蛋白质的级分在Amicon PM10滤器上浓缩至浓度为10mg/ml并冷冻至应用时为止。
如下由纤溶酶原制备人纤溶酶。将赖氨酸-琼脂糖(20g湿重)加入到人纤溶酶原(200mg)溶液中,在4℃下将该混合物搅拌3小时,将凝胶在布氏漏斗上洗涤并重新悬浮于30ml0.1MNaH2PO4缓冲液(pH7.4)中。加入含有纤溶酶.琼脂糖的尿激酶(500μl的50μM溶液,通过使次鲁普酶(Grünenthal,Aachen,Germany)活化来制备)并在4℃下将该混合物搅拌15小时。然后在布氏漏斗上用0.1MNaH2PO4缓冲液(pH7.4)洗涤凝胶、倾入1.5×16cm柱;用0.1MNaH2PO4缓冲液(pH7.4)洗涤至洗涤液在280nm处的吸收度小于0.05为止并用含有0.05M6-氨基己酸的0.1MNaH2PO4缓冲液洗脱。收集含有级分的蛋白质,将甘油加入至终浓度为10%并在4℃下将采集液对含有10%甘油的0.1MNaH2PO4缓冲液透析。最终回收25ml溶液、蛋白质浓度为4.0mg/ml且活性纤溶酶浓度为25μM。2.4血浆中α2-抗纤溶酶的测定通过基于快速抑制纤溶酶的显色底物试验来测定小鼠血浆中的α2-抗纤溶酶水平(29)。简单地说,在37℃下,将10μl小鼠血浆(按1/10在含有0.01%Tween20的0.05M NaH2PO4缓冲液(pH7.4)中稀释)与420μl的0.05MTris-HCl、含有0.01%Tween20的0.1MNaCl缓冲液(pH7.4)并与20μl的0.125μM人纤溶酶(终浓度为5nM)混合。在第10S培养后,加入50μl的3mMS2403(Chromogenics,Antwerp,Belgium)并在405nm处测定吸收度的改变。使用缓冲液测得的吸收度改变约为0.18分钟-1,而使用采集的小鼠血浆测得的吸收度改变约为0.09分钟-1。2.5动物实验按照美国生理协会和血栓形成与淤血国际委员会的指导原则进行动物实验(30)。
按照Welsh等所述(31),通过持续封闭MCA而产生病灶性大脑局部缺血。简单地说,通过腹膜内注射氯胺酮(75mg/ml,Apharmo,Arnhem,The Netherlands)和赛拉嗪(5mg/ml,Bayer,Leverkusen,Germany)使各种性别、20-30g重的小鼠麻醉。肌内给予阿托品(1mg/ml,Federa,Brussels,Belgium)并通过将动物保持在加热垫上来维持体温。在左耳与左眼之间作“U”形切口。将颞肌的上侧和底侧片段切成段并通过颞肌回缩来暴露关颅骨。用手控钻在MCA内的区域打一个小孔(1-2mm直径),灌注过量盐水以便防止加热损伤。用夹钳取出脑膜并通过与10-0尼龙线(Ethylon,Neuilly,France)连接来封闭MCA并在连接点远端切段。最后,将颞肌和皮肤缝回原位。
在连接MCA前4天,将AdCMVt-PA、AdCMVPAⅠ-1或AdRR5以1.3×109噬斑形成单位(p.f.u.)静脉快速浓注。分2次通过静脉注射给予人α2-AP(hα2-AP),分别在连接MCA前1分钟和连接MCA后30分钟给予。通过静脉快速浓注Fab片段,10分钟后第2次注射hα2-AP。在连接MCA前15分钟和连接MCA后15分钟静脉快速浓注给予人纤溶酶。
回收动物并将其放回到笼中。24小时后,用超剂量的戊巴比妥(500mg/kg,Abbott,Laboratories,North Chicago,IL)处死动物并将其断头。取出大脑并放入切成1mm节段的基质中。将这些部分浸入2%的氯化2,3,5-三苯基四唑鎓(TTC)的盐水溶液(32)、在37℃下培养30分钟并放入4%的福尔马林的磷酸盐缓冲盐水。由于使用了该步骤,坏死梗塞区仍然未染色(白色)且清楚地与染色(砖红色)的活组织区别开来。给这些部分照相并进行几何面积测量。将梗塞体积定义为根据其厚度倍增的这些部分的未染色区域的总和。
将数据表示为n次测定的平均值±SEM。使用方差分析、随后是Fisher’s PLSD试验;使用Statview软件包或通过学生t检验来测定差异的显著性。
t-PA基因的失活与梗塞大小显著减小至2.6±0.80mm3(n=11)相关(与野生型小鼠比较p<0.0001);而u-PA基因的失活对梗塞大小没有影响(7.8±1.0mm3,n=8,p=NS与野生型比较)。
PAⅠ-1基因的失活与梗塞大小显著增加相关(16±0.52mm3,n=6,与野生型小鼠比较p<0.0001)(附图1)。在含有失活Plg基因的小鼠中,大脑梗塞大小显著大于野生型小鼠(12±1.2mm3,n=9,与野生型小鼠比较p<0.037);而相反,在α2-AP基因缺乏小鼠中,梗塞大小明显减小(2.2±1.1mm3,n=7,与野生型小鼠比较p=0.0001)(附图1)。
上述实施例表明α2-AP活性降低(减少α2-AP基因的表达或用抑制剂减少循环的α2-AP)可减小诸如在局部缺血性中风过程中遇到的病灶性大脑局部缺血性梗塞的大小。
连接左侧大脑中动脉(MCA)可诱发近交Balb/c小鼠的大脑梗塞体积为27±1.3mm3(n=10);而近交的C57BL/6小鼠为16±1.3mm3(n=12)。
给Balb/c小鼠注射0.2mgPli使梗塞大小减小至22±1.0mm3(n=9)(与盐水相比p=0.006)。当在连接MCA前15分钟或连接MCA后15分钟注射给予Pli时,观察到了类似的减少(表1)。在C57Bl/6小鼠中,注射0.2mg Pli使梗塞大小减小至10±1.2mm3(n=12)(与盐水相比p=0.004)。
参考文献1.Collen D.“葡萄球菌激酶一种有效独特的血纤蛋白选择性溶栓剂”-《天然药物》(Nature Medicine)1998;4:279-284;2.Coyle JT,Puttfarcken P.“氧化应力、谷氨酸和神经变性性疾病”-《科学》(Science)1993;262:689-695;3.Coyle JT,Molliver ME,Kuhar MJ.“原位注射红藻氨酸一种用于选择性损害神经元细胞体而不使用传代细胞轴突的新型方法”-《复合神经学杂志》(J Comp Neurol)1978;180:301-323;4.Tsirka S,Gualandris A,Amarmal DG,Strickland S.“兴奋毒素诱发的神经元变性和癫痫发作由组织纤溶酶原激活物介导”-《自然》(Nature)1995;377:340-344;5.Tsirka S,Rogove AD,Bugge TH,Degen JL,Strickland S.“胞外蛋白水解级联促进小鼠海马中的神经元变性”-《神经科学杂志》(J Neurosci)1997;17:543-552;6.Tsirka S,Rogove AD,Strickland S.“神经细胞死亡和t-PA”-《自然》(Nature)1996;384:123-124;7.Chen ZL,Strickland S.“纤溶酶催化的层粘连蛋白变性促进海马中的神经元死亡”-《细胞》(Cell)1997;91:917-925;8.Wang YF,Tsirka SE,Strickland S,Stieg PE,SorianoSG,Lipton SA.“组织纤溶酶原激活物(tPA)在野生型和tPA-缺乏小鼠体内病灶性大脑局部缺血后增加神经元损害”-《天然药物》(Nature Medicine)1998;4:228-231;9.Nagai N,Vanlinthout I,Collen D.“组织型纤溶酶原激活物、链激酶和葡萄球菌激酶对仓鼠模型中大脑局部缺血性梗塞和肺血块溶解的比较作用”-已递交的;10.神经病和中风rt-PA中风国家研究所研究组“用于急性局部缺血性中风的组织纤溶酶原激活物”-《新英格兰药物杂志》(N EnglJ Med)1995;333:1581-1587;11.Hacke W,Kaste M,Fieschi C,Toni D,Lesaffre E,vonKummer R,Boysen G,Bluhmki E,Haxter G,Mahagne MH,HennericiM,ECASS研究组“使用重组组织纤溶酶原激活物对急性大脑半球中风的静脉血栓溶解欧洲合作急性中风研究(ECASS)”-《美国药物协会杂志》(J Am Med Ass)1995:274:1017-1025;12.Collen D,Wiman B.“抗纤溶酶-速效血浆纤溶酶抑制剂的更新”-《血液》(Blood)1979;53:313-324;13.Carmeliet P,Schoon jans L,Kieckens L,Ream B,DegenJ,Bronson R,De Vos R,van den Oord J,Collen D,MulliganR.“小鼠中缺失纤溶酶原激活物基因功能的生理结果”-《自然》(Nature)1994;368:419-424;14.Carmeliet P,Kieckens L,Sehoonjans L,Ream B,VanNuffelen A,Prendergast G,Cole M,Bronson R,Collen D,Mulligan RC“纤溶酶原激活物抑制剂-1基因缺陷小鼠Ⅰ.由同源重组和特征记述产生”-《临床研究杂志》(J Clin Invest)1993:92:2746-2755;15.Carmeliet P,Stassen JM,Sehoonjans L,Ream B,Van denOord JJ,De M0l M,Mulligan RC,Collen D.“纤溶酶原激活物抑制剂-1缺陷小鼠Ⅱ.对止血、血栓形成和血栓溶解的作用”-《临床研究杂志》(J Clin Invest)1993;92:2756-2760;16.Poplis VA,Carmeliet P,Vazirzadeh S,Van VlaenderenI,Moons L,Plow EF,Collen D.“纤溶酶原基因的破坏对小鼠血栓形成、生长和健康的影响”-《循环》(Circulation)1995:92:2585-2593;17.Lijnen HR,Okada K,Matsuo O,Collen D,Derwerchin M.“小鼠α2-抗纤溶酶基因缺陷与增强的纤溶潜能有关而与明显的出血无关”-《血液》(Blood)1999:93:2274-2281;18.Dewerchin M,Van Nuffelen A,Wallays G,Bouch A,MoonsL,Carmeliet P,Mulligan RC,Collen D.“尿激酶受体缺乏小鼠的产生和特征记述”-《临床研究杂志》(J Clin Invest)1996;97:870-878;19.Lijnen HR,Holmes WE,Van Hoef B,Wiman B,RodriguezH,Collen D.“人α2-抗纤溶酶的氨基酸序列”-《欧洲生物化学杂志》(Eur J Biochem)1987;166:565-574;20.McGrory WJ,Bautista DS,Graham FL.“使早期1区突变进入感染性人5型腺病毒的简单技术”-《病毒学》(Virology)1988;163:614-617;21.Gomez-Foix AM,Coats WS,Baque S,Alam T,Gerard RD,Newgard CB.“腺病毒介导的肌肉糖原磷酸化酶基因转入肝细胞使糖原代谢的调节改变”-《生物学和化学杂志》(J Biol Chem)1992;267:25129-25134;22.Graham FL,Smiley J,Russel WC,Nairn R.“由来自人5型腺病毒的DNA转化的人细胞系的特征”-《基因病毒学杂志》(J GenVirol)1977;36:59-74;23.Gerard RD,Meidell RS.“腺病毒载体”,选自Hames BD,Glover D(编辑)《DNA克隆》(DNA Cloning)-实用方法哺乳动物系统-Oxford,UK,1995,285-307页;24.Alcorn JL,Gao E,Chen Q,Smith ME,Gerard RD,MendelsonCR.“涉及家兔表面活性物质蛋白-A基因的转录调节的基因组元件”-《分子内分泌学》(Mol Endocrinol)1993;7:1072-1085;25.Kopfler WP,Willard M,Betz T,Willard JE,Gerard RD,Meidell RS.“腺病毒介导的编码人载脂蛋白A-Ⅰ转入正常小鼠增加循环的高密度脂蛋白胆固醇”-《循环》(Circulation)1994;90:1319-1327;26.Carmeliet P,Stassen JM,Van Vlaenderen I,Meidell RS,Collen D,Gerard RD.“腺病毒介导的组织型纤溶酶原激活物的转移增加组织型纤溶酶原激活物缺乏和纤溶酶原激活物抑制剂-1-超表达小鼠体内的血栓溶解”-《血液》(Blood)1997;90:1527-1534;27.Carmeliet P,Moons L,Lijnen R,Janssens S,Lupu F,Collen D,Gerard RD.“纤溶酶原激活物抑制剂-1在动脉伤口愈合和新内膜形成中的抑制作用”-《循环》(Circulation)1997;96:3180-3191;28.Deutsch DG,Mertz ET.“通过亲和层析法从人血浆中纯化纤溶酶原”-《科学》(Science)1970;170:1095-1096;29.Edy J,De Cock F,Collen D.“用正常和抗纤溶酶缺失人血浆抑制纤溶酶”-《血栓形成研究》(Thromb Res)1976;8:513-518;30.Giles AR.“生物药物研究用于动物的指导原则”《血栓形成与淤血》(Thromb Haemost)1987;58:1078-1084;31.Welsh FA,Sakamoto T,McKee AE,Sims RE.“乳酸形成(lactacidosis)对小鼠大脑内局部缺血过程中吡啶核苷酸稳定性的影响”-《神经化学杂志》(J Neurochem)1987;49:846-851;32.Bederson JB等“氯化2,3,5-三苯基四氮唑作为检测和定量实验性大鼠脑梗塞的染色剂的评估”-《中风》(Stroke)1986;17:472-476。*现地址E317,Handa-cho3776,Hamamatsu,Shizuoka431-3124,Japan1权利要求
1.可在体内减少α2-抗纤溶酶的化合物在制备用于治疗病灶性大脑局部缺血性梗塞(局部缺血性中风)的治疗用组合物中的用途。
2.根据权利要求1所述的用途,其中所述的化合物可降低循环的α2-抗纤溶酶的浓度。
3.根据权利要求1所述的用途,所述的化合物可降低循环的α2-抗纤溶酶的活性。
4.根据权利要求1-3所述的用途,其中所述的化合物是α2-抗纤溶酶中和抗体或其衍生物。
5.根据权利要求4所述的用途,其中所述的衍生物是Fab片段或ScFv片段。
6.根据权利要求1-3所述的用途,其中所述的化合物是选自纤溶酶、小纤溶酶(缺乏前4个Kringles)或微纤溶酶(缺乏全部5个Kringles)的中和α2-抗纤溶酶的化合物。
全文摘要
本发明涉及一种用于治疗病灶性局部缺血性大脑梗塞(局部缺血性中风)的新型方法。已经发现减少α
文档编号A61K39/395GK1320045SQ99811520
公开日2001年10月31日 申请日期1999年9月24日 优先权日1998年9月29日
发明者N·纳加, D·J·科仑 申请人:勒芬研究与发展公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1